Home Friction Article
PDF (15.2 MB)
Collect
Submit Manuscript
Review Article | Open Access | Online First

Recent development in understanding the role of lipids in cartilage lubrication

Yumeng XueXiaolian NiuJin Zhou()Lizhen Wang()Yubo Fan()
1 Innovation Center for Medical Engineering & Engineering Medicine, Hangzhou International Innovation Institute, Beihang University, Hangzhou 311115, China. 2 Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological and Medical Engineering, Beihang University, Beijing 100191, China
Show Author Information

Graphical Abstract

View original image Download original image

Abstract

Lubrication deficiency in articular cartilage (AC) triggers irreversible and progressive degradation of AC, termed osteoarthritis (OA). Bio-lubrication-based strategies have been proposed as effective ways to restore temporary cartilage lubrication for OA postponement or even OA healing. The design of lubricants has inspired an exploration of the reasons behind the low friction in cartilage and the components responsible for the lubrication function in cartilage. Recently, lipids, as emerging lubrication components in AC, have been extensively studied and confirmed to play essential roles in maintaining cartilage lubrication. This review brings forward the main challenges of establishing a satisfactory functional articular cartilage biomaterial with sufficient lubrication from the perspectives of the complexity of physiology and microenvironment of osteochondral tissue. Next, we comprehensively discuss lubrication models of AC, including the lubrication mechanism of AC, OA associated with lipids, lipid lubrication mechanism and application, and the synergistic effects of phospholipids in lubrication. In particular, we highlight the advantages and application of lipids and their derivatives in lubrication. Finally, we analyze the future prospects of lipid-based biomaterials to achieve the perfect treatment of OA. This comprehensive and instructive review can provide deep insights into our current understanding of lipids and lubrication-related diseases.

References

[1]
Global Burden of Disease Collaborative Network. Global Burden of Disease Study 2019 (GBD 2019). 2020. Available at http://ghdx.healthdata.org/gbd-results-tool
[2]

Man G S, Mologhianu G. Osteoarthritis pathogenesis - a complex process that involves the entire joint. J Med Life 7(1): 37–41 (2014)

[3]

Kloppenburg M, Berenbaum F. Osteoarthritis year in review 2019: Epidemiology and therapy. Osteoarthr Cartil 28(3): 242–248 (2020)

[4]

Li Y M, Yuan Z R, Yang H, Zhong H J, Peng W J, Xie R J. Recent advances in understanding the role of cartilage lubrication in osteoarthritis. Molecules 26(20): 6122 (2021)

[5]

Szilagyi I A, Waarsing J H, Schiphof D, van Meurs J B J, Bierma-Zeinstra S M A. Towards sex-specific osteoarthritis risk models: Evaluation of risk factors for knee osteoarthritis in males and females. Rheumatology 61(2): 648–657 (2022)

[6]

Loeser R F, Goldring S R, Scanzello C R, Goldring M B. Osteoarthritis: A disease of the joint as an organ. Arthritis Rheum 64(6): 1697–1707 (2012)

[7]

Sophia Fox A J, Bedi A, Rodeo S A. The basic science of articular cartilage: Structure, composition, and function. Sports Health 1(6): 461–468 (2009)

[8]

Klein J. Molecular mechanisms of synovial joint lubrication. P I Mech Eng J—J-Eng 220(8): 691–710 (2006)

[9]

Morrell K C, Andrew Hodge W, Krebs D E, Mann R W. Corroboration of in vivo cartilage pressures with implications for synovial joint tribology and osteoarthritis causation. P Natl Acad Sci USA 102(41): 14819–14824 (2005)

[10]

Marzo J M, Gurske-DePerio J. Effects of medial meniscus posterior horn avulsion and repair on tibiofemoral contact area and peak contact pressure with clinical implications. Am J Sports Med 37(1): 124–129 (2009)

[11]

Statham P, Jones E, Jennings L M, Fermor H L. Reproducing the biomechanical environment of the chondrocyte for cartilage tissue engineering. Tissue Eng Pt B—Rev 28(2): 405–420 (2022)

[12]
Wong M, Hunziker E B. Articular cartilage biology and biomechanics. In: Gelenkknorpeldefekte. Berlin (Germany): Springer, 2001: 15–28
[13]

Ateshian G A, Wang H Q. A theoretical solution for the frictionless rolling contact of cylindrical biphasic articular cartilage layers. J Biomech 28(11): 1341–1355 (1995)

[14]

Scanzello C R, Plaas A, Crow M K. Innate immune system activation in osteoarthritis: Is osteoarthritis a chronic wound? Curr Opin Rheumatol 20(5): 565–572 (2008)

[15]

Liacini A, Sylvester J, Li W Q, Huang W S, Dehnade F, Ahmad M, Zafarullah M. Induction of matrix metalloproteinase-13 gene expression by TNF-α is mediated by MAP kinases, AP-1, and NF-κB transcription factors in articular chondrocytes. Exp Cell Res 288(1): 208–217 (2003)

