Articular cartilage covering a joint surface provides excellent lubrication and a load-bearing interface for the daily activities of the human body, which is characterized by high load-bearing, low friction, and wear resistance. Articular cartilage is damaged and degenerated with age, congenital diseases, trauma, and other factors; however, the vascularization of articular cartilage leads to its weak self-repair ability, which ultimately accelerates the occurrence of osteoarthritis and seriously affects the quality of life of patients. Hydrogels are similar to biological soft tissue and have both solid and liquid properties, which have the characteristics of natural cartilage microstructure similarity, high water content, excellent biocompatibility, stable physical and chemical properties, etc., and have been developed into the best alternative material for articular cartilage. However, the mechanical properties and lubricating properties of traditional hydrogels are insufficient, which makes it difficult to apply artificial articular cartilage. Therefore, the development of mechanical enhancement and biomimetic lubrication technology to improve the mechanical properties and lubrication properties of biomimetic cartilage hydrogel materials has attracted extensive attention. In this work, the research progress of hydrogel-based cartilage replacements is reviewed from the aspects of mechanical enhancement and biomimetic lubrication; the design strategies and mechanisms of mechanical enhancement, such as nanocomposites, multi-network, hydrophobic associations, topological structures, supramolecular polymers, and biomimetic ordered structures, are introduced; the design ideas and lubrication mechanisms of biomimetic lubrication based on interfacial modulation, polymer brushes, lubricant boundary lubrication, and stimulus response are summarized. Furthermore, based on the structural and functional biomimicry of the natural articular cartilage system, the research progress on high-mechanical properties and low-friction biomimetic articular cartilage substitutes is reviewed, and their potential value as articular cartilage substitutes is discussed. Finally, the current problems associated with biomimetic articular cartilage materials, as well as future research focus and development directions, are discussed.
Crowinshield R D, Brand R A, Johnston R C. The effects of walking velocity and age on hip kinematics and kinetics. Clin Orthop Relat Res (132): 140–144 (1978)
Macirowski T, Tepic S, Mann R W. Cartilage stresses in the human hip joint. J Biomech Eng 116(1): 10–18 (1994)
Mobasheri A. Applications of proteomics to osteoarthritis, a musculoskeletal disease characterized by aging. Front Physio 2: 108 (2011)
Long M, Rack H J. Titanium alloys in total joint replacement: A materials science perspective. Biomaterials 19(18): 1621–1639 (1998)
Rahaman M N, Yao A H, Bal B S, Garino J P, Ries M D. Ceramics for prosthetic hip and knee joint replacement. J Am Ceram Soc 90(7): 1965–1988 (2007)
Murakami T, Sakai N, Yamaguchi T, Yarimitsu S, Nakashima K, Sawae Y, Suzuki A. Evaluation of a superior lubrication mechanism with biphasic hydrogels for artificial cartilage. Tribol Int 89: 19–26 (2015)
Lin W F, Klein J. Recent progress in cartilage lubrication. Adv Mater 33(18): 2005513 (2021)
Zhao Z G, Fang R C, Rong Q F, Liu M J. Bioinspired nanocomposite hydrogels with highly ordered structures. Adv Mater 29(45): 1703045 (2017)
An H M, Liu Y B, Yi J F, Xie H B, Li C, Wang X, Chai W. Research progress of cartilage lubrication and biomimetic cartilage lubrication materials. Front Bioeng Biotechnol 10: 1012653 (2022)
Qiu F, Fan X P, Chen W, Xu C M, Li Y M, Xie R J. Recent progress in hydrogel-based synthetic cartilage: Focus on lubrication and load-bearing capacities. Gels 9(2): 144 (2023)
Rong M M, Liu H, Scaraggi M, Bai Y Y, Bao L Y, Ma S H, Ma Z F, Cai M R, Dini D, Zhou F. High lubricity meets load capacity: Cartilage mimicking bilayer structure by brushing up stiff hydrogels from subsurface. Adv Funct Mater 30(39): 2004062 (2020)
Zhao X H, Chen X Y, Yuk H, Lin S T, Liu X Y, Parada G. Soft materials by design: Unconventional polymer networks give extreme properties. Chem Rev 121(8): 4309–4372 (2021)
Liu C, Morimoto N, Jiang L, Kawahara S, Noritomi T, Yokoyama H, Mayumi K, Ito K. Tough hydrogels with rapid self-reinforcement. Science 372(6546): 1078–1081 (2021)
Huang T, Xu H G, Jiao K X, Zhu L P, Brown H R, Wang H L. A novel hydrogel with high mechanical strength: A macromolecular microsphere composite hydrogel. Adv Mater 19(12): 1622–1626 (2007)
Lin P, Zhang R, Wang X L, Cai M R, Yang J, Yu B, Zhou F. Articular cartilage inspired bilayer tough hydrogel prepared by interfacial modulated polymerization showing excellent combination of high load-bearing and low friction performance. ACS Macro Lett 5(11): 1191–1195 (2016)
