AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Home Friction Article
PDF (7.5 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

Surface forces dominating tribological phenomena in nanoconfined liquids: A review

Chenyu Qiao1Yongxiang Sun1Yichun Han1Ziqian Zhao1Lifeng Ma2Hongbo Zeng1( )
Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada
Heavy Machinery Engineering Research Center of the Ministry of Education, Taiyuan University of Science and Technology, Taiyuan 030024, China
Show Author Information

Graphical Abstract

Abstract

Friction is ubiquitous and plays a key role in the functionality of many biological and engineering systems, from articular cartilage to machinery. While friction facilitates motion, it also causes wear and energy loss in moving parts. Lubricants (particularly liquid lubricants) are essential to reduce the negative effects of friction, and their properties (e.g., rheology and compatibility with friction materials) significantly influence lubrication performance and related mechanisms. The tribological phenomena between friction surfaces separated by a nanoconfined liquid film are governed by both external load and surface forces involved. Despite significant progress over the past few decades, the molecular and interfacial interaction mechanisms driving liquid-lubricated friction are not yet fully understood, and a comprehensive correlation between surface forces and tribological behaviors in nanoconfined liquids has not been fully established. In this review, we first summarize the latest understanding of fundamental concepts in surface forces, nano-rheology, and tribology in nanoconfined liquids. Representative tribological phenomena in nanoconfined liquids are analyzed and correlated with surface forces and liquid properties involved in specific cases. Additionally, advanced nanomechanical technologies (e.g., surface forces apparatus (SFA) and atomic force microscopy (AFM)), which show great potential in the field of tribology, are introduced. The advantages and current limitations of these technologies are also discussed. Moreover, key findings from recent tribological studies involving different liquids (both aqueous solutions and nonpolar liquids) are reviewed, and the underlying mechanisms of lubrication performance are analyzed from the perspective of surface forces. The future directions of tribology in nanoconfined liquids are discussed, providing insights and inspirations for developing effective lubrication strategies. This review enhances the understanding of nanotribology and correlates tribological phenomena with surface forces and rheology in nanoconfined liquids, offering new insights for developing advanced lubricants and wear-resistance materials.

References

[1]
Ruths M, Israelachvili J N. Surface forces and nanorheology of molecularly thin films. In: Nanotribology and Nanomechanics. Bhushan B, Ed. Berlin (Germany): Springer, 2005: 389–481.
[2]
Israelachvili J. Tribology of ideal and non-ideal surfaces and fluids. In: Fundamentals of Tribology and Bridging the Gap Between the Macro- and Micro/Nanoscales. Bhushan B, Ed. Dordrecht: Springer Netherlands, 2001: 631–650.
[3]

Lin W F, Klein J. Recent progress in cartilage lubrication. Adv Mater 33(18): 2005513 (2021)

[4]

Yang L M, Zhao X D, Ma Z F, Ma S H, Zhou F. An overview of functional biolubricants. Friction 11(1): 23–47 (2023)

[5]

Zhang X Y, Zhang T, Chen K, Xu H D, Feng C N, Zhang D K. Wear mechanism and debris analysis of PEEK as an alternative to CoCrMo in the femoral component of total knee replacement. Friction 11(10): 1845–1861 (2023)

[6]
Bloch H P, Bannister K. Practical Lubrication for Industrial Facilities. New York (USA): River Publishers, 2020.
[7]

Zhou F, Liang Y M, Liu W M. Ionic liquid lubricants: Designed chemistry for engineering applications. Chem Soc Rev 38(9): 2590 (2009)

[8]
Mang T, Dresel W. Lubricants and Lubrication. Weinheim (Germany): Wiley-VCH Verlag GmbH & Co. KGaA, 2017.
[9]

Chen W W, Xu B, Tang Q C, Qian S H, Bian D, Li H. Preparation and properties of PDMS surface coating for ultra-low friction characteristics. Langmuir 39(41): 14605–14615 (2023)

[10]

Zheng H B, Li J H, Bian D, Ni Z F, Qian S H, Zhao Y W. Improving the tribological performance of phosphate-bonded coatings reinforced by carbon fiber/graphene oxide. ACS Appl Nano Mater 6(14): 13374–13384 (2023)

[11]
Torbacke M, Rudolphisa K, Kassfeldt E. Lubricants: Introduction to Properties and Performance. Chichester (UK): John Wiley & Sons, 2014.
[12]
Israelachvili J N. Intermolecular and Surface Forces, 3rd edn. Oxford (UK): Elsevier, 2011.
[13]