[16]
Buckwalter J A. Aging and degeneration of the human intervertebral disc. Spine 20 (11): 1307–1314 (1995)
[17]

Qvistgaard E, Christensen R, Torp-Pedersen S, Bliddal H. Intra-articular treatment of hip osteoarthritis: A randomized trial of hyaluronic acid, corticosteroid, and isotonic saline. Osteoarthr Cartil 14(2): 163–170 (2006)

[18]

Wieland H, Michaelis M, Kirschbaum B J, Rudolphi K. Osteoarthritis: An untreatable disease. Nat Rev Drug Discov 4: 331–344 (2005)

[19]

Arden N K, Perry T A, Bannuru R R, Bruyère O, Cooper C, Haugen I K, Hochberg M C, McAlindon T E, Mobasheri A, Reginster J Y. Non-surgical management of knee osteoarthritis: Comparison of ESCEO and OARSI 2019 guidelines. Nat Rev Rheumatol 17(1): 59–66 (2021)

[20]

Goldberg V M, Coutts R D. Pseudoseptic reactions to hylan viscosupplementation: Diagnosis and treatment. Clin Orthop Relat Res 429: 350–351 (2004)

[21]

van der Weegen W, Wullems J A, Bos E, Noten H, van Drumpt R A M. No difference between intra-articular injection of hyaluronic acid and placebo for mild to moderate knee osteoarthritis: A randomized, controlled, double-blind trial. J Arthroplasty 30(5): 754–757 (2015)

[22]

Bannuru R R, Vaysbrot E E, Sullivan M C, McAlindon T E. Relative efficacy of hyaluronic acid in comparison with NSAIDs for knee osteoarthritis: A systematic review and meta-analysis. Semin Arthritis Rheum 43(5): 593–599 (2014)

[23]

Kwon H, Brown W E, Lee C A, Wang D A, Paschos N, Hu J C, Athanasiou K A. Surgical and tissue engineering strategies for articular cartilage and meniscus repair. Nat Rev Rheumatol 15(9): 550–570 (2019)

[24]

Hulme C H, Perry J, McCarthy H S, Wright K T, Snow M, Mennan C, Roberts S. Cell therapy for cartilage repair. Emerg Top Life Sci 5(4): 575–589 (2021)

[25]

Zamuner A, Cavo M, Scaglione S, Messina G M L, Russo T, Gloria A, Marletta G, Dettin M. Design of decorated self-assembling peptide hydrogels as architecture for mesenchymal stem cells. Materials 9(9): 727 (2016)

[26]

Hollander A P, Dickinson S C, Kafienah W. Stem cells and cartilage development: Complexities of a simple tissue. Stem Cells 28(11): 1992–1996 (2010)

[27]

Sampat S R, O’Connell G D, Fong J V, Alegre-Aguarón E, Ateshian G A, Hung C T. Growth factor priming of synovium-derived stem cells for cartilage tissue engineering. Tissue Eng Pt A 17(17–18): 2259–2265 (2011)

[28]

Tuan R S, Chen A F, Klatt B A. Cartilage regeneration. J Am Acad Orthop Sur 21(5): 303–311 (2013)

[29]

Jahn S, Seror J, Klein J. Lubrication of articular cartilage. Annu Rev Biomed Eng 18: 235–258 (2016)

[30]

Davies R L, Kuiper N J. Regenerative medicine: A review of the evolution of autologous chondrocyte implantation (ACI) therapy. Bioengineering 6(1): 22 (2019)

[31]

Halonen K S, Mononen M E, Jurvelin J S, Töyräs J, Korhonen R K. Importance of depth-wise distribution of collagen and proteoglycans in articular cartilage: A 3D finite element study of stresses and strains in human knee joint. J Biomech 46(6): 1184–1192 (2013)

[32]

Venn M, Maroudas A. Chemical composition and swelling of normal and osteoarthrotic femoral head cartilage. I. Chemical composition. Ann Rheum Dis 36(2): 121–129 (1977)

[33]
Maroudas A, Mizrahi J, Katz E P, Wachtel E J, Soudry M. Physicochemical properties and functional behavior of normal and osteoarthritic human cartilage. In: Articular Cartilage Biochemistry. Kuettner K, et al. , Eds. New York (USA): Raven Press, 1986.
[34]

Lin W F, Klein J. Recent progress in cartilage lubrication. Adv Mater 33(18): 2005513 (2021)

[35]

Lesage C, Lafont M, Guihard P, Weiss P, Guicheux J, Delplace V. Material-assisted strategies for osteochondral defect repair. Adv Sci 9(16): 2200050 (2022)

[36]

Martel-Pelletier J. Pathophysiology of osteoarthritis. Osteoarthr Cartil 12: 31–33 (2004)

[37]

Martínez-Moreno D, Jiménez G, Gálvez-Martín P, Rus G, Marchal J A. Cartilage biomechanics: A key factor for osteoarthritis regenerative medicine. BBA—Mol Basis Dis 1865(6): 1067–1075 (2019)