Zhao W Y, Zhang Y L, Zhao X D, Ji Z Y, Ma Z F, Gao X S, Ma S H, Wang X L, Zhou F. Bioinspired design of a cartilage-like lubricated composite with mechanical robustness. ACS Appl Mater Inter 14(7): 9899–9908 (2022)
Li W Z, Lai J Y, Zu Y, Lai P X. Cartilage-inspired hydrogel lubrication strategy. Innovation 3(5): 100275 (2022)
Zhang X W, Shi K Y, Yang X H, Wang J, Liu H, Song W L, Wang S T. Supramolecular semi-convertible hydrogel enabled self-healing responsive lubrication under dynamic shearing. CCS Chem 5(11): 2482–2496 (2023)
Wang J, Zhang X W, Zhang S, Kang J Y, Guo Z C, Feng B Y, Zhao H, Luo Z, Yu J, Song W L, et al. Semi-convertible hydrogel enabled photoresponsive lubrication. Matter 4(2): 675–687 (2021)
Huang S T, Wang B B, Zhao X Y, Li S J, Liang X C, Zeng R, Li W, Wang X J. Phospholipid reinforced P(AAm-co-AAc)/Fe3+ hydrogel with ultrahigh strength and superior tribological performance. Tribol Int 168: 107436 (2022)
Chen Q, Zhang X Y, Chen K, Feng C N, Wang D G, Qi J W, Li X W, Zhao X D, Chai Z M, Zhang D K. Bilayer hydrogels with low friction and high load-bearing capacity by mimicking the oriented hierarchical structure of cartilage. ACS Appl Mater Inter 14(46): 52347–52358 (2022)
Huang L N, Li Z P, Ma S H, Ye D D, Yang J, Qin G, Yin H Y, Chen Q. Articular cartilage-inspired hybrid double-network hydrogelswith a layered structure and low friction properties. ACS Appl Polym Mater 4(10): 7634–7644 (2022)
Gong J P. Why are double network hydrogels so tough. Soft Matter 6(12): 2583–2590 (2010)
Gong J P, Katsuyama Y, Kurokawa T, Osada Y. Double-network hydrogels with extremely high mechanical strength. Adv Mater 15(14): 1155–1158 (2003)
Sun J Y, Zhao X H, Illeperuma W R K, Chaudhuri O, Oh K H, Mooney D J, Vlassak J J, Suo Z G. Highly stretchable and tough hydrogels. Nature 489(7414): 133–136 (2012)
Chen J Y, Cui L L, Yan C Q, Xiong D S. Mechanical and tribological study of PVA–pMPDSAH double-network hydrogel prepared by ultraviolet irradiation and freeze–thaw methods for bionic articular cartilage. J Bionic Eng 18(5): 1192–1201 (2021)
Du C, Hu J, Wu X Y, Shi H M, Yu H C, Qian J, Yin J, Gao C Y, Wu Z L, Zheng Q. 3D printing of a tough double-network hydrogel and its use as a scaffold to construct a tissue-like hydrogel composite. J Mater Chem B 10(3): 468–476 (2022)
Higa K, Kitamura N, Kurokawa T, Goto K, Wada S, Nonoyama T, Kanaya F, Sugahara K, Gong J P, Yasuda K. Fundamental biomaterial properties of tough glycosaminoglycan-containing double network hydrogels newly developed using the molecular stent method. Acta Biomater 43: 38–49 (2016)
Lee M J, Espinosa-Marzal R M. Intrinsic and extrinsic tunability of double-network hydrogel strength and lubricity. ACS Appl Mater Inter 15(16): 20495–20507 (2023)
Kristen Means A, Shrode C S, Whitney L V, Ehrhardt D A, Grunlan M A. Double network hydrogels that mimic the modulus, strength, and lubricity of cartilage. Biomacromolecules 20(5): 2034–2042 (2019)
Sabzi M, Samadi N, Abbasi F, Mahdavinia G R, Babaahmadi M. Bioinspired fully physically cross-linked double network hydrogels with a robust, tough and self-healing structure. Mater Sci Eng C 74: 374–381 (2017)
Sun W X, Xue B, Li Y, Qin M, Wu J Y, Lu K, Wu J H, Cao Y, Jiang Q, Wang W. Polymer-supramolecular polymer double-network hydrogel. Adv Funct Mater 26(48): 9044–9052 (2016)
Wang K, Ma Q, Zhang Y M, Han G T, Qu C X, Wang S D. Preparation of bacterial cellulose/silk fibroin double-network hydrogel with high mechanical strength and biocompatibility for artificial cartilage. Cellulose 27(4): 1845–1852 (2020)
Wang Y, Cao Z X, Wu J R, Ma C S, Qiu C B, Zhao Y C, Shao F, Wang H N, Zheng J, Huang G S. Mechanically robust, ultrastretchable and thermal conducting composite hydrogel and its biomedical applications. Chem Eng J 360: 231–242 (2019)
Wang Y J, Yu W, Liu S J. Physically cross-linked gellan gum/hydrophobically associated polyacrylamide double network hydrogel for cartilage repair. Eur Polym J 167: 111074 (2022)
Yin C, Huang Z W, Zhang Y G, Ren K J, Liu S T, Luo H L, Zhang Q C, Wan Y Z. Strong, tough, and elastic poly(vinyl alcohol)/polyacrylamide DN hydrogels based on the Hofmeister effect for articular cartilage replacement. J Mater Chem B 12(12): 3079–3091 (2024)
Yang Y Y, Wang X, Yang F, Wang L N, Wu D C. Highly elastic and ultratough hybrid ionic–covalent hydrogels with tunable structures and mechanics. Adv Mater 30(18): 1707071 (2018)
Yu X D, Li X, Kan L, Pan P, Wang X, Liu W T, Zhang J S. Double network microcrystalline cellulose hydrogels with high mechanical strength and biocompatibility for cartilage tissue engineering scaffold. Int J Biol Macromol 238: 124113 (2023)
Gan S C, Lin W N, Zou Y L, Xu B, Zhang X, Zhao J H, Rong J H. Nano-hydroxyapatite enhanced double network hydrogels with excellent mechanical properties for potential application in cartilage repair. Carbohydr Polym 229: 115523 (2020)
