Research on triboluminescence phenomena has been comprehensively reviewed, with a focus on the activation mechanisms resulting from the dissipation of mechanical energy at interfaces. The complexity and interdisciplinary nature of this phenomenon, along with its dependence on gas composition and pressure, have been analyzed. Special attention was given to air, inert gases, polyatomic gases, and hydrocarbon gases. The influence of gas composition on triboluminescence is not straightforward. This is because at least three components are associated with different physical and chemical processes and activation mechanisms. These components include TL1: gas discharge luminescence. This occurs because of the generation of an electric field and dielectric breakdown of gases surrounding the mechanically activated zone of the material; TL2: photoluminescence of mechanically activated material. This results from the excitation of luminescent centers by the absorption of ultraviolet radiation from the gas discharge; TL3: material luminescence not related to photoluminescence. This is the least studied and most complex component. This can be related to the direct coupling of the mechanical force with the energy landscape of defects, impurities, and other centers. These centers can be excited and emit light during deexcitation. Other possibilities include luminescence excited by electric fields, exoelectron emission, etc. Therefore, the gas environment is crucial not only for gas discharge (as various gases can promote or quench it) but also for controlling other excitation and deexcitation processes. These processes occur through interactions of adsorbed films with stressed materials, tribochemical reactions, photochemical reactions, and so on. Furthermore, the potential application of triboluminescence for sensing gas composition is highlighted.
Pope W J. On triboluminescence. Nature 59(1539): 618–619 (1899)
Kricka L J, Stroebel J, Stanley P E. Triboluminescence: 1968–1998. Luminescence 14(4): 215–220 (1999)
Sweeting L M. Triboluminescence with and without air. Chem Mater 13(3): 854–870 (2001)
Walton A J. Triboluminescence. Adv Phys 26(6): 887–948 (1977)
Xie Y J, Li Z. Triboluminescence: Recalling interest and new aspects. Chem 4(5): 943–971 (2018)
Monette Z, Kasar A K, Menezes P L. Advances in triboluminescence and mechanoluminescence. J Mater Sci-Mater El 30(22): 19675–19690 (2019)
Tole I, Habermehl-Cwirzen K, Cwirzen A. Mechanochemical activation of natural clay minerals: An alternative to produce sustainable cementitious binders—Review. Mineral Petrol 113(4): 449–462 (2019)
Orel V E, Kadyuk I N, Dzyatkovskaya N N, Danko M I, Mel’nic Y I. Mechanoluminescence: Lymphocyte analysis after exposure to ionizing radiation. Luminescence 15(1): 29–36 (2000)
Orel V E, Romanov A V, Dzyatkovskaya N N, Mel’nik I. The device and algorithm for estimation of the mechanoemisson chaos in blood of patients with gastric cancer. Med Eng Phys 24(5): 365–371 (2002)
Hollerman W A, Fontenot R S, Bhat K N, Aggarwal M D, Guidry C J, Nguyen K M. Review of triboluminescence impact research at projectile speeds of 1 m/s to 6 km/s. Procedia Engineer 58: 392–400 (2013)
Sweeting L M, Cashel M L, Rosenblatt M M. Triboluminescence spectra of organic crystals are sensitive to conditions of acquisition. J Lumin 52(5–6): 281–291 (1992)