[38]

O’Conor C J, Leddy H A, Benefield H C, Liedtke W B, Guilak F. TRPV4-mediated mechanotransduction regulates the metabolic response of chondrocytes to dynamic loading. P Natl Acad Sci USA 111(4): 1316–1321 (2014)

[39]

Morgese G, Benetti E M, Zenobi-Wong M. Molecularly engineered biolubricants for articular cartilage. Adv Healthcare Mater 7(16): 1701463 (2018)

[40]
Mlynárik V, Trattnig S. Physicochemical properties of normal articular cartilage and its MR appearance. Investig Radiol 35 (10): 589–594 (2000)
[41]

Eyre D R. The collagens of articular cartilage. Semin Arthritis Rheum 21(3): 2–11 (1991)

[42]

Urban J P G. The chondrocyte: A cell under pressure. Rheumatology 33(10): 901–908 (1994)

[43]

DeFrate L E, Kim-Wang S Y, Englander Z A, McNulty A L. Osteoarthritis year in review 2018: Mechanics. Osteoarthr Cartil 27(3): 392–400 (2019)

[44]

Saberi Hosnijeh F, Bierma-Zeinstra S M, Bay-Jensen A C. Osteoarthritis year in review 2018: Biomarkers (biochemical markers). Osteoarthr Cartil 27(3): 412–423 (2019)

[45]

Desrochers J, Amrein M W, Matyas J R. Microscale surface friction of articular cartilage in early osteoarthritis. J Mech Behav Biomed 25: 11–22 (2013)

[46]

Lotz M K, Caramés B. Autophagy and cartilage homeostasis mechanisms in joint health, aging and OA. Nat Rev Rheumatol 7(10): 579–587 (2011)

[47]

Martel-Pelletier J, Barr A J, Cicuttini F M, Conaghan P G, Cooper C, Goldring M B, Goldring S R, Jones G, Teichtahl A J, Pelletier J P. Osteoarthritis. Nat Rev Dis Primers 2: 16072 (2016)

[48]

Roughley P J, Mort J S. The role of aggrecan in normal and osteoarthritic cartilage. J Exp Orthop 1(1): 8 (2014)

[49]

Troeberg L, Nagase H. Proteases involved in cartilage matrix degradation in osteoarthritis. BBA—Proteins Proteom 1824(1): 133–145 (2012)

[50]

Liu-Bryan R, Terkeltaub R. Emerging regulators of the inflammatory process in osteoarthritis. Nat Rev Rheumatol 11(1): 35–44 (2015)

[51]

Sellam J, Berenbaum F. The role of synovitis in pathophysiology and clinical symptoms of osteoarthritis. Nat Rev Rheumatol 6(11): 625–635 (2010)

[52]

Poole C A, Flint M H, Beaumont B W. Chondrons in cartilage: Ultrastructural analysis of the pericellular microenvironment in adult human articular cartilages. J Orthop Res 5(4): 509–522 (1987)

[53]

Wang Q G, El Haj A J, Kuiper N J. Glycosaminoglycans in the pericellular matrix of chondrons and chondrocytes. J Anat 213(3): 266–273 (2008)

[54]

Poole A R, Kojima T, Yasuda T, Mwale F, Kobayashi M, Laverty S. Composition and structure of articular cartilage. Clin Orthop Relat R 391: S26–S33 (2001)

[55]

Carballo C B, Nakagawa Y, Sekiya I, Rodeo S A. Basic science of articular cartilage. Clin Phys Med 36(3): 413–425 (2017)

[56]
Poole C A, Flint M H, Beaumont B W. Morphological and functional interrelationships of articular cartilage matrices. J Anat 138 (Pt 1): 113–138 (1984)
[57]

Larson CM, Kelley SS, Blackwood AD, Banes AJ, Lee GM. Retention of the native chondrocyte pericellular matrix results in significantly improved matrix production. Matrix Biol 21(4): 349–359 (2002)

[58]

Allen D M, Mao J J. Heterogeneous nanostructural and nanoelastic properties of pericellular and interterritorial matrices of chondrocytes by atomic force microscopy. J Struct Biol 145(3): 196–204 (2004)

[59]

Wilusz R E, Sanchez-Adams J, Guilak F. The structure and function of the pericellular matrix of articular cartilage. Matrix Biol 39: 25–32 (2014)

[60]

Choi J B, Youn I, Cao L, Leddy H A, Gilchrist C L, Setton L A, Guilak F. Zonal changes in the three-dimensional morphology of the chondron under compression: The relationship among cellular, pericellular, and extracellular deformation in articular cartilage. J Biomech 40(12): 2596–2603 (2007)

[61]

Wiberg C, Klatt A R, Wagener R, Paulsson M, Bateman J F, Heinegård D, Mörgelin M. Complexes of matrilin-1 and biglycan or decorin connect collagen VI microfibrils to both collagen II and aggrecan. J Biol Chem 278(39): 37698–37704 (2003)