Benitez-Duif P A, Breisch M, Kurka D, Edel K, Gökcay S, Stangier D, Tillmann W, Hijazi M, Tiller J C. Ultrastrong poly(2-oxazoline)/poly(acrylic acid) double-network hydrogels with cartilage-like mechanical properties. Adv Funct Mater 32(44): 2204837 (2022)
Demott C J, Jones M R, Chesney C D, Yeisley D J, Culibrk R A, Hahn M S, Grunlan M A. Ultra-high modulus hydrogels mimicking cartilage of the human body. Macromol Biosci 22(11): 2200283 (2022)
Li X F, Qin H L, Zhang X L, Guo Z G. Triple-network hydrogels with high strength, low friction and self-healing by chemical-physical crosslinking. J Colloid Interface Sci 556: 549–556 (2019)
Milner P E, Parkes M, Puetzer J L, Chapman R, Stevens M M, Cann P, Jeffers J R T. A low friction, biphasic and boundary lubricating hydrogel for cartilage replacement. Acta Biomater 65: 102–111 (2018)
Samadi N, Sabzi M, Babaahmadi M. Self-healing and tough hydrogels with physically cross-linked triple networks based on Agar/PVA/Graphene. Int J Biol Macromol 107: 2291–2297 (2018)
Cui L L, Chen J Y, Yan C Q, Xiong D S. Mechanical and biotribological properties of PVA/SB triple-network hydrogel for biomimetic artificial cartilage. J Bionic Eng 20(3): 1072–1082 (2023)
Luo C H, Guo A D, Zhao Y F, Sun X X. A high strength, low friction, and biocompatible hydrogel from PVA, chitosan and sodium alginate for articular cartilage. Carbohydr Polym 286: 119268 (2022)
Ren H Y, Guo A D, Luo C H. Sandwich hydrogel to realize cartilage-mimetic structures and performances from polyvinyl alcohol, chitosan and sodium hyaluronate. Carbohydr Polym 328: 121738 (2024)
Haraguchi K, Takehisa T. Nanocomposite hydrogels: A unique organic–inorganic network structure with extraordinary mechanical, optical, and swelling/de-swelling properties. Adv Mater 14(16): 1120–1124 (2002)
Li W X, Wang D, Yang W, Song Y. Compressive mechanical properties and microstructure of PVA–HA hydrogels for cartilage repair. RSC Adv 6(24): 20166–20172 (2016)
Arjmandi M, Ramezani M. Mechanical and tribological assessment of silica nanoparticle-alginate-polyacrylamide nanocomposite hydrogels as a cartilage replacement. J Mech Behav Biomed 95: 196–204 (2019)
Cao L, Wu X F, Wang Q G, Wang J D. Biocompatible nanocomposite of TiO2 incorporated bi-polymer for articular cartilage tissue regeneration: A facile material. J Photochem Photobiol B 178: 440–446 (2018)
Yang F C, Zhao J C, Koshut W, Watt J, Riboh J C, Gall K, Wiley B. A synthetic hydrogel composite with the mechanical behavior and durability of cartilage. Adv Funct Mater 30(36): 2003451 (2020)
Yang X P, Abe K, Biswas S K, Yano H. Extremely stiff and strong nanocomposite hydrogels with stretchable cellulose nanofiber/poly(vinyl alcohol) networks. Cellulose 25(11): 6571–6580 (2018)
Awasthi S, Gaur J K, Pandey S K, Bobji M S, Srivastava C. High-strength, strongly bonded nanocomposite hydrogels for cartilage repair. ACS Appl Mater Inter 13(21): 24505–24523 (2021)
Wang Z N, Li J J, Jiang L, Xiao S, Liu Y H, Luo J B. Zwitterionic hydrogel incorporated graphene oxide nanosheets with improved strength and lubricity. Langmuir 35(35): 11452–11462 (2019)
Cao J L, Zhao X W, Ye L. Super-strong and anti-tearing poly(vinyl alcohol)/graphene oxide nano-composite hydrogels fabricated by formation of multiple crosslinking bonding network structure. J Ind Eng Chem 112: 366–378 (2022)
Boyer C, Figueiredo L, Pace R, Lesoeur J, Rouillon T, Le Visage C, Tassin J F, Weiss P, Guicheux J, Rethore G. Laponite nanoparticle-associated silated hydroxypropylmethyl cellulose as an injectable reinforced interpenetrating network hydrogel for cartilage tissue engineering. Acta Biomater 65: 112–122 (2018)
Asadi N, Alizadeh E, Salehi R, Khalandi B, Davaran S, Akbarzadeh A. Nanocomposite hydrogels for cartilage tissue engineering: A review. Artif Cells Nanomed B 46: 465–471 (2018)
Jalageri M B, Mohan Kumar G C. Hydroxyapatite reinforced polyvinyl alcohol/polyvinyl pyrrolidone based hydrogel for cartilage replacement. Gels 8(9): 555 (2022)
Pan Y S, Xiong D S. Study on compressive mechanical properties of nanohydroxyapatite reinforced poly(vinyl alcohol) gel composites as biomaterial. J Mater Sci—Mater M 20(6): 1291–1297 (2009)
Pan Y S, Xiong D S, Chen X L. Mechanical properties of nanohydroxyapatite reinforced poly(vinyl alcohol) gel composites as biomaterial. J Mater Sci 42(13): 5129–5134 (2007)
Sadeghianmaryan A, Naghieh S, Yazdanpanah Z, Alizadeh Sardroud H, Sharma N K, Wilson L D, Chen X B. Fabrication of chitosan/alginate/hydroxyapatite hybrid scaffolds using 3D printing and impregnating techniques for potential cartilage regeneration. Int J Biol Macromol 204: 62–75 (2022)