Du N Z, Li X W, Wei X B, Chen Z, Lu S Q, Ding J Q, Feng C N, Chen K, Qiao J H, Zhang D K, et al. Atomistic insights into interfacial optimization mechanism for achieving ultralow-friction amorphous carbon films under solid–liquid composite conditions. ACS Appl Mater Inter 15(45): 53122–53135 (2023)

[14]

Donnet C, Erdemir A. Solid lubricant coatings: Recent developments and future trends. Tribol Lett 17(3): 389–397 (2004)

[15]

Wang Y M, Jiang B L, Guo L X, Lei T Q. Tribological behavior of microarc oxidation coatings formed on titanium alloys against steel in dry and solid lubrication sliding. Appl Surf Sci 252(8): 2989–2998 (2006)

[16]

Zabinski J S, Sanders J H, Nainaparampil J, Prasad S V. Lubrication using a microstructurally engineered oxide: Performance and mechanisms. Tribol Lett 8(2): 103–116 (2000)

[17]

Zhang X L, Ren T H, Li Z P. Recent advances of two-dimensional lubricating materials: From tunable tribological properties to applications. J Mater Chem A 11(17): 9239–9269 (2023)

[18]

Briscoe W H, Titmuss S, Tiberg F, Thomas R K, McGillivray D J, Klein J. Boundary lubrication under water. Nature 444(7116): 191–194 (2006)

[19]

Sivan S, Schroeder A, Verberne G, Merkher Y, Diminsky D, Priev A, Maroudas A, Halperin G, Nitzan D, Etsion I, et al. Liposomes act as effective biolubricants for friction reduction in human synovial joints. Langmuir 26(2): 1107–1116 (2010)

[20]

Ren Y L, Zhang L, Xie G X, Li Z B, Chen H, Gong H J, Xu W H, Guo D, Luo J B. A review on tribology of polymer composite coatings. Friction 9(3): 429–470 (2021)

[21]

Wan H P, Zhao X H, Lin C X, Kaper H J, Sharma P K. Nanostructured coating for biomaterial lubrication through biomacromolecular recruitment. ACS Appl Mater Inter 12(21): 23726–23736 (2020)

[22]

Israelachvili J, Min Y, Akbulut M, Alig A, Carver G, Greene W, Kristiansen K, Meyer E, Pesika N, Rosenberg K, et al. Recent advances in the surface forces apparatus (SFA) technique. Rep Prog Phys 73(3): 036601 (2010)

[23]

Binnig G, Quate C F, Gerber C. Atomic force microscope. Phys Rev Lett 56(9): 930–933 (1986)

[24]

Nygård K. Local structure and density fluctuations in confined fluids. Curr Opin Colloid In 22: 30–34 (2016)

[25]

Lombardo T G, Giovambattista N, Debenedetti P G. Structural and mechanical properties of glassy water in nanoscale confinement. Faraday Discuss 141: 359–376 (2009)

[26]

Israelachvili J N, Pashley R M. Molecular layering of water at surfaces and origin of repulsive hydration forces. Nature 306(5940): 249–250 (1983)

[27]

Horn R G, Israelachvili J N. Direct measurement of structural forces between two surfaces in a nonpolar liquid. J Chem Phys 75(3): 1400–1411 (1981)

[28]

Chen H, Sun T, Yan Y F, Ji X L, Sun Y L, Zhao X, Qi J, Cui W G, Deng L F, Zhang H Y. Cartilage matrix-inspired biomimetic superlubricated nanospheres for treatment of osteoarthritis. Biomaterials 242: 119931 (2020)

[29]

Wei Q B, Cai M R, Zhou F, Liu W M. Dramatically tuning friction using responsive polyelectrolyte brushes. Macromolecules 46(23): 9368–9379 (2013)

[30]

Cao J, Liu X S, Qiu J, Yue Z F, Li Y, Xu Q, Chen Y, Chen J W, Cheng H F, Xing G Z, et al. Anti-friction gold-based stretchable electronics enabled by interfacial diffusion-induced cohesion. Nat Commun 15: 1116 (2024)

[31]
Hiemenz P C, Rajagopalan R. Principles of Colloid and Surface Chemistry, 3rd edn. New York (USA): Marcel Dekker, 1997.
[32]
Hunter R J. Foundations of Colloid Science, 2nd edn. Oxford (UK): Oxford University Press, 2001.
[33]
Evans D F, Wennerström H. The Colloidal Domain: Where Physics, Chemistry, Biology, and Technology Meet. New York (USA): Wiley-VCH, 1999.
[34]

Adamczyk Z, Weroński P. Application of the DLVO theory for particle deposition problems. Adv Colloid Interfac 83(1–3): 137–226 (1999)

[35]