Nakayama K, Hashimoto H. Effect of surrounding gas pressure on triboemission of charged particles and photons from wearing ceramic surfaces. Tribol T 38(1): 35–42 (1995)
Nakayama K, Hashimoto H. Triboemission, tribochemical reaction, and friction and wear in ceramics under various n-butane gas pressures. Tribol Int 29(5): 385–393 (1996)
Miura T, Nakayama K. Spectral analysis of photons emitted during scratching of an insulator surface by a diamond in air. J Appl Phys 88(9): 5444–5447 (2000)
Nakayama K, Nevshupa R A. Effect of dry air pressure on characteristics and patterns of tribomicroplasma. Vacuum 74(1): 11–17 (2004)
Nakayama K. Effect of normal force on the triboplasma generation under oil lubrication. Tribol Lett 53(2): 449–456 (2014)
Sharipov G L, Tukhbatullin A A, Muftakhutdinov M R, Abdrakhmanov A M. Luminescence of OD radical as an evidence for water decomposition under destruction of the deuterated terbium sulfate crystal hydrate. J Lumin 148: 79–81 (2014)
Tukhbatullin A A, Sharipov G L, Bagautdinova A R. New triboluminescence emitters of inorganic lanthanide salts in CH4 and C2H2 atmosphere. J Lumin 173: 127–129 (2016)
Tukhbatullin A A, Sharipov G L, Gerasimov D N. Luminescence of reaction products of mechanochemical decomposition for some gaseous hydrocarbons C x H y during tribodestruction of cerium and terbium salts. J Lumin 197: 335–338 (2018)
Longchambon H. Experimental study of triboluminescence and crystal luminescence. Bulletin de la Société franç aise de Minéralogie 48(2): 130–214 (1925). (in French)
Wick F G. An experimental study of the triboluminescence of certain natural crystals and synthetically prepared materials. J Opt Soc Am 27(8): 275–285 (1937)
Harvey E N. The luminescence of sugar wafers. Science 90(2324): 35–36 (1939)
Wick F G. Triboluminescence of sugar. J Opt Soc Am 30(7): 302 (1940)
Sweeting L M, Cashel M L, Dott M, Gingerich J M, Guido J L, Kling J A, Pippin R F III, Rosenblatt M M, Rutter A M, Spence R A. Spectroscopy and mechanism in triboluminescence. Mol Cryst Liq Cryst A 211(1): 389–396 (1992)
Zink J I. Tribophosphorescence from nonphotophosphorescent crystals. J Am Chem Soc 96(21): 6775–6777 (1974)
Zink J I, Hardy G E, Gliemann G. Triboluminescence, single-crystal polarized absorption and photoluminescence, and high-pressure studies of linear-chain manganese(II) compounds. Inorg Chem 19(2): 488–492 (1980)
Weiser H B. Crystalloluminescence II. J Phys Chem 22(8): 576–595 (1918)
Nakayama K, Fujimoto T. The energy of electrons emitted from wearing solid surfaces. Tribol Lett 17(1): 75–81 (2004)
Bohun A. Electron emission from solids. J Phys France 26(3): 149–160 (1965). (in French)
Bowden F P, Yoffe A. Hot spots and the initiation of explosion. Symp Combust Flame Explos Phenom 3(1): 551–560 (1948)
Bowden F P, Tabor D, Taylor G I. The area of contact between stationary and moving surfaces. P Roy Soc Lond A Mat 169(938): 391–413 (1939)
Heinicke G, Schober E. On tribokinetics of mechanically activated reactions. Zeitschrift Fuer Chemie 11(6): 219–226 (1971). (in German)
Varentsov E A, Khrustalev Y A. Mechanoemission and mechanochemistry of molecular organic crystals. Russ Chem Rev 64(8): 783–797 (1995)
Camara C G, Escobar J V, Hird J R, Putterman S J. Correlation between nanosecond X-ray flashes and stick-slip friction in peeling tape. Nature 455(7216): 1089–1092 (2008).