Arjmandi M, Ramezani M, Bolle T, Köppe G, Gries T, Neitzert T. Mechanical and tribological properties of a novel hydrogel composite reinforced by three-dimensional woven textiles as a functional synthetic cartilage. Compos Part A—Appl S 115: 123–133 (2018)
Huang S, Zhao Z, Feng C, Mayes E, Yang J. Nanocellulose reinforced P(AAm-co-AAc) hydrogels with improved mechanical properties and biocompatibility. Compos Part A—Appl S 112: 395–404 (2018)
Oliveira A S, Silva J C, Loureiro M V, Marques A C, Kotov N A, Colaço R, Serro A P. Super-strong hydrogel composites reinforced with PBO nanofibers for cartilage replacement. Macromol Biosci 23(2): 2200240 (2023)
Zhang R, Wu Y, Lin P, Jia Z F, Zhang Y J, Liu F Z, Yu B, Zhou F. Extremely tough hydrogels with cotton fibers reinforced. Adv Eng Mater 22(11): 2000508 (2020)
Zhang R, Zhao W H, Ning F D, Zhen J M, Qiang H F, Zhang Y J, Liu F Z, Jia Z F. Alginate fiber-enhanced poly(vinyl alcohol) hydrogels with superior lubricating property and biocompatibility. Polymers 14(19): 4063 (2022)
Zhu C K, Huang C Y, Zhang W X, Ding X L, Yang Y. Biodegradable-glass-fiber reinforced hydrogel composite with enhanced mechanical performance and cell proliferation for potential cartilage repair. Int J Mol Sci 23(15): 8717 (2022)
Zhu C K, Zhang W X, Shao Z Z, Wang Z X, Chang B N, Ding X L, Yang Y. Biodegradable glass fiber reinforced PVA hydrogel for cartilage repair: Mechanical properties, ions release behavior and cell recruitment. J Mater Res Technol 23: 154–164 (2023)
Zhang M M, Xu S X, Wang R Y, Che Y A, Han C C, Feng W, Wang C W, Zhao W. Electrospun nanofiber/hydrogel composite materials and their tissue engineering applications. J Mater Sci Technol 162: 157–178 (2023)
Chen Q, Yan X D, Chen K, Feng C N, Wang D G, Li X W, Zhao X D, Chai Z M, Wang Q L, Zhang D K, et al. Electrospun fibrous membrane reinforced hydrogels with preferable mechanical and tribological performance as cartilage substitutes. J Mater Chem B 11(8): 1713–1724 (2023)
Cao J L, Meng Y Q, Zhao X W, Ye L. Dual-anchoring intercalation structure and enhanced bioactivity of poly(vinyl alcohol)/graphene oxide–hydroxyapatite nanocomposite hydrogels as artificial cartilage replacement. Ind Eng Chem Res 59(46): 20359–20370 (2020)
Feng H Y, Wang S, Chen K, Zhang X Y, Feng C N, Li X W, Zhang D K. Dual-network nanocomposite robust hydrogel with excellent durability properties as cartilage replacement. Tribol Int 194: 109518 (2024)
Meng Y Q, Ye L, Coates P, Twigg P. In situ cross-linking of poly(vinyl alcohol)/graphene oxide–polyethylene glycol nanocomposite hydrogels as artificial cartilage replacement: Intercalation structure, unconfined compressive behavior, and biotribological behaviors. J Phys Chem C 122(5): 3157–3167 (2018)
Zhang Y Q, Zhang M, Jiang H Y, Shi J L, Li F B, Xia Y H, Zhang G Z, Li H J. Bio-inspired layered chitosan/graphene oxide nanocomposite hydrogels with high strength and pH-driven shape memory effect. Carbohydr Polym 177: 116–125 (2017)
Tuncaboylu D C, Argun A, Sahin M, Sari M, Okay O. Structure optimization of self-healing hydrogels formed via hydrophobic interactions. Polymer 53(24): 5513–5522 (2012)
Sun M X, Qiu J H, Jin S P, Huang H J, Liu W D, Sakai E, Lei J. High-strength and amphiphilic epoxidized soybean oil-modified poly(vinyl alcohol) hydrogels. Polym Bull 78(12): 7183–7198 (2021)
Chen J, An R, Han L L, Wang X D, Zhang Y L, Shi L Y, Ran R. Tough hydrophobic association hydrogels with self-healing and reforming capabilities achieved by polymeric core-shell nanoparticles. Mater Sci Eng C 99: 460–467 (2019)
Ren X Y, Huang C, Duan L J, Liu B J, Bu L J, Guan S, Hou J L, Zhang H X, Gao G H. Super-tough, ultra-stretchable and strongly compressive hydrogels with core–shell latex particles inducing efficient aggregation of hydrophobic chains. Soft Matter 13(18): 3352–3358 (2017)
Liu D P, Yin G Q, Le X X, Chen T. Supramolecular topological hydrogels: From material design to applications. Polym Chem 13(14): 1940–1952 (2022)
Huang H Y, Dong Z C, Ren X Y, Jia B, Li G W, Zhou S W, Zhao X, Wang W Z. High-strength hydrogels: Fabrication, reinforcement mechanisms, and applications. Nano Res 16(2): 3475–3515 (2023)
Okumura Y, Ito K. The polyrotaxane gel: A topological gel by figure-of-eight cross-links. Adv Mater 13(7): 485–487 (2001)
Hou Y, Jin M M, Liu Y, Jiang N, Zhang L, Zhu S S. Biomimetic construction of a lubricious hydrogel with robust mechanics via polymer chains interpenetration and entanglement for TMJ disc replacement. Chem Eng J 460: 141731 (2023)
Ji S C, Li X Y, Wang S, Li H Y, Duan H L, Yang X, Lv P Y. Physically entangled antiswelling hydrogels with high stiffness. Macromol Rapid Commun 43(19): 2200272 (2022)
Liu L, Lv G C, Ren X Y, Li X H, Wang T, Dong J W, Wang Z Y, Wu G F. Effect of size of latex particles on the mechanical properties of hydrogels reinforced by latex particles. RSC Adv 9(26): 14701–14707 (2019)