Behrens S H, Christl D I, Emmerzael R, Schurtenberger P, Borkovec M. Charging and aggregation properties of carboxyl latex particles: Experiments versus DLVO theory. Langmuir 16(6): 2566–2575 (2000)

[36]

Missana T, Adell A. On the applicability of DLVO theory to the prediction of clay colloids stability. J Colloid Interf Sci 230(1): 150–156 (2000)

[37]

Pashley R M. Hydration forces between mica surfaces in aqueous electrolyte solutions. J Colloid Interf Sci 80(1): 153–162 (1981)

[38]

Israelachvili J N, Adams G E. Measurement of forces between two mica surfaces in aqueous electrolyte solutions in the range 0–100 nm. J Chem Soc Farad T 1 74: 975 (1978)

[39]

Dzyaloshinskii I E, Lifshitz E M, Pitaevskii L P. The general theory of van der Waals forces. Adv Phys 10(38): 165–209 (1961)

[40]

Prieve D C, Russel W B. Simplified predictions of Hamaker constants from Lifshitz theory. J Colloid Interf Sci 125(1): 1–13 (1988)

[41]

Miklavic S J, Chan D Y C, White L R, Healy T W. Double layer forces between heterogeneous charged surfaces. J Phys Chem 98(36): 9022–9032 (1994)

[42]

Tadmor R, Hernández-Zapata E, Chen N H, Pincus P, Israelachvili J N. Debye length and double-layer forces in polyelectrolyte solutions. Macromolecules 35(6): 2380–2388 (2002)

[43]

Kohonen M M, Karaman M E, Pashley R M. Debye length in multivalent electrolyte solutions. Langmuir 16(13): 5749–5753 (2000)

[44]

Brown M A, Goel A, Abbas Z. Effect of electrolyte concentration on the stern layer thickness at a charged interface. Angew Chem Int Ed 55(11): 3790–3794 (2016)

[45]

Midmore B R, Hunter R J. The effect of electrolyte concentration and co-ion type on the ζ-potential of polystyrene latices. J Colloid Interf Sci 122(2): 521–529 (1988)

[46]
Nicholson D, Parsonage N G. Computer Simulation and the Statistical Mechanics of Adsorption. New York (USA): Academic Press, 1982.
[47]

Evans R, Parry A O. Liquids at interfaces: What can a theorist contribute. J Phys—Condens Mat 2(S): SA15 (1990)

[48]

Das S K, Sharma M M, Schechter R S. Solvation force in confined molecular fluids using molecular dynamics simulation. J Phys Chem 100(17): 7122–7129 (1996)

[49]

Christenson H K. Experimental measurements of solvation forces in nonpolar liquids. J Chem Phys 78(11): 6906–6913 (1983)

[50]

Pangali C, Rao M, Berne B J. A Monte Carlo simulation of the hydrophobic interaction. J Chem Phys 71(7): 2975–2981 (1979)

[51]

Henderson D, Lozada-Cassou M. A simple theory for the force between spheres immersed in a fluid. J Colloid Interf Sci 114(1): 180–183 (1986)

[52]

Henderson D, Lozada-Cassou M. Does dielectric saturation provide a plausible explanation of the hydration solvation force. J Colloid Interf Sci 162(2): 508–509 (1994)

[53]

Dubois M, Zemb T, Belloni L, Delville A, Levitz P, Setton R. Osmotic pressure and salt exclusion in electrostatically swollen lamellar phases. J Chem Phys 96(3): 2278–2286 (1992)

[54]

Kilpatrick J I, Loh S H, Jarvis S P. Directly probing the effects of ions on hydration forces at interfaces. J Am Chem Soc 135(7): 2628–2634 (2013)

[55]

Nakouzi E, Kerisit S, Legg B A, Yadav S, Li D, Stack A G, Mundy C J, Chun J, Schenter G K, De Yoreo J J. Solution structure and hydration forces between mica and hydrophilic versus hydrophobic surfaces. J Phys Chem C 127(5): 2741–2752 (2023)

[56]

Chapel J P. Electrolyte species dependent hydration forces between silica surfaces. Langmuir 10(11): 4237–4243 (1994)

[57]

Pashley R M. DLVO and hydration forces between mica surfaces in Li+, Na+, K+, and Cs+ electrolyte solutions: A correlation of double-layer and hydration forces with surface cation exchange properties. J Colloid Interf Sci 83(2): 531–546 (1981)

[58]

Rau D C, Lee B, Parsegian V A. Measurement of the repulsive force between polyelectrolyte molecules in ionic solution: Hydration forces between parallel DNA double helices. P Natl Acad Sci USA 81(9): 2621–2625 (1984)