Longchambon H. Study of the spectrum of the light emitted in the triboluminescence of sugar. J Frankl Inst 195(2): 269–270 (1923)
Zink J I, Hardy G E, Sutton J E. Triboluminescence of sugars. J Phys Chem-US 80(3): 248–249 (1976)
Jeong S M, Song S, Kim H, Joo K I, Takezoe H. Mechanoluminescence color conversion by spontaneous fluorescent-dye-diffusion in elastomeric zinc sulfide composite. Adv Funct Mater 26(27): 4848–4858 (2016)
Sage I, Bourhill G. Triboluminescent materials for structural damage monitoring. J Mater Chem 11(2): 231–245 (2001)
Tikhomirov B A. Sorption of atmospheric gases (N2, O2, Ar, CO2, and H2O) by silica aerogel. Atmos Ocean Opt 31(3): 232–237 (2018)
Sharipov G L, Tukhbatullin A A, Abdrakhmanov A M. Triboluminescence of crystals and suspensions of inorganic salts of lanthanides. Prot Met Phys Chem S 47(1): 13–19 (2011)
Sharipov G L, Tukhbatullin A A, Abdrakhmanov A M. Detection of OH radical and O atom during triboluminescence of hydrated cerium/terbium sulfates. J Lumin 132(1): 175–177 (2012)
Tukhbatullin A A, Sharipov G L. Thermoluminescence of uranyl salts under mechano-destruction. Physcs Proc 76: 11–15 (2015)
Sharipov G L, Tukhbatullin A A. Triboluminescence of tris(2, 2’-bipyridyl)ruthenium(II) dichloride hexahydrate. J Lumin 215: 116691 (2019)
Puhan D, Nevshupa R, Wong J S S, Reddyhoff T. Transient aspects of plasma luminescence induced by triboelectrification of polymers. Tribol Int 130: 366–377 (2019)
Harvey E N. The luminescence of adhesive tape. Science 89(2316): 460–461 (1939)
Ma Z Y, Fan J W, Dickinson J T. Properties of the photon emission accompanying the peeling of a pressure-sensitive adhesive. J Adhes 25(1): 63–77 (1988)
Alexander A J. Interfacial ion-transfer mechanism for the intense luminescence observed when opening self-seal envelopes. Langmuir 28(37): 13294–13299 (2012)
Chandra B P, Verma R D. Mechanoluminescence of halogenate crystals. Cryst Res And Technol 15(10): 1197–1204 (1980)
Chandra B P, Zink J I. Triboluminescence of inorganic sulfates. Inorg Chem 19(10): 3098–3102 (1980)
Butyagin P Y, Yerofeyev V S, Musayelyan I N, Patrikeyev G A, Streletskii A N, Shulyak A D. The luminescence accompanying mechanical deformation and rupture of polymers. Polymer Science USSR 12(2): 330–342 (1970)
Lofthus A, Krupenie P H. The spectrum of molecular nitrogen. J Phys Chem Ref Data 6(1): 113–307 (1977)
Camacho J J, Poyato J L, Díaz L, Santos M. Optical emission studies of nitrogen plasma generated by IR CO2 laser pulses. J Phys B: At Mol Opt 40(24): 4573–4590 (2007)
Deng X L, Nikiforov A Y, Vanraes P, Leys C. Direct current plasma jet at atmospheric pressure operating in nitrogen and air. J Appl Phys 113(2): 023305 (2013)
Nakayama K, Yagasaki F. The temperature of triboplasma. Tribol Lett 66(1): 10 (2017)
Taccogna F, Dilecce G. Non-equilibrium in low-temperature plasmas. Eur Phys J D 70(11): 251 (2016)
Schulz G J. Vibrational excitation of nitrogen by electron impact. Phys Rev 125(1): 229–232 (1962)
Bogaerts A, Gijbels R. Comparison of argon and neon as discharge gases in a direct-current glow discharge a mathematical simulation. Spectrochim Acta B 52(5): 553–565 (1997)
Rapp D, Englander-Golden P. Total cross sections for ionization and attachment in gases by electron impact. I. Positive ionization. J Chem Phys 43(5): 1464–1479 (1965)
Townsend J S. Motion of electrons in gases. P Roy Soc Lond A Mat 120(786): 511–523 (1928)
Wilson H A. The motion of electrons in gases. P Roy Soc Lond A Mat 103(720): 53–57 (1923)