Liu P Y, Zhang Y, Guan Y, Zhang Y J. Peptide-crosslinked, highly entangled hydrogels with excellent mechanical properties but ultra-low solid content. Adv Mater 35(13): 2210021 (2023)
Wei J H, Wang J L, Su S H, Wang S R, Qiu J J. Tough and fully recoverable hydrogels. J Mater Chem B 3(26): 5284–5290 (2015)
Wu Y C, Zhang Y, Wu H D, Wen J, Zhang S, Xing W Q, Zhang H C, Xue H G, Gao J F, Mai Y. Solvent-exchange-assisted wet annealing: A new strategy for superstrong, tough, stretchable, and anti-fatigue hydrogels. Adv Mater 35(15): 2210624 (2023)
Liu X, Wu J P, Qiao K K, Liu G H, Wang Z J, Lu T Q, Suo Z G, Hu J. Topoarchitected polymer networks expand the space of material properties. Nat Commun 13: 1622 (2022)
Nian G D, Kim J, Bao X Y, Suo Z G. Making highly elastic and tough hydrogels from doughs. Adv Mater 34(50): 2206577 (2022)
Fu L L, Li L, Bian Q Y, Xue B, Jin J, Li J Y, Cao Y, Jiang Q, Li H B. Cartilage-like protein hydrogels engineered via entanglement. Nature 618(7966): 740–747 (2023)
Zhang X J, Xiang J X, Hong Y L, Shen L. Recent advances in design strategies of tough hydrogels. Macromol Rapid Commun 43(15): 2200075 (2022)
Ren X Y, Yu Z, Liu B J, Liu X J, Wang Y J, Su Q, Gao G H. Highly tough and puncture resistant hydrogels driven by macromolecular microspheres. RSC Adv 6(11): 8956–8963 (2016)
Li W Z, Zheng S J, Zou X Y, Ren Y Y, Liu Z Y, Peng W S, Wang X L, Liu D, Shen Z H, Hu Y, et al. Tough hydrogels with isotropic and unprecedented crack propagation resistance. Adv Funct Mater 32(43): 2207348 (2022)
Wang Y Y, Jiang X Y, Li X S, Ding K X, Liu X R, Huang B, Ding J J, Qu K Y, Sun W Z, Xue Z X, et al. Bionic ordered structured hydrogels: Structure types, design strategies, optimization mechanism of mechanical properties and applications. Mater Horiz 10(10): 4033–4058 (2023)
Zhu Q L, Dai C F, Wagner D, Daab M, Hong W, Breu J, Zheng Q, Wu Z L. Distributed electric field induces orientations of nanosheets to prepare hydrogels with elaborate ordered structures and programmed deformations. Adv Mater 32(47): 2005567 (2020)
Ahadian S, Naito U, Surya V J, Darvishi S, Estili M, Liang X B, Nakajima K, Shiku H, Kawazoe Y, Matsue T. Fabrication of poly(ethylene glycol) hydrogels containing vertically and horizontally aligned graphene using dielectrophoresis: An experimental and modeling study. Carbon 123: 460–470 (2017)
Xue L, Sun J F. Magnetic hydrogels with ordered structure for biomedical applications. Front Chem 10: 1040492 (2022)
Hu K, Sun J F, Guo Z B, Wang P, Chen Q, Ma M, Gu N. A novel magnetic hydrogel with aligned magnetic colloidal assemblies showing controllable enhancement of magnetothermal effect in the presence of alternating magnetic field. Adv Mater 27(15): 2507–2514 (2015)
Chen W, Zhang Z B, Kouwer P H J. Magnetically driven hierarchical alignment in biomimetic fibrous hydrogels. Small 18(27): 2203033 (2022)
Chen Q, Zhang X Y, Chen K, Wu X F, Zong T, Feng C N, Zhang D K. Anisotropic hydrogels with enhanced mechanical and tribological performance by magnetically oriented nanohybrids. Chem Eng J 430: 133036 (2022)
Barrow M, Zhang H F. Aligned porous stimuli-responsive hydrogels via directional freezing and frozen UV initiated polymerization. Soft Matter 9: 2723–2729 (2013)
Wu J J, Lin Y T, Sun J Z. Anisotropic volume change of poly(N-isopropylacrylamide)-based hydrogels with an aligned dual-network microstructure. J Mater Chem 22(34): 17449 (2012)
Wu J J, Zhao Q, Sun J Z, Zhou Q Y. Preparation of poly(ethylene glycol) aligned porous cryogels using a unidirectional freezing technique. Soft Matter 8(13): 3620 (2012)
Bai H, Polini A, Delattre B, Tomsia A P. Thermoresponsive composite hydrogels with aligned macroporous structure by ice-templated assembly. Chem Mater 25(22): 4551–4556 (2013)
Dong X Y, Guo X, Liu Q Y, Zhao Y J, Qi H B, Zhai W. Strong and tough conductive organo-hydrogels via freeze-casting assisted solution substitution. Adv Funct Mater 32(31): 2203610 (2022)
Guo X, Dong X Y, Zou G J, Gao H J, Zhai W. Strong and tough fibrous hydrogels reinforced by multiscale hierarchical structures with multimechanisms. Sci Adv 9(2): eadf7075 (2023)
Hua M T, Wu S W, Ma Y F, Zhao Y S, Chen Z L, Frenkel I, Strzalka J, Zhou H, Zhu X Y, He X M. Strong tough hydrogels via the synergy of freeze-casting and salting out. Nature 590(7847): 594–599 (2021)
Yang Y F, Li B, Wu N, Liu W, Zhao S Y, Zhang C J, Liu J R, Zeng Z H. Biomimetic porous MXene-based hydrogel for high-performance and multifunctional electromagnetic interference shielding. ACS Mater Lett 4(11): 2352–2361 (2022)
Zhang L, Wang K, Weng S, Jiang X C. Super strong and tough anisotropic hydrogels through synergy of directional freeze-casting, metal complexation and salting out. Chem Eng J 463: 142414 (2023)