[59]

Donaldson S H Jr, Røyne A, Kristiansen K, Rapp M V, Das S, Gebbie M A, Lee D W, Stock P, Valtiner M, Israelachvili J. Developing a general interaction potential for hydrophobic and hydrophilic interactions. Langmuir 31(7): 2051–2064 (2015)

[60]

Israelachvili J, Pashley R. The hydrophobic interaction is long range, decaying exponentially with distance. Nature 300(5890): 341–342 (1982)

[61]

Faghihnejad A, Zeng H B. Hydrophobic interactions between polymer surfaces: Using polystyrene as a model system. Soft Matter 8(9): 2746 (2012)

[62]

Cui X, Liu J, Xie L, Huang J, Liu Q, Israelachvili J N, Zeng H B. Modulation of hydrophobic interaction by mediating surface nanoscale structure and chemistry, not monotonically by hydrophobicity. Angew Chem Int Ed 57(37): 11903–11908 (2018)

[63]

Shi C, Cui X, Xie L, Liu Q X, Chan D Y C, Israelachvili J N, Zeng H B. Measuring forces and spatiotemporal evolution of thin water films between an air bubble and solid surfaces of different hydrophobicity. ACS Nano 9(1): 95–104 (2015)

[64]

Christenson H K, Claesson P M. Direct measurements of the force between hydrophobic surfaces in water. Adv Colloid Interf 91(3): 391–436 (2001)

[65]

Kollman P A, Allen L C. Theory of the hydrogen bond. Chem Rev 72(3): 283–303 (1972)

[66]

Lu Q Y, Oh D X, Lee Y, Jho Y, Hwang D S, Zeng H B. Nanomechanics of cation–π interactions in aqueous solution. Angew Chem Int Ed 52(14): 3944–3948 (2013)

[67]

Geng H M, Zhang P Y, Peng Q Y, Cui J W, Hao J C, Zeng H B. Principles of cation–π interactions for engineering mussel-inspired functional materials. Acc Chem Res 55(8): 1171–1182 (2022)

[68]

Yan B, He C Y, Chen S, Xiang L, Gong L, Gu Y C, Zeng H B. Nanoconfining cation–π interactions as a modular strategy to construct injectable self-healing hydrogel. CCS Chem 4(8): 2724–2737 (2022)

[69]

Peng Q Y, Chen J S, Zeng Z C, Wang T, Xiang L, Peng X W, Liu J F, Zeng H B. Adhesive coacervates driven by hydrogen-bonding interaction. Small 16(43): 2004132 (2020)

[70]

Viswanathan K, Ozhalici H, Elkins C L, Heisey C, Ward T C, Long T E. Multiple hydrogen bonding for reversible polymer surface adhesion. Langmuir 22(3): 1099–1105 (2006)

[71]

Gebbie M A, Wei W, Schrader A M, Cristiani T R, Dobbs H A, Idso M, Chmelka B F, Waite J H, Israelachvili J N. Tuning underwater adhesion with cation–π interactions. Nat Chem 9(5): 473–479 (2017)

[72]

Christenson H K, Gruen D W R, Horn R G, Israelachvili J N. Structuring in liquid alkanes between solid surfaces: Force measurements and mean-field theory. J Chem Phys 87(3): 1834–1841 (1987)

[73]

Israelachvili J N, Kott S J. Shear properties and structure of simple liquids in molecularly thin films: The transition from bulk (continuum) to molecular behavior with decreasing film thickness. J Colloid Interf Sci 129(2): 461–467 (1989)

[74]
Bhushan B. Modern Tribology Handbook. Boca Raton (USA): CRC Press, 2000.
[75]

Perkin S, Goldberg R, Chai L, Kampf N, Klein J. Dynamic properties of confined hydration layers. Faraday Discuss 141: 399–413 (2009)

[76]

Granick S. Motions and relaxations of confined liquids. Science 253(5026): 1374–1379 (1991)

[77]

Leng Y S, Cummings P T. Fluidity of hydration layers nanoconfined between mica surfaces. Phys Rev Lett 94(2): 026101 (2005)

[78]

Iizuka M, Mizukami M, Kurihara K. Viscosity of nanoconfined branched-chain fatty acids studied by resonance shear measurements. Langmuir 38(42): 12944–12950 (2022)

[79]

Weiss H, Cheng H W, Mars J, Li H L, Merola C, Renner F U, Honkimäki V, Valtiner M, Mezger M. Structure and dynamics of confined liquids: Challenges and perspectives for the X-ray surface forces apparatus. Langmuir 35(51): 16679–16692 (2019)

[80]