[62]

Buschmann M, Gluzband Y A, Grodzinsky A, Hunziker E. Mechanical compression modulates matrix biosynthesis in chondrocyte/agarose culture. J Cell Sci 108(4): 1497–1508 (1995)

[63]

Xu H F, Raynal N, Stathopoulos S, Myllyharju J, Farndale R W, Leitinger B. Collagen binding specificity of the discoidin domain receptors: Binding sites on collagens II and III and molecular determinants for collagen IV recognition by DDR1. Matrix Biol 30(1): 16–26 (2011)

[64]

Knudson C B, Knudson W. Hyaluronan and CD44: Modulators of chondrocyte metabolism. Clin Orthop Relat Res 427: S152–S162 (2004)

[65]

Irianto J, Ramaswamy G, Serra R, Knight M M. Depletion of chondrocyte primary cilia reduces the compressive modulus of articular cartilage. J Biomech 47(2): 579–582 (2014)

[66]

Wann A K T, Zuo N, Haycraft C J, Jensen C G, Poole C A, McGlashan S R, Knight M M. Primary cilia mediate mechanotransduction through control of ATP-induced Ca2+ signaling in compressed chondrocytes. FASEB J 26(4): 1663–1671 (2012)

[67]

Xu J, Wang W, Clark C C, Brighton C T. Signal transduction in electrically stimulated articular chondrocytes involves translocation of extracellular calcium through voltage-gated channels. Osteoarthr Cartil 17(3): 397–405 (2009)

[68]

Clark A L, Votta B J, Kumar S, Liedtke W, Guilak F. Chondroprotective role of the osmotically sensitive ion channel transient receptor potential vanilloid 4: Age- and sex-dependent progression of osteoarthritis in Trpv4-deficient mice. Arthritis Rheum 62(10): 2973–2983 (2010)

[69]

Jensen C G, Poole C A, McGlashan S R, Marko M, Issa Z I, Vujcich K V, Bowser S S. Ultrastructural, tomographic and confocal imaging of the chondrocyte primary cilium in situ. Cell Biol Int 28(2): 101–110 (2004)

[70]

Poole C A, Zhang Z J, Ross J M. The differential distribution of acetylated and detyrosinated alpha-tubulin in the microtubular cytoskeleton and primary cilia of hyaline cartilage chondrocytes. J Anat 199(4): 393–405 (2001)

[71]

Ogawa H, Kozhemyakina E, Hung H H, Grodzinsky A J, Lassar A B. Mechanical motion promotes expression of Prg4 in articular cartilage via multiple CREB-dependent, fluid flow shear stress-induced signaling pathways. Genes Dev 28(2): 127–139 (2014)

[72]

He Z, Leong D J, Zhuo Z, Majeska R J, Cardoso L, Spray D C, Goldring M B, Cobelli N J, Sun H B. Strain-induced mechanotransduction through primary cilia, extracellular ATP, purinergic calcium signaling, and ERK1/2 transactivates CITED2 and downregulates MMP-1 and MMP-13 gene expression in chondrocytes. Osteoarthr Cartil 24(5): 892–901 (2016)

[73]

Klatt A R, Klinger G, Neumüller O, Eidenmüller B, Wagner I, Achenbach T, Aigner T, Bartnik E. TAK1 downregulation reduces IL-1beta induced expression of MMP13, MMP1 and TNF-alpha. Biomed Pharmacother 60(2): 55–61 (2006)

[74]

Aydelotte M B, Greenhill R R, Kuettner K E. Differences between sub-populations of cultured bovine articular chondrocytes. II. Proteoglycan metabolism. Connect Tissue Res 18(3): 223–234 (1988)

[75]

Scharstuhl A, Glansbeek H L, van Beuningen H M, Vitters E L, van der Kraan P M, van den Berg W B. Inhibition of endogenous TGF-β during experimental osteoarthritis prevents osteophyte formation and impairs cartilage repair. J Immunol 169(1): 507–514 (2002)

[76]

Millward-Sadler S J, Salter D M. Integrin-dependent signal cascades in chondrocyte mechanotransduction. Ann Biomed Eng 32(3): 435–446 (2004)

[77]

Millward-Sadler S J, Wright M O, Lee H, Nishida K, Caldwell H, Nuki G, Salter D M. Integrin-regulated secretion of interleukin 4: A novel pathway of mechanotransduction in human articular chondrocytes. J Cell Biol 145(1): 183–189 (1999)

[78]

Millward-Sadler S J, Wright M O, Davies L W, Nuki G, Salter D M. Mechanotransduction via integrins and interleukin-4 results in altered aggrecan and matrix metalloproteinase 3 gene expression in normal, but not osteoarthritic, human articular chondrocytes. Arthritis Rheum 43(9): 2091–2099 (2000)

[79]

Guettler J H, Demetropoulos C K, Yang K H, Jurist K A. Osteochondral defects in the human knee: Influence of defect size on cartilage rim stress and load redistribution to surrounding cartilage. Am J Sports Med 32(6): 1451–1458 (2004)