Han S J, Wu Q R, Zhu J D, Zhang J Y, Chen A B, Su S, Liu J T, Huang J R, Yang X X, Guan L H. Tough hydrogel with high water content and ordered fibrous structures as an artificial human ligament. Mater Horiz 10(3): 1012–1019 (2023)
Liang X Y, Chen G D, Lin S T, Zhang J J, Wang L, Zhang P, Wang Z Y, Wang Z B, Lan Y, Ge Q, et al. Anisotropically fatigue-resistant hydrogels. Adv Mater 33(30): 2102011 (2021)
Liang X Y, Chen G D, Lei I M, Zhang P, Wang Z Y, Chen X M, Lu M Z, Zhang J J, Wang Z B, Sun T L, et al. Impact-resistant hydrogels by harnessing 2D hierarchical structures. Adv Mater 35(1): 2207587 (2023)
Chen K, Zong T, Chen Q, Liu S Y, Xu L M, Zhang D K. Preparation and characterization of polyvinyl alcohol/sodium alginate/carboxymethyl cellulose composite hydrogels with oriented structure. Soft Mater 20(1): 99–108 (2022)
King D R, Takahashi R, Ikai T, Fukao K, Kurokawa T, Gong J P. Anisotropic double-network hydrogels via controlled orientation of a physical sacrificial network. ACS Appl Polym Mater 2(6): 2350–2358 (2020)
Luo C H, Huang M, Sun X X, Wei N, Shi H, Li H, Lin M, Sun J. Super-strong, nonswellable, and biocompatible hydrogels inspired by human tendons. ACS Appl Mater Inter 14(2): 2638–2649 (2022)
Mredha M T I, Guo Y Z, Nonoyama T, Nakajima T, Kurokawa T, Gong J P. A facile method to fabricate anisotropic hydrogels with perfectly aligned hierarchical fibrous structures. Adv Mater 30(9): 1704937 (2018)
Sun Q K, Ma S H, Lin P, Wang X L, Zheng Z J, Zhou F. Anisotropic hydrogels with high mechanical strength by stretching-induced oriented crystallization and drying. ACS Appl Polym Mater 2(6): 2142–2150 (2020)
Chen K, Chen Q, Zong T, Liu S Y, Yang X H, Luo Y, Zhang D K. Effect of directional stretching on properties of PVA–HA–PAA composite hydrogel. J Bionic Eng 18(5): 1202–1214 (2021)
Lin S T, Liu J, Liu X Y, Zhao X H. Muscle-like fatigue-resistant hydrogels by mechanical training. P Natl Acad Sci USA 116(21): 10244–10249 (2019)
Lin P, Zhang T T, Wang X L, Yu B, Zhou F. Freezing molecular orientation under stretch for high mechanical strength but anisotropic hydrogels. Small 12(32): 4386–4392 (2016)
Wu L, Kang Y, Shi X Y, Bin Y Z, Qu M J, Li J Y, Wu Z S. Natural-wood-inspired ultrastrong anisotropic hybrid hydrogels targeting artificial tendons or ligaments. ACS Nano 17(14): 13522–13532 (2023)
Whitesides G, Grzybowski B. Self-assembly at all scales. Science 295(5564): 2418–2421 (2018)
Yu H P, Zhu Y J. Bioinspired flexible, high-strength, and versatile hydrogel with the fiberboard-and-mortar hierarchically ordered structure. Nano Res 14(10): 3643–3652 (2021)
Zhang S M, Greenfield M A, Mata A, Palmer L C, Bitton R, Mantei J R, Aparicio C, de la Cruz M O, Stupp S I. A self-assembly pathway to aligned monodomain gels. Nature Mater 9(7): 594–601 (2010)
Zhang H, Guo J H, Wang Y, Sun L Y, Zhao Y J. Stretchable and conductive composite structural color hydrogel films as bionic electronic skins. Adv Sci 8(20): 2102156 (2021)
Kawaguchi K, Komatsu S, Kikuchi A, Nomura Y, Murai K. Facile fabrication of gelatin hydrogels with anisotropic gel properties via self-assembly. Polym J 54(3): 377–383 (2022)
Yue Y F, Hayashi R, Yokota Y. Co-self-assembly of amphiphiles into nanocomposite hydrogels with tailored morphological and mechanical properties. ACS Appl Mater Inter 15(17): 21507–21516 (2023)
Chen Z, Lou R S, Zhong D M, Xiao R, Qu S X, Yang W. An anisotropic constitutive model for 3D printed hydrogel-fiber composites. J Mech Phys Solids 156: 104611 (2021)
Fu L Z, Gao T H, Zhao W W, Hu S M, Liu L, Shi Z J, Huang J. Programmable anisotropic hydrogel composites for soft bioelectronics. Macromol Biosci 22(6): 2100467 (2022)
Li T, Hou J D, Wang L, Zeng G J, Wang Z H, Yu L, Yang Q, Yin J, Long M, Chen L Z, et al. Bioprinted anisotropic scaffolds with fast stress relaxation bioink for engineering 3D skeletal muscle and repairing volumetric muscle loss. Acta Biomater 156: 21–36 (2023)
Kamdem Tamo A, Doench I, Walter L, Montembault A, Sudre G, David L, Morales-Helguera A, Selig M, Rolauffs B, Bernstein A, et al. Development of bioinspired functional chitosan/cellulose nanofiber 3D hydrogel constructs by 3D printing for application in the engineering of mechanically demanding tissues. Polymers 13(10): 1663 (2021)
Gevorkian A, Morozova S M, Kheiri S, Khuu N, Chen H Y, Young E, Yan N, Kumacheva E. Actuation of three-dimensional-printed nanocolloidal hydrogel with structural anisotropy. Adv Funct Mater 31(17): 2010743 (2021)
Tonsomboon K, Butcher A L, Oyen M. Strong and tough nanofibrous hydrogel composites based on biomimetic principles. Mater Sci Eng C 72: 220–227 (2017)
Mredha M T I, Le H H, Tran V T, Trtik P, Cui J X, Jeon I. Anisotropic tough multilayer hydrogels with programmable orientation. Mater Horiz 6(7): 1504–1511 (2019)
Ni J H, Lin S T, Qin Z, Veysset D, Liu X Y, Sun Y C, Hsieh A J, Radovitzky R, Nelson K A, Zhao X H. Strong fatigue-resistant nanofibrous hydrogels inspired by lobster underbelly. Matter 4(6): 1919–1934 (2021)