Relat-Goberna J, Garcia-Manyes S. Direct observation of the dynamics of self-assembly of individual solvation layers in molecularly confined liquids. Phys Rev Lett 114(25): 258303 (2015)

[81]

Kienle D F, Kuhl T L. Analyzing refractive index profiles of confined fluids by interferometry. Anal Chem 86(23): 11860–11867 (2014)

[82]

Lippmann M, Ehnes A, Seeck O H. An X-ray setup to investigate the atomic order of confined liquids in slit geometry. Rev Sci Instrum 85(1): 015106 (2014)

[83]

Federici Canova F, Matsubara H, Mizukami M, Kurihara K, Shluger A L. Shear dynamics of nanoconfined ionic liquids. Phys Chem Chem Phys 16(18): 8247–8256 (2014)

[84]

Schatzberg P. Molecular diameter of water from solubility and diffusion measurements. J Phys Chem 71(13): 4569–4570 (1967)

[85]

Sun G X, Bonaccurso E, Franz V, Butt H J. Confined liquid: Simultaneous observation of a molecularly layered structure and hydrodynamic slip. J Chem Phys 117(22): 10311–10314 (2002)

[86]

Maali A, Cohen-Bouhacina T, Couturier G, Aimé J P. Oscillatory dissipation of a simple confined liquid. Phys Rev Lett 96(8): 086105 (2006)

[87]

Klein J, Kumacheva E. Simple liquids confined to molecularly thin layers. I. Confinement-induced liquid-to-solid phase transitions. J Chem Phys 108(16): 6996–7009 (1998)

[88]

Horn R G, Israelachvili J N. Molecular organization and viscosity of a thin film of molten polymer between two surfaces as probed by force measurements. Macromolecules 21(9): 2836–2841 (1988)

[89]

Gao J P, Luedtke W D, Landman U. Structures, solvation forces and shear of molecular films in a rough nano-confinement. Tribol Lett 9(1): 3–13 (2000)

[90]

Padilla P, Toxvaerd S. Fluid alkanes in confined geometries. J Chem Phys 101(2): 1490–1502 (1994)

[91]

Yu C J, Richter A G, Datta A, Durbin M K, Dutta P. Observation of molecular layering in thin liquid films using X-ray reflectivity. Phys Rev Lett 82(11): 2326–2329 (1999)

[92]

Sloutskin E, Ocko B M, Tamam L, Kuzmenko I, Gog T, Deutsch M. Surface layering in ionic liquids: An X-ray reflectivity study. J Am Chem Soc 127(21): 7796–7804 (2005)

[93]

Granick S, Demirel A L, Cai L L, Peanasky J. Soft matter in a tight spot: Nanorheology of confined liquids and block copolymers. Isr J Chem 35(1): 75–84 (1995)

[94]

Drummond C, Israelachvili J. Dynamic behavior of confined branched hydrocarbon lubricant fluids under shear. Macromolecules 33(13): 4910–4920 (2000)

[95]

Cui S T, Cummings P T, Cochran H D. Molecular simulation of the transition from liquidlike to solidlike behavior in complex fluids confined to nanoscale gaps. J Chem Phys 114(16): 7189–7195 (2001)

[96]

Klein J, Kumacheva E. Confinement-induced phase transitions in simple liquids. Science 269(5225): 816–819 (1995)

[97]

Huang J, Yan B, Faghihnejad A, Xu H L, Zeng H B. Understanding nanorheology and surface forces of confined thin films. Korea Aust Rheol J 26(1): 3–14 (2014)

[98]

Israelachvili J N. Measurement of the viscosity of liquids in very thin films. J Colloid Interf Sci 110(1): 263–271 (1986)

[99]

Luengo G, Israelachvili J, Granick S. Generalized effects in confined fluids: New friction map for boundary lubrication. Wear 200(1–2): 328–335 (1996)

[100]

Zhu Y X, Granick S. Superlubricity: A paradox about confined fluids resolved. Phys Rev Lett 93(9): 096101 (2004)

[101]

Chen Y K, Xu Z J, Zhan M, Yang X N. Viscosity and structure of water and ethanol within GO nanochannels: A molecular simulation study. J Phys Chem B 124(48): 10961–10970 (2020)

[102]

Wang Y L, Wang C L, Zhang Y Q, Huo F, He H Y, Zhang S J. Ionic liquids: Molecular insights into the regulatable interfacial property and flow behavior of confined ionic liquids in graphene nanochannels. Small 15(29): 1804508 (2019)

[103]

Ishii Y, Matubayasi N, Watanabe G, Kato T, Washizu H. Molecular insights on confined water in the nanochannels of self-assembled ionic liquid crystal. Sci Adv 7(31): eabf0669 (2021)