[80]

Pearle A D, Warren R F, Rodeo S A. Basic science of articular cartilage and osteoarthritis. Clin Phys Med 24(1): 1–12 (2005)

[81]

Bae W C, Temple M M, Amiel D, Coutts R D, Niederauer G G, Sah R L. Indentation testing of human cartilage: Sensitivity to articular surface degeneration. Arthritis Rheum 48(12): 3382–3394 (2003)

[82]

Appleyard R C, Burkhardt D, Ghosh P, Read R, Cake M, Swain M V, Murrell G A C. Topographical analysis of the structural, biochemical and dynamic biomechanical properties of cartilage in an ovine model of osteoarthritis. Osteoarthr Cartil 11(1): 65–77 (2003)

[83]

Kleemann R U, Krocker D, Cedraro A, Tuischer J, Duda G N. Altered cartilage mechanics and histology in knee osteoarthritis: Relation to clinical assessment (ICRS Grade). Osteoarthr Cartil 13(11): 958–963 (2005)

[84]

van der Kraan P M, van den Berg W B. Chondrocyte hypertrophy and osteoarthritis: Role in initiation and progression of cartilage degeneration. Osteoarthr Cartil 20(3): 223–232 (2012)

[85]

Katta J, Stapleton T, Ingham E, Jin Z M, Fisher J. The effect of glycosaminoglycan depletion on the friction and deformation of articular cartilage. P I Mech Eng H 222(1): 1–11 (2008)

[86]

Kamekura S, Kawasaki Y, Hoshi K, Shimoaka T, Chikuda H, Maruyama Z, Komori T, Sato S, Takeda S, Karsenty G, et al. Contribution of runt-related transcription factor 2 to the pathogenesis of osteoarthritis in mice after induction of knee joint instability. Arthritis Rheum 54(8): 2462–2470 (2006)

[87]

Xu L, Peng H B, Wu D Y, Hu K P, Goldring M B, Olsen B R, Li Y F. Activation of the discoidin domain receptor 2 induces expression of matrix metalloproteinase 13 associated with osteoarthritis in mice. J Biol Chem 280(1): 548–555 (2005)

[88]

Vonk L A, Doulabi B Z, Huang C L, Helder M N, Everts V, Bank R A. Collagen-induced expression of collagenase-3 by primary chondrocytes is mediated by integrin Α1 and discoidin domain receptor 2: A protein kinase C-dependent pathway. Rheumatology 50(3): 463–472 (2011)

[89]

Lee W, Leddy HA, Chen Y, Lee SH, Zelenski NA, McNulty AL, Wu J, Beicker KN, Coles J, Zauscher S, et al. Synergy between Piezo1 and Piezo2 channels confers high-strain mechanosensitivity to articular cartilage. P Natl Acad Sci USA 111(47): E5114–E5122 (2014)

[90]

Drexler S, Wann A, Vincent T L. Are cellular mechanosensors potential therapeutic targets in osteoarthritis. Int J Clin Rheumatol 9(2): 155–167 (2014)

[91]

Thompson C L, Chapple J P, Knight M M. Primary cilia disassembly down-regulates mechanosensitive hedgehog signalling: A feedback mechanism controlling ADAMTS-5 expression in chondrocytes. Osteoarthr Cartil 22(3): 490–498 (2014)

[92]

Chang S H, Mori D, Kobayashi H, Mori Y, Nakamoto H, Okada K, Taniguchi Y, Sugita S, Yano F, Chung U I, et al. Excessive mechanical loading promotes osteoarthritis through the gremlin-1-NF-κB pathway. Nat Commun 10(1): 1442 (2019)

[93]

Klein J. Frictional dissipation in stick-slip sliding. Phys Rev Lett 98(5): 056101 (2007)

[94]
Macconaill M A. The function of intra-articular fibrocartilages, with special reference to the knee and inferior radio-ulnar joints. J Anat 66 (Pt 2): 210–227 (1932)
[95]

Dowson D. Bio-tribology. Faraday Discuss 156: 9 (2012)

[96]

Jin Z M, Dowson D, Fisher J. Stress analysis of cushion form bearings for total hip replacements. P I Mech Eng H 205(4): 219–226 (1991)

[97]

Dowson D, Jin Z M. Micro-elastohydrodynamic lubrication of synovial joints. Eng Med 15(2): 63–65 (1986)

[98]

Maroudas A. Biophysical chemistry of cartilaginous tissues with special reference to solute and fluid transport. Biorheology 12(3–4): 233–248 (1975)

[99]

Murakami T, Nakashima K, Sawae Y, Sakai N, Hosoda N. Roles of adsorbed film and gel layer in hydration lubrication for articular cartilage. P I Mech Eng J—J Eng 223(3): 287–295 (2009)

[100]

Ateshian G A. The role of interstitial fluid pressurization in articular cartilage lubrication. J Biomech 42(9): 1163–1176 (2009)

[101]