Tukhbatullin A A, Sharipov G L, Abdrakhmanov A M, Muftakhutdinov M R. Mechanoluminescence of terbium and cerium sulfates in a noble-gas atmosphere. Opt Spectrosc+ 116(5): 691–694 (2014)
Sharipov G L, Tukhbatullin A A, Kovyazin P V, Parfenova L V, Ivchenko P V, Nifant’ev I E. Triboluminescence of zirconium η5-complexes. Russ Chem B+ 64(12): 2776–2779 (2015)
Sharipov G L, Tukhbatullin A A, Mescheryakova E S. The H2O/D2O isotope effect in crystalline lanthanide sulfates at photo-, radio-, and triboluminescence. Opt Mater 52: 44–48 (2016)
Tukhbatullin A A, Sharipov G L, Galina A A. Mechanoluminescence of Ce/Tb inorganic salts in methane–acetylene mixtures with inert gases. Luminescence 33(7): 1180–1184 (2018)
Karimata A, Patil P H, Fayzullin R R, Khaskin E, Lapointe S, Khusnutdinova J R. Triboluminescence of a new family of CuI–NHC complexes in crystalline solid and in amorphous polymer films. Chem Sci 11(39): 10814–10820 (2020)
Karimata A, Khusnutdinova J R. Photo- and triboluminescent pyridinophane Cu complexes: New organometallic tools for mechanoresponsive materials. Dalton T 51(9): 3411–3420 (2022)
Nakayama K, Nevshupa R A. Characteristics and pattern of plasma generated at sliding contact. J Tribol 125(4): 780–787 (2003)
Mitzel N W, Lustig C, Berger R J F, Runeberg N. Luminescence phenomena and solid-state structures of trimethyl- and triethylgallium. Angew Chem Int Edit 41(14): 2519–2522 (2002)
Hanafi M, Omar M M, Gamal Y E E D. Study of laser-induced breakdown spectroscopy of gases. Radiat Phys Chem 57(1): 11–20 (2000)
Sawada K, Yamada Y, Miyachika T, Ezumi N, Iwamae A, Goto M. Collisional-radiative model for spectroscopic diagnostic of optically thick helium plasma. Plasma Fusion Res 5: 1 (2010)
Brady B T, Rowell G A. Laboratory investigation of the electrodynamics of rock fracture. Nature 321: 488–492 (1986)
Donaldson E E, Dickinson J T, Shen X A. Time and size correlations of photon and radiowave bursts from peeling pressure sensitive adhesives in air. J Adhes 19(3–4): 267–286 (1986)
Belyaev L M, Martyshev Y N. Triboluminescence of some alkali halide crystals. Phys Status Solidi B 34(1): 57–62 (1969)
Walton A J, Botos P. The application of an image intensifier spectroscope in triboluminescent studies. J Phys E Sci Instrum 11(6): 513–514 (1978)
Asghar H, Ali R, Baig M A. Determination of transition probabilities for the 3p → 3s transition array in neon using laser induced breakdown spectroscopy. Phys Plasmas 20(12): 123302 (2013)
Bogaerts A, Gijbels R, Vlcek J. Modeling of glow discharge optical emission spectrometry: Calculation of the argon atomic optical emission spectrum. Spectrochim Acta B 53(11): 1517–1526 (1998)
Saloman E B. Energy levels and observed spectral lines of krypton, Kr I through Kr XXXVI. J Phys Chem Ref Data 36(1): 215–386 (2007)
Saloman E B. Energy levels and observed spectral lines of xenon, Xe I through Xe LIV. J Phys Chem Ref Data 33(3): 765–921 (2004)
Nakayama K, Hashimoto H. Triboemission of charged particles and photons from wearing ceramic surfaces in various gases. Tribol T 35(4): 643–650 (1992)
Nakayama K. Microplasma generation in gap of sliding contact through discharging of ambient gas due to triboelectrification. Int J Plasma Environ Sci Technol 04(2): 148–153 (2010)
Rheingold A L, King W. Crystal structures of three brilliantly triboluminescent centrosymmetric lanthanide complexes: Piperidinium tetrakis(benzoylacetonato)europate, hexakis(antipyrine)terbium triiodide, and hexaaquadichloroterbium chloride. Inorg Chem 28(9): 1715–1719 (1989)