[104]

Metya A K. Insight into the structure and dynamics of ethanol–water binary mixture confined in nanochannel by mica and graphene. J Phys Chem B 126(38): 7385–7392 (2022)

[105]

Leoni F, Calero C, Franzese G. Nanoconfined fluids: Uniqueness of water compared to other liquids. ACS Nano 15(12): 19864–19876 (2021)

[106]

Marcotte A, Mouterde T, Niguès A, Siria A, Bocquet L. Mechanically activated ionic transport across single-digit carbon nanotubes. Nat Mater 19(10): 1057–1061 (2020)

[107]

Majumder M, Chopra N, Andrews R, Hinds B J. Nanoscale hydrodynamics: Enhanced flow in carbon nanotubes. Nature 438(7064): 44 (2005)

[108]

Agrawal K V, Shimizu S, Drahushuk L W, Kilcoyne D, Strano M S. Observation of extreme phase transition temperatures of water confined inside isolated carbon nanotubes. Nature Nanotechnol 12(3): 267–273 (2017)

[109]

Chava B S, Das S. Strength, number, and kinetics of hydrogen bonds for water confined inside boron nitride nanotubes. Nanoscale Adv 6(13): 3329–3337 (2024)

[110]

Huang J, Yan Y G, Xie L, Liu H L, Huang C Z, Lu Q Y, Qiu X Y, Zeng H B. Probing the self-assembly and nonlinear friction behavior of confined gold nano-particles. Langmuir 35(48): 15701–15709 (2019)

[111]

Zeng Y, Schön S, von Klitzing R. Silica nanoparticle suspensions under confinement of thin liquid films. J Colloid Interf Sci 449: 522–529 (2015)

[112]

Luo Z Y, Bai B F. Retardation of droplet transport in confined microchannel by interfacial jamming of nanoparticles. Phys Fluids 32(8): 087110 (2020)

[113]

Ortiz-Young D, Chiu H C, Kim S, Voïtchovsky K, Riedo E. The interplay between apparent viscosity and wettability in nanoconfined water. Nat Commun 4: 2482 (2013)

[114]

Jiao S P, Zhou K, Wu M M, Li C, Cao X L, Zhang L, Xu Z P. Confined structures and selective mass transport of organic liquids in graphene nanochannels. ACS Appl Mater Inter 10(43): 37014–37022 (2018)

[115]

Neek-Amal M, Peeters F M, Grigorieva I V, Geim A K. Commensurability effects in viscosity of nanoconfined water. ACS Nano 10(3): 3685–3692 (2016)

[116]

Dahanayaka M, Chew J W. Organic solvent permeation through negatively charged graphene oxide membranes. ACS Sustain Chem Eng 10(4): 1499–1508 (2022)

[117]

Liu Q, Zhu H P, Liu G P, Jin W Q. Efficient separation of (C1–C2) alcohol solutions by graphyne membranes: A molecular simulation study. J Membr Sci 644: 120139 (2022)

[118]

Mehlhose S, Sakamoto T, Eickhoff M, Kato T, Tanaka M. Electrochemical detection of selective anion transport through subnanopores in liquid-crystalline water treatment membranes. J Phys Chem B 128(18): 4537–4543 (2024)

[119]

Gao Y, Li M Z, Zhang H Z, Zhang Y, Lu W Y, Xu B X. Anomalous solid-like necking of confined water outflow in hydrophobic nanopores. Matter 5(1): 266–280 (2022)

[120]

Pit R, Hervet H, Léger L. Direct experimental evidence of slip in hexadecane: Solid interfaces. Phys Rev Lett 85(5): 980–983 (2000)

[121]

Sun C Z, Zhou R F, Zhao Z X, Bai B F. Nanoconfined fluids: What can we expect from them. J Phys Chem Lett 11(12): 4678–4692 (2020)

[122]

Yang H, Ji G, Choi M, Park S, An H, Lee H T, Jeong J, Park Y D, Kim K, Park N, et al. Suppressed terahertz dynamics of water confined in nanometer gaps. Sci Adv 10(17): eadm7315 (2024)

[123]
Dowson D. History of Tribology, 2nd edn. London (UK): Professional Engineering Publishing, 1998.
[124]

Tabor D. The role of surface and intermolecular forces in thin film lubrication. Tribology S 7: 651–682 (1981)

[125]

Gee M L, McGuiggan P M, Israelachvili J N, Homola A M. Liquid to solidlike transitions of molecularly thin films under shear. J Chem Phys 93(3): 1895–1906 (1990)

[126]