Crockett R. Boundary lubrication in natural articular joints. Tribol Lett 35(2): 77–84 (2009)
Gong J P. Friction and lubrication of hydrogels: Its richness and complexity. Soft Matter 2(7): 544–552 (2006)
Gong J P, Kurokawa T, Narita T, Kagata G, Osada Y, Nishimura G, Kinjo M. Synthesis of hydrogels with extremely low surface friction. J Am Chem Soc 123(23): 5582–5583 (2001)
Peng M, Gong J P, Osada Y. Substrate effect on the formation of hydrogels with heterogeneous network structure. Chem Rec 3(1): 40–50 (2003)
Suciu A N, Iwatsubo T, Matsuda M, Nishino T. A study upon durability of the artificial knee joint with PVA hydrogel cartilage. JSME Int J C—Mech Sy 47(1): 199–208 (2004)
Ma S H, Zhang X Q, Yu B, Zhou F. Brushing up functional materials. NPG Asia Mater 11: 24 (2019)
Wu B Q, Feng E L, Liao Y M, Liu H W, Tang R Z, Tan Y. Brush-modified hydrogels: Preparations, properties, and applications. Chem Mater 34(14): 6210–6231 (2022)
Deng S H, Wang L, Zhao C X, Xiang D, Li H, Wang B, Li Z Y, Zhou H W, Wu Y P. Low coefficient of friction hydrogels with fast selfhealing properties inspired by articular cartilage. Colloids Surf A 656: 130380 (2023)
Osaheni A O, Ash-Shakoor A, Gitsov I, Mather P T, Blum M M. Synthesis and characterization of zwitterionic polymer brush functionalized hydrogels with ionic responsive coefficient of friction. Langmuir 36(14): 3932–3940 (2020)
Ma S H, Liu L K, Zhao W Y, Li R J, Zhao X D, Zhang Y L, Yu B, Liu Y, Zhou F. Earthworm inspired lubricant self-pumping hydrogel with sustained lubricity at high loading. Nat Commun 16: 398 (2025)
Zhang K H, Yan W Q, Simic R, Benetti E M, Spencer N D. Versatile surface modification of hydrogels by surface-initiated, Cu0- mediated controlled radical polymerization. ACS Appl Mater Inter 12(5): 6761–6767 (2020)
Wan L, Tan X L, Sun T, Sun Y L, Luo J, Zhang H Y. Lubrication and drug release behaviors of mesoporous silica nanoparticles grafted with sulfobetaine-based zwitterionic polymer. Mater Sci Eng C 112: 110886 (2020)
Wei Q B, Fu T, Lei L L, Liu H, Zhang Y X, Ma S H, Zhou F. Dopamine-triggered one-step functionalization of hollow silica nanospheres for simultaneous lubrication and drug release. Friction 11(3): 410–424 (2023)
Xiao F, Zheng P S, Tang J X, Huang X, Kang W J, Zhou G Y, Sun K H. Cartilage-bioinspired, tough and lubricated hydrogel based on nanocomposite enhancement effect. J Mater Chem B 11(21): 4763–4775 (2023)
Jahn S, Seror J, Klein J. Lubrication of articular cartilage. Annu Rev Biomed Eng 18: 235–258 (2016)
Lin W F, Kluzek M, Iuster N, Shimoni E, Kampf N, Goldberg R, Klein J. Cartilage-inspired, lipid-based boundary-lubricated hydrogels. Science 370(6514): 335–338 (2020)
Cao Y F, Jin D, Kampf N, Klein J. Origins of synergy in multilipid lubrication. P Natl Acad Sci USA 121(47): e2408223121 (2024)
Wang Z R, Li P P, Li B Y, Yang S H, Zhao T, Meng Y W, Li Q, Hao J C, Wang X. Innovating lubrication with polyelectrolyte hydrogels: Sustained performance through lipid dynamics. Adv Funct Mater 35(3): 2413712 (2025)
Feng S F, Li J J, Li X M, Wen S Z, Liu Y H. Synergy of phospholipid and hyaluronan based super-lubricated hydrogels. Appl Mater Today 27: 101499 (2022)
Lei Y T, Wang X K, Liao J Y, Shen J L, Li Y L, Cai Z W, Hu N, Luo X J, Cui W G, Huang W. Shear-responsive boundary-lubricated hydrogels attenuate osteoarthritis. Bioact Mater 16: 472–484 (2022)
Qiu H F, Deng J J, Wei R F, Wu X, Chen S J, Yang Y Y, Gong C Y, Cui L L, Si Z Y, Zhu Y B, et al. A lubricant and adhesive hydrogel cross-linked from hyaluronic acid and chitosan for articular cartilage regeneration. Int J Biol Macromol 243: 125249 (2023)
Xiao F, Tang J X, Huang X, Kang W J, Zhou G Y. A robust, low swelling, and lipid-lubricated hydrogel for bionic articular cartilage substitute. J Colloid Interface Sci 629: 467–477 (2023)
He X M, He S H, Xiang G, Deng L H, Zhang H Q, Wang Y J, Li J S, Lu H Y. Precise lubrication and protection of cartilage damage by targeting hydrogel microsphere. Adv Mater 36(40): 2405943 (2024)
Chen L, Hu W X, Du M, Song Y H, Wu Z L, Zheng Q. Bioinspired, recyclable, stretchable hydrogel with boundary ultralubrication. ACS Appl Mater Inter 13(35): 42240–42249 (2021)
Kamada K, Furukawa H, Kurokawa T, Tada T, Tominaga T, Nakano Y, Gong J P. Surfactant-induced friction reduction for hydrogels in the boundary lubrication regime. J Phys—Condens Matter 23(28): 284107 (2011)
Hu L L, Yang Y, Hao J C, Xu L. Dual-driven mechanically and tribologically adaptive hydrogels solely constituted of graphene oxide and water. Nano Lett 22(14): 6004–6009 (2022)
Wu Y, Pei X W, Wang X L, Liang Y M, Liu W M, Zhou F. Biomimicking lubrication superior to fish skin using responsive hydrogels. NPG Asia Mater 6(10): e136 (2014)