Kalinowski J, Godlewski J, Dreger Z, Mondalski P. Pressure-induced luminescence of N-isopropylcarbazole single crystal. Chem Phys Lett 128(5–6): 480–482 (1986)
Enomoto Y, Chaudhri M M. Fracto-emission during fracture of engineering ceramics. J Am Ceram Soc 76(10): 2583–2587 (1993)
Dimova E, Petrov G M, Blagoev K B. Quenching of 4He and 3He excited states by collisions with N2. Vacuum 76(2–3): 405–408 (2004)
Lee S, Jensen L C, Langford S C, Dickinson J T. Electrical transients generated by the peel of a pressure sensitive adhesive tape from a copper substrate. J Adhes Sci Technol 9(1): 1–26 (1995)
Tukhbatullin A A, Sharipov G L. Triboluminescence of trans-stilbene, p-terphenyl and polycyclic aromatic hydrocarbons. Opt Mater 109: 110402 (2020)
Tukhbatullin A A, Kovyazin P V, Sharipov G L, Parfenova L V, Ivchenko P V, Nifant’ev I E. Photoluminescence and mechanoluminescence of solid-state zirconocene dichlorides. Luminescence 36(4): 943–950 (2021)
Liu Y, Tan J G, Wan M G, Zhang L, Yao X. Quantitative measurement of OH* and CH* chemiluminescence in jet diffusion flames. ACS Omega 5(26): 15922–15930 (2020)
Tolstikov G A, Sharipov G L, Voloshin A I, Kazakov V P. Chemiluminescence under catalysis decay of peroxides on the surface of crystalline substances as the cause crystalloluminescence. Dokl Akad Nauk SSSR 274(3): 658–661 (1984).
Christophorou L G, Olthoff J K, Van Brunt R J. Sulfur hexafluoride and the electric power industry. IEEE Electr Insul M 13(5): 20–24 (1997)
Christophorou L G, Van Brunt R J. SF6/N2 mixtures: Basic and HV insulation properties. IEEE T Dielect El In 2(5): 952–1003 (1995)
Dickinson J T, Donaldson E E, Park M K. The emission of electrons and positive ions from fracture of materials. J Mater Sci 16(10): 2897–2908 (1981)
Chandra B P, Zink J I. Triboluminescence of triclinic crystals. J Lumin 23(3–4): 363–372 (1981)
Chandra B P, Tutakne P R, Biyani A C, Majumdar B. Crystalloluminescence and temporary mechanoluminescence of As2O3 crystals. Pramana 18(2): 127–135 (1982)
Chandra B P, Khokhar M S K, Gupta R S, Majumdar B. Tetrahedral manganese (II) complexes—Intense and unique type of mechanoluminophores. Pramana 29(4): 399–407 (1987)
Chandra B P, Kaza B R. Mechanoluminescence, electroluminescence and high-pressure photoluminescence of Mn(Ph3PO)2Br2. J Lumin 27(1): 101–107 (1982)
Wang K F, Ma L R, Xu X F, Wen S Z, Zhang Y R. Enhancement of triboluminescence in the presence of CO2 by sliding between silica and yttria-stabilized zirconia. Langmuir 31(30): 8224–8227 (2015)
Eddingsaas N C, Suslick K S. Intense mechanoluminescence and gas phase reactions from the sonication of an organic slurry. J Am Chem Soc 129(21): 6718–6719 (2007)
Flint E B, Suslick K S. Sonoluminescence from nonaqueous liquids: Emission from small molecules. J Am Chem Soc 111(18): 6987–6992 (1989)
Sharipov G L, Tukhbatullin A A, Bagautdinova A R. Quenching of electronically excited N2 molecules and Tb3+/Eu3+ ions by polyatomic sulfur-containing gases upon triboluminescence of inorganic lanthanide salts. Luminescence 32(5): 824–828 (2017)
Carnall W T, Fields P R, Rajnak K. Electronic energy levels of the trivalent lanthanide aquo ions. III. Tb3+. J Chem Phys 49(10): 4447–4449 (1968)
Carnall W T, Fields P R, Rajnak K. Electronic energy levels of the trivalent lanthanide aquo ions. IV. Eu3+. J Chem Phys 49(10): 4450–4455 (1968)
Ermolaev V L, Sveshnikova E B. The application of luminescence-kinetic methods in the study of the formation of lanthanide ion complexes in solution. Russ Chem Rev 63(11): 905–922 (1994)