Gong L, Xiang L, Zhang J W, Chen J S, Zeng H B. Fundamentals and advances in the adhesion of polymer surfaces and thin films. Langmuir 35(48): 15914–15936 (2019)

[127]

Zeng H B, Maeda N, Chen N H, Tirrell M, Israelachvili J. Adhesion and friction of polystyrene surfaces around Tg. Macromolecules 39(6): 2350–2363 (2006)

[128]
Zeng H B. Polymer Adhesion, Friction, and Lubrication. Hoboken (USA): John Wiley & Sons Inc., 2013.
[129]

Lei Y J, Leng Y S. Stick-slip friction and energy dissipation in boundary lubrication. Phys Rev Lett 107(14): 147801 (2011)

[130]

Yoshizawa H, Israelachvili J. Fundamental mechanisms of interfacial friction. 2. Stick-slip friction of spherical and chain molecules. J Phys Chem 97(43): 11300–11313 (1993)

[131]

Tabor D, Winterton R H S. The direct measurement of normal and retarded van der Waals forces. P Roy Soc Lond A Mat 312(1511): 435–450 (1969)

[132]

Israelachvili J N, Tabor D. The measurement of van der Waals dispersion forces in the range 1.5 to 130 nm. P Roy Soc Lond A Mat 331(1584): 19–38 (1972)

[133]

Lowrey D D, Tasaka K, Kindt J H, Banquy X, Belman N, Min Y, Pesika N S, Mordukhovich G, Israelachvili J N. High-speed friction measurements using a modified surface forces apparatus. Tribol Lett 42(1): 117–127 (2011)

[134]
Eaton P, West P. Atomic Force Microscopy. New York (USA): Oxford University Press Inc., 2018.
[135]

Xie L, Wang J Y, Shi C, Cui X, Huang J, Zhang H, Liu Q, Liu Q X, Zeng H B. Mapping the nanoscale heterogeneity of surface hydrophobicity on the sphalerite mineral. J Phys Chem C 121(10): 5620–5628 (2017)

[136]

Kappl M, Butt H J. The colloidal probe technique and its application to adhesion force measurements. 3.0.CO;2-G">Part Part Syst Char 19(3): 129–143 (2002)

[137]

Kobayashi M, Tanaka H, Minn M, Sugimura J, Takahara A. Interferometry study of aqueous lubrication on the surface of polyelectrolyte brush. ACS Appl Mater Inter 6(22): 20365–20371 (2014)

[138]

Pinto-Borges H, Pinto J, Carvalho O, Henriques B, Silva F, Gomes J, Ramos A, Souza J C M. Stresses, friction, and wear on different materials and design for temporomandibular joint total joint replacement (TMJ TJR). Tribol Int 178: 108051 (2023)

[139]

Zhu X C, Zhang S M, Zhang L, He Y, Zhang X, Kang X. Frictional behavior and wear mechanisms of Ag/MoS2/WS2 composite under reciprocating microscale sliding. Tribol Int 185: 108510 (2023)

[140]

Simonetto E, Ghiotti A, Brun M, Bruschi S. A new machine for testing ferrofluids lubrication performances by reciprocating sliding wear. Wear 516–517: 204601 (2023)

[141]

Wang C C, Tian P P, Cao H, Sun B, Yan J C, Xue Y, Lin H L, Ren T H, Han S, Zhao X. Enhanced biotribological and anticorrosion properties and bioactivity of Ti6Al4V alloys with laser texturing. ACS Omega 7(35): 31081–31097 (2022)

[142]

Varenberg M, Peressadko A, Gorb S, Arzt E, Mrotzek S. Advanced testing of adhesion and friction with a microtribometer. Rev Sci Instrum 77(6): 066105 (2006)

[143]

Desai A V, Haque M A. A novel MEMS nano-tribometer for dynamic testing in situ in SEM and TEM. Tribol Lett 18(1): 13–19 (2005)

[144]

Yu H B, Zhou G Y, Chew X, Sinha S K, Chau F S. Nano-tribometer integrated with a nano-photonic displacement-sensing mechanism. J Micromech Microeng 21(6): 065014 (2011)

[145]

Yan L N, Liu Y, Liu E J. Wear behaviour of martensitic NiTi shape memory alloy under ball-on-disk sliding tests. Tribol Int 66: 219–224 (2013)

[146]

Guo Y B, Wang D G, Liu S H, Zhang S W. Investigation of the tribological behaviors of polymer molecular deposition films by tribometer based on interferometer. Tribol Lett 41(3): 515–524 (2011)

[147]

Krick B A, Vail J R, Persson B N J, Sawyer W G. Optical in situ micro tribometer for analysis of real contact area for contact mechanics, adhesion, and sliding experiments. Tribol Lett 45(1): 185–194 (2012)