Zhang Y L, Zhao W Y, Ma S H, Liu H, Wang X W, Zhao X D, Yu B, Cai M R, Zhou F. Modulus adaptive lubricating prototype inspired by instant muscle hardening mechanism of catfish skin. Nat Commun 13: 377 (2022)
Zhang X W, Wang J, Jin H, Wang S T, Song W L. Bioinspired supramolecular lubricating hydrogel induced by shear force. J Am Chem Soc 140(9): 3186–3189 (2018)
Yu P, Li Y Y, Sun H, Ke X, Xing J Q, Zhao Y R, Xu X Y, Qin M, Xie J, Li J S. Cartilage-inspired hydrogel with mechanical adaptability, controllable lubrication, and inflammation regulation abilities. ACS Appl Mater Inter 14(23): 27360–27370 (2022)
Kim J, Zhang G G, Shi M, Suo Z G. Fracture, fatigue, and friction of polymers in which entanglements greatly outnumber cross-links. Science 374(6564): 212–216 (2021)
Zhao J C, Tong H Y, Kirillova A, Koshut W J, Malek A, Brigham N C, Becker M L, Gall K, Wiley B J. A synthetic hydrogel composite with a strength and wear resistance greater than cartilage. Adv Funct Mater 32(41): 2205662 (2022)
Trucco D, Vannozzi L, Teblum E, Telkhozhayeva M, Nessim G D, Affatato S, Al-Haddad H, Lisignoli G, Ricotti L. Graphene oxide-doped gellan gum–PEGDA bilayered hydrogel mimicking the mechanical and lubrication properties of articular cartilage. Adv Healthc Mater 10(7): 2001434 (2021)
Lin P, Fu D N, Zhang T T, Ma S H, Zhou F. Microgel-modified bilayered hydrogels dramatically boosting load-bearing and lubrication. ACS Macro Lett 12(11): 1450–1456 (2023)
Yan X D, Yu J, Zhang Y T, Jia Y C, Chen K, Chen Q, Zhang X Y, Feng H Y, Feng C N, Zhang D K. Construction and properties of high-toughness soft–soft interfaces based on the adhesion of natural polyphenols. Langmuir 39(46): 16261–16271 (2023)
Zhang X Y, Lou Z C, Yang X H, Chen Q, Chen K, Feng C N, Qi J W, Luo Y, Zhang D K. Fabrication and characterization of a multilayer hydrogel as a candidate for artificial cartilage. ACS Appl Polym Mater 3(10): 5039–5050 (2021)
Liu H, Zhao W Y, Zhang Y L, Zhao X D, Ma S H, Scaraggi M, Zhou F. Robust super-lubricity for novel cartilage prototype inspired by scallion leaf architecture. Adv Funct Mater 34(16): 2310271 (2024)
Liu H, Zhao X D, Zhang Y L, Ma S H, Ma Z F, Pei X W, Cai M R, Zhou F. Cartilage mimics adaptive lubrication. ACS Appl Mater Inter 12(45): 51114–51121 (2020)
Zhang Y L, Zhao W Y, Zhao X D, Zhang J S, Yu B, Ma S H, Zhou F. Exploring the relevance between load-bearing capacity and surface friction behavior based on a layered hydrogel cartilage prototype. Friction 12(8): 1757–1770 (2024)
Wang B W, Wang P, He B L, Ma S H, Liu S J, Ye Q, Zhou F. Zwitterionic polymer brush-functionalized dual-crosslinked hydrogel via subsurface-initiated atom transfer radical polymerization for anti-fouling applications. Prog Org Coat 183: 107729 (2023)
Zhao W Y, Zhang Y L, Zhao X D, Sheng W B, Ma S H, Zhou F. Mechanically robust lubricating hydrogels beyond the natural cartilage as compliant artificial joint coating. Adv Sci 11(31): 2401000 (2024)
Zhang Z Z, Ma Y F, Yu B, Ma S H, Yang H, Liu L K, Yu J Q, Pei X W, Cai M R, Zhou F. Vertical and horizontal double gradient design for super-slippery and high-bearing hydrogel skeleton. Adv Funct Mater 34(29): 2400360 (2024)
Huang J J, Tang Y C, Wang P, Zhou H, Li H, Cheng Z Y, Wu Y F, Xie Z Y, Cai Z P, Wu D C, et al. One-pot construction of articular cartilage-like hydrogel coating for durable aqueous lubrication. Adv Mater 36(19): 2309141 (2024)
Mostakhdemin M, Nand A, Ramezani M. Tribological evaluation of silica nanoparticle enhanced bilayer hydrogels as A candidate for cartilage replacement. Polymers 14(17): 3593 (2022)
Qu M H, Liu H, Yan C Y, Ma S H, Cai M R, Ma Z F, Zhou F. Layered hydrogel with controllable surface dissociation for durable lubrication. Chem Mater 32(18): 7805–7813 (2020)
Yang S, Yu J Q, Zhang Z Z, Yang H, Wan Y L, Yu B, Ma S H, Ma Y F, Zhou F, Liu W M. Ultra-low friction and high load-bearing hydrogel with tubular structure based on controllable light-induced dissociation. Chin J Chem 41(20): 2679–2683 (2023)
Zhang R, Lin P, Yang W F, Cai M R, Yu B, Zhou F. Simultaneous superior lubrication and high load bearing by the dynamic weak interaction of a lubricant with mechanically strong bilayer porous hydrogels. Polym Chem 8(46): 7102–7107 (2017)
Zhang R, Zhang Y Q, Li Y K, Hu X X, Zhen J M, Jia Z F. Constructing tough bilayer hydrogel with excellent lubrication performance for load-bearing application. Tribol Int 184: 108436 (2023)
Luo C H, Guo A D, Li J, Tang Z Q, Luo F L. Janus hydrogel to mimic the structure and property of articular cartilage. ACS Appl Mater Inter 14(31): 35434–35443 (2022)
Cui L L, Tong W, Zhou H J, Yan C Q, Chen J Y, Xiong D S. PVA-BA/PEG hydrogel with bilayer structure for biomimetic articular cartilage and investigation of its biotribological and mechanical properties. J Mater Sci 56(5): 3935–3946 (2021)