Hodge W A, Fijan R S, Carlson K L, Burgess R G, Harris W H, Mann R W. Contact pressures in the human hip joint measured in vivo. P Natl Acad Sci USA 83(9): 2879–2883 (1986)

[102]

Hodge W A, Carlson K L, Fijan R S, Burgess R G, Riley P O, Harris W H, Mann R W. Contact pressures from an instrumented hip endoprosthesis. J Bone Joint Surg Am 71(9): 1378–1386 (1989)

[103]

Afoke N Y, Byers P D, Hutton W C. Contact pressures in the human hip joint. J Bone Joint Surg Br 69-B(4): 536–541 (1987)

[104]

Briscoe W H, Titmuss S, Tiberg F, Thomas R K, McGillivray D J, Klein J. Boundary lubrication under water. Nature 444(7116): 191–194 (2006)

[105]

Krause W E, Bellomo E G, Colby R H. Rheology of sodium hyaluronate under physiological conditions. Biomacromolecules 2(1): 65–69 (2001)

[106]

Charnley J. The lubrication of animal joints in relation to surgical reconstruction by arthroplasty. Ann Rheum Dis 19(1): 10–19 (1960)

[107]

Gleghorn J P, Bonassar L J. Lubrication mode analysis of articular cartilage using Stribeck surfaces. J Biomech 41(9): 1910–1918 (2008)

[108]

Swann D A, Radin E L, Nazimiec M, Weisser P A, Curran N, Lewinnek G. Role of hyaluronic acid in joint lubrication. Ann Rheum Dis 33(4): 318–326 (1974)

[109]

Benz M, Chen N H, Israelachvili J. Lubrication and wear properties of grafted polyelectrolytes, hyaluronan and hylan, measured in the surface forces apparatus. J Biomed Mater Res A 71A(1): 6–15 (2004)

[110]

Jay G D, Lane B P, Sokoloff L. Characterization of a bovine synovial fluid lubricating factor. III. The interaction with hyaluronic acid. Connect Tissue Res 28(4): 245–255 (1992)

[111]

Wang M, Liu C, Thormann E, Dėdinaitė A. Hyaluronan and phospholipid association in biolubrication. Biomacromolecules 14(12): 4198–4206 (2013)

[112]

Seror J, Merkher Y, Kampf N, Collinson L, Day A J, Maroudas A, Klein J. Articular cartilage proteoglycans as boundary lubricants: Structure and frictional interaction of surface-attached hyaluronan and hyaluronan: Aggrecan complexes. Biomacromolecules 12(10): 3432–3443 (2011)

[113]

Seror J, Merkher Y, Kampf N, Collinson L, Day A J, Maroudas A, Klein J. Normal and shear interactions between hyaluronan-aggrecan complexes mimicking possible boundary lubricants in articular cartilage in synovial joints. Biomacromolecules 13(11): 3823–3832 (2012)

[114]

Radin E L, Swann D A, Weisser P A. Separation of a hyaluronate-free lubricating fraction from synovial fluid. Nature 228(5269): 377–378 (1970)

[115]

Jay G D, Torres J R, Warman M L, Laderer M C, Breuer K S. The role of lubricin in the mechanical behavior of synovial fluid. P Natl Acad Sci USA 104(15): 6194–6199 (2007)

[116]

Goldberg R, Schroeder A, Barenholz Y, Klein J. Interactions between adsorbed hydrogenated soy phosphatidylcholine (HSPC) vesicles at physiologically high pressures and salt concentrations. Biophys J 100(10): 2403–2411 (2011)

[117]

Sorkin R, Kampf N, Dror Y, Shimoni E, Klein J. Origins of extreme boundary lubrication by phosphatidylcholine liposomes. Biomaterials 34(22): 5465–5475 (2013)

[118]

Das S, Banquy X, Zappone B, Greene G W, Jay G D, Israelachvili J N. Synergistic interactions between grafted hyaluronic acid and lubricin provide enhanced wear protection and lubrication. Biomacromolecules 14(5): 1669–1677 (2013)

[119]

Zhu L Y, Seror J, Day A J, Kampf N, Klein J. Ultra-low friction between boundary layers of hyaluronan-phosphatidylcholine complexes. Acta Biomater 59: 283–292 (2017)

[120]

Jay G D, Harris D A, Cha C J. Boundary lubrication by lubricin is mediated by O-linked beta(1-3)Gal-GalNAc oligosaccharides. Glycoconj J 18(10): 807–815 (2001)

[121]

Jay G D, Torres J R, Rhee D K, Helminen H J, Hytinnen M M, Cha C J, Elsaid K, Kim K S, Cui Y J, Warman M L. Association between friction and wear in diarthrodial joints lacking lubricin. Arthritis Rheum 56(11): 3662–3669 (2007)

[122]

Hills BA. Identity of the joint lubricant. J Rheumatol 29(1): 200–201 (2002)

[123]