[148]

Raviv U, Perkin S, Laurat P, Klein J. Fluidity of water confined down to subnanometer films. Langmuir 20(13): 5322–5332 (2004)

[149]

Leng Y S, Cummings P T. Hydration structure of water confined between mica surfaces. J Chem Phys 124(7): 074711 (2006)

[150]

Claesson P M, Herder P, Stenius P, Eriksson J C, Pashley R M. An ESCA and AES study of ion-exchange on the basal plane of mica. J Colloid Interf Sci 109(1): 31–39 (1986)

[151]
Burgess J. Metal Ions in Solution. Chichester (UK): Ellis Horwood, 1978.
[152]

Gao J P, Luedtke W D, Landman U. Friction control in thin-film lubrication. J Phys Chem B 102(26): 5033–5037 (1998)

[153]

Tomoaia-Cotişel M, Zsako´ J, Mocanu A, Lupea M, Chifu E. Insoluble mixed monolayers III. The ionization characteristics of some fatty acids at the air/water interface. J Colloid Interf Sci 117(2): 464–476 (1987)

[154]

Iwahashi M, Kasahara Y, Matsuzawa H, Yagi K, Nomura K, Terauchi H, Ozaki Y, Suzuki M. Self-diffusion, dynamical molecular conformation, and liquid structures of n-saturated and unsaturated fatty acids. J Phys Chem B 104(26): 6186–6194 (2000)

[155]

Lundgren S M, Ruths M, Danerlöv K, Persson K. Effects of unsaturation on film structure and friction of fatty acids in a model base oil. J Colloid Interf Sci 326(2): 530–536 (2008)

[156]

Li H, Niemann T, Ludwig R, Atkin R. Effect of hydrogen bonding between ions of like charge on the boundary layer friction of hydroxy-functionalized ionic liquids. J Phys Chem Lett 11(10): 3905–3910 (2020)

[157]

Rich M R. Conformational analysis of arachidonic and related fatty acids using molecular dynamics simulations. BBA—Mol Cell Res 1178(1): 87–96 (1993)

[158]

Hayes R, Warr G G, Atkin R. Structure and nanostructure in ionic liquids. Chem Rev 115(13): 6357–6426 (2015)

[159]

Zhou Y, Qu J. Ionic liquids as lubricant additives: A review. ACS Appl Mater Inter 9(4): 3209–3222 (2017)

[160]

Niemann T, Li H, Warr G G, Ludwig R, Atkin R. Influence of hydrogen bonding between ions of like charge on the ionic liquid interfacial structure at a mica surface. J Phys Chem Lett 10(23): 7368–7373 (2019)

[161]

Niemann T, Neumann J, Stange P, Gärtner S, Youngs T G A, Paschek D, Warr G G, Atkin R, Ludwig R. The double-faced nature of hydrogen bonding in hydroxy-functionalized ionic liquids shown by neutron diffraction and molecular dynamics simulations. Angew Chem Int Ed 58(37): 12887–12892 (2019)

[162]

Niemann T, Zaitsau D H, Strate A, Stange P, Ludwig R. Controlling “like–likes–like” charge attraction in hydroxy-functionalized ionic liquids by polarizability of the cations, interaction strength of the anions and varying alkyl chain length. Phys Chem Chem Phys 22(5): 2763–2774 (2020)

[163]

Chen J S, Wu M, Gong L, Zhang J W, Yan B, Liu J F, Zhang H, Thundat T, Zeng H B. Mechanistic understanding and nanomechanics of multiple hydrogen-bonding interactions in aqueous environment. J Phys Chem C 123(7): 4540–4548 (2019)

[164]

Chen J S, Peng Q Y, Peng X W, Zhang H, Zeng H B. Probing and manipulating noncovalent interactions in functional polymeric systems. Chem Rev 122(18): 14594–14678 (2022)

[165]

Grdadolnik J, Merzel F, Avbelj F. Origin of hydrophobicity and enhanced water hydrogen bond strength near purely hydrophobic solutes. P Natl Acad Sci USA 114(2): 322–327 (2017)

Friction
Article number: 9440983
Cite this article:
Qiao C, Sun Y, Han Y, et al. Surface forces dominating tribological phenomena in nanoconfined liquids: A review. Friction, 2025, 13(1): 9440983. https://doi.org/10.26599/FRICT.2025.9440983

338

Views

89

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 09 June 2024
Revised: 02 August 2024
Accepted: 11 August 2024
Published: 09 December 2024
© The Author(s) 2025.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, http://creativecommons.org/licenses/by/4.0/).

Return