Ermolaev V L, Sveshnikova E B, Bodunov E N. Inductive-resonant mechanism of nonradiative transitions in ions and molecules in condensed phase. Phys-Usp+ 39(3): 261–282 (1996)
Nakayama K, Hashimoto H. Triboemission from various materials in atmosphere. Wear 147(2): 335–343 (1991)
Puthanangady T K, Malkin S. Triboemission of charged particles and photons from wearing ceramic surfaces in various hydrocarbon gases. Wear 185(1-2): 183–188 (1995)
Zheng X X, Curtis A D, Shaw W L, Dlott D D. Shock initiation of nano-Al + teflon: Time-resolved emission studies. J Phys Chem C 117(9): 4866–4875 (2013)
Kraus M, Egli W, Haffner K, Eliasson B, Kogelschatz U, Wokaun A. Investigation of mechanistic aspects of the catalytic CO2 reforming of methane in a dielectric-barrier discharge using optical emission spectroscopy and kinetic modeling. Phys Chem Chem Phys 4(4): 668–675 (2002)
Danko M, Orszagh J, Ďurian M, Kočišek J, Daxner M, Zöttl S, Maljković J B, Fedor J, Scheier P, Denifl S, et al. Electron impact excitation of methane: Determination of appearance energies for dissociation products. J Phys B: At Mol Opt 46(4): 045203 (2013)
Kruse T, Roth P. Kinetics of C2 reactions during high-temperature pyrolysis of acetylene. J Phys Chem A 101(11): 2138–2146 (1997)
Ogawa T, Ueda Y, Higo M. Production of C2(d3IIg) by controlled electron impact on acetylene, ethylene, and ethane. B Chem Soc Jpn 56(10): 3033–3036 (1983)
Tang J, Zhao W, Duan Y X. In-depth study on propane–air combustion enhancement with dielectric barrier discharge. IEEE T Plasma Sci 38(12): 3272–3281 (2010)
Fantz U, Paulin H. Chemical erosion of carbon at low temperatures and low ion energies. Phys Scripta T91(1): 25 (2001)
Fantz U. Emission spectroscopy of molecular low pressure plasmas. Contrib Plasma Phys 44(5–6): 508–515 (2004)
Chandra B P, Mahobia S K, Kuraria R K, Chaudhary V. Fracto-mechanoluminescence produced during slow deformation of solids. Indian J Eng Mater S 14(6): 443–446 (2007)
Liu S Y, Mei D H, Shen Z, Tu X. Nonoxidative conversion of methane in a dielectric barrier discharge reactor: Prediction of reaction performance based on neural network model. J Phys Chem C 118(20): 10686–10693 (2014)
Janev R K, Reiter D. Collision processes of C2, 3H y and C2, 3H y + hydrocarbons with electrons and protons. Phys Plasmas 11(2): 780–829 (2004)
Liu K, Song D, Kong F N. Dissociation of molecules in intense laser beam. Laser Phys 19(8): 1640–1650 (2009)
Eddingsaas N C, Suslick K S. Light from sonication of crystal slurries. Nature 444(7116): 163 (2006)
Nakayama K, Nevshupa R A. Plasma generation in a gap around a sliding contact. J Phys D Appl Phys 35(12): L53–L56 (2002)
Evdokimov V D. Specific features of exoelectron emission during friction of metals. Sov Phys J 11(4): 11–13 (1968)
Nakayama K, Leiva J A, Enomoto Y. Chemi-emission of electrons from metal surfaces in the cutting process due to metal/gas interactions. Tribol Int 28(8): 507–515 (1995)
Nevshupa R A, Nakayama K. Triboemission behavior of photons at dielectric/dielectric sliding: Time dependence nature at 10−4–104 s. J Appl Phys 93(11): 9321–9328 (2003)
Nevshupa R A. Effect of gas pressure on the triboluminescence and contact electrification under mutual sliding of insulating materials. J Phys D Appl Phys 46(18): 185501 (2013)
Nevshupa R, Roman E, Konovalov P, de Segovia J L. New method to determine gas content in materials. J Phys Conf Ser 100(7): 072030 (2008)