Zappone B, Greene G W, Oroudjev E, Jay G D, Israelachvili J N. Molecular aspects of boundary lubrication by human lubricin: Effect of disulfide bonds and enzymatic digestion. Langmuir 24(4): 1495–1508 (2008)

[124]

Freeman M R, Little T D, Swanson S V. Lubrication of synovial joints: Possible significance of fat. Proc R Soc Med 63(6): 579–581 (1970)

[125]

Hills B A, Butler B D. Surfactants identified in synovial fluid and their ability to act as boundary lubricants. Ann Rheum Dis 43(4): 641–648 (1984)

[126]

Raviv U, Klein J. Fluidity of bound hydration layers. Science 297(5586): 1540–1543 (2002)

[127]

Jagla E A. Boundary lubrication properties of materials with expansive freezing. Phys Rev Lett 88: 245504 (2002)

[128]

Jahn S, Klein J. Hydration lubrication: The macromolecular domain. Macromolecules 48(15): 5059–5075 (2015)

[129]

Klein J. Hydration lubrication. Friction 1(1): 1 (2013)

[130]

Goldberg R, Schroeder A, Silbert G, Turjeman K, Barenholz Y, Klein J. Boundary lubricants with exceptionally low friction coefficients based on 2D close-packed phosphatidylcholine liposomes. Adv Mater 23(31): 3517–3521 (2011)

[131]

Sorkin R, Dror Y, Kampf N, Klein J. Mechanical stability and lubrication by phosphatidylcholine boundary layers in the vesicular and in the extended lamellar phases. Langmuir 30(17): 5005–5014 (2014)

[132]

Schmidt T A, Gastelum N S, Nguyen Q T, Schumacher B L, Sah R L. Boundary lubrication of articular cartilage: Role of synovial fluid constituents. Arthritis Rheum 56(3): 882–891 (2007)

[133]

Pawlak Z, Kaldonski T J, Gocman K, Kaldonski T, Yusuf K. Articular cartilage: Hydrophilic and boundary layered lubrication mechanism with phospholipid–(lubricin, hyaluronan) participation. Clin Med Invest 5: 1–3 (2019)

[134]

Wang Z N, Li J J, Ge X Y, Liu Y H, Luo J B, Chetwynd D G, Mao K. Investigation of the lubrication properties and synergistic interaction of biocompatible liposome-polymer complexes applicable to artificial joints. Colloid Surface B 178: 469–478 (2019)

[135]

Cao Y F, Klein J. Lipids and lipid mixtures in boundary layers: From hydration lubrication to osteoarthritis. Curr Opin Colloid In 58: 101559 (2022)

[136]

Tang L Y, Winkeljann B, Feng S F, Song J, Liu Y H. Recent advances in superlubricity of liposomes for biomedical applications. Colloid Surface B 218: 112764 (2022)

[137]

Sarma A V, Powell G L, LaBerge M. Phospholipid composition of articular cartilage boundary lubricant. J Orthop Res 19(4): 671–676 (2001)

[138]

Archard J F. Friction: An Introduction to tribology F. P. Bowden and D. Tabor Heineman educational book (Science study series). Tribol Int 8(6): 268 (1975)

[139]

Briscoe B J, Evans D C B. The shear properties of Langmuir–Blodgett layers. P Roy Soc A—Math Phy 380(1779): 389–407 (1982)

[140]

Kosinska M K, Liebisch G, Lochnit G, Wilhelm J, Klein H, Kaesser U, Lasczkowski G, Rickert M, Schmitz G, Steinmeyer J. A lipidomic study of phospholipid classes and species in human synovial fluid. Arthritis Rheum 65(9): 2323–2333 (2013)

[141]

Kosinska M K, Ludwig T E, Liebisch G, Zhang R Y, Siebert H C, Wilhelm J, Kaesser U, Dettmeyer R B, Klein H, Ishaque B, et al. Articular joint lubricants during osteoarthritis and rheumatoid arthritis display altered levels and molecular species. PLoS One 10(5): e0125192 (2015)

[142]

Huang C H, Li S S. Calorimetric and molecular mechanics studies of the thermotropic phase behavior of membrane phospholipids. BBA—Rev Biomembranes 1422(3): 273–307 (1999)

[143]

Arsov Z, González-Ramírez E J, Goñi F M, Tristram-Nagle S, Nagle J F. Phase behavior of palmitoyl and egg sphingomyelin. Chem Phys Lipds 213: 102–110 (2018)

[144]

Cao Y F, Kampf N, Klein J. Boundary lubrication, hemifusion, and self-healing of binary saturated and monounsaturated phosphatidylcholine mixtures. Langmuir 35(48): 15459–15468 (2019)

[145]

Chen Y, Crawford R W, Oloyede A. Unsaturated phosphatidylcholines lining on the surface of cartilage and its possible physiological roles. J Orthop Surg Res 2: 14 (2007)

[146]

Sorkin R, Kampf N, Zhu L Y, Klein J. Hydration lubrication and shear-induced self-healing of lipid bilayer boundary lubricants in phosphatidylcholine dispersions. Soft Matter 12(10): 2773–2784 (2016)

[147]

Castellana E T, Cremer P S. Solid supported lipid bilayers: From biophysical studies to sensor design. Surf Sci Rep 61(10): 429–444 (2006)

[148]

Brian A A, McConnell H M. Allogeneic stimulation of cytotoxic T cells by supported planar membranes. P Natl Acad Sci USA 81(19): 6159–6163 (1984)

[149]

Tamm L K, McConnell H M. Supported phospholipid bilayers. Biophys J 47(1): 105–113 (1985)

[150]

McConnell H M, Watts T H, Weis R M, Brian A A. Supported planar membranes in studies of cell-cell recognition in the immune system. Biochim Biophys Acta 864(1): 95–106 (1986)

[151]

Mingeot-Leclercq M P, Deleu M, Brasseur R, Dufrêne Y F. Atomic force microscopy of supported lipid bilayers. Nat Protoc 3(10): 1654–1659 (2008)

[152]

Matei C I, Boulocher C, Boulé C, Schramme M, Viguier E, Roger T, Berthier Y, Trunfio-Sfarghiu A M, Blanchin M G. Ultrastructural analysis of healthy synovial fluids in three mammalian species. Microsc Microanal 20(3): 903–911 (2014)

[153]

Dėdinaitė A, Wieland D C F, Bełdowski P, Claesson P M. Biolubrication synergy: Hyaluronan–phospholipid interactions at interfaces. Adv Colloid Interfac 274: 102050 (2019)

[154]

Lin W F, Mashiah R, Seror J, Kadar A, Dolkart O, Pritsch T, Goldberg R, Klein J. Lipid-hyaluronan synergy strongly reduces intrasynovial tissue boundary friction. Acta Biomater 83: 314–321 (2019)

[155]

Ma L R, Gaisinskaya-Kipnis A, Kampf N, Klein J. Origins of hydration lubrication. Nat Commun 6: 6060 (2015)

[156]

Chen M, Briscoe W H, Armes S P, Klein J. Lubrication at physiological pressures by polyzwitterionic brushes. Science 323(5922): 1698–1701 (2009)

[157]

Cao Y F, Kampf N, Lin W F, Klein J. Normal and shear forces between boundary sphingomyelin layers under aqueous conditions. Soft Matter 16(16): 3973–3980 (2020)

[158]

Forster H, Fisher J. The influence of loading time and lubricant on the friction of articular cartilage. P I Mech Eng H 210(2): 109–119 (1996).

[159]
Smith D W, Gardiner B S, Zhang L H, Grodzinsky A J. Articular Cartilage Dynamics. Singapore: Springer, 2018: 469–560
[160]

Yuan H, Mears L L E, Wang Y F, Su R X, Qi W, He Z M, Valtiner M. Lubricants for osteoarthritis treatment: From natural to bioinspired and alternative strategies. Adv Colloid Interface Sci 311: 102814 (2023)

[161]

Donald Watson M D, Professor Roseman M D. Hyaluronic acid in synovial fluid. I. Molecular parameters of hyaluronic acid in normal and arthritic human fluids. Arthritis Rheum 10(4): 357–376 (1967)

[162]

Dahl L B, Dahl I M, Engström-Laurent A, Granath K. Concentration and molecular weight of sodium hyaluronate in synovial fluid from patients with rheumatoid arthritis and other arthropathies. Ann Rheum Dis 44(12): 817–822 (1985)

[163]
Oka T, Hidema R, Suzuki H, Komoda Y. Effects of contraction ratio on elastic instability of hyaluronate solution in a micro channel. In: Proceedings of the ASME/JSME/KSME Joint Fluids Engineering Conference, Seoul, Republic of Korea, 2015.
[164]

Watterson JR, Esdaile JM. Viscosupplementation: Therapeutic mechanisms and clinical potential in osteoarthritis of the knee. J Am Acad Orthop Sur 8(5): 277–284 (2000)

[165]

Decker B, McGuckin W F, McKenzie B F, Slocumb C H. Concentration of hyaluronic acid in synovial fluid. Clin Chem 5(5): 465–469 (1959)

[166]

Ludwig T E, McAllister J R, Lun V, Wiley J P, Schmidt T A. Diminished cartilage-lubricating ability of human osteoarthritic synovial fluid deficient in proteoglycan 4: Restoration through proteoglycan 4 supplementation. Arthritis Rheum 64(12): 3963–3971 (2012)

[167]

Elsaid K A, Fleming B C, Oksendahl H L, Machan J T, Fadale P D, Hulstyn M J, Shalvoy R, Jay G D. Decreased lubricin concentrations and markers of joint inflammation in the synovial fluid of patients with anterior cruciate ligament injury. Arthritis Rheum 58(6): 1707–1715 (2008)

[168]

Prete P E, Gurakar-Osborne A, Kashyap M L. Synovial fluid lipoproteins: Review of current concepts and new directions. Semin Arthritis Rheum 23(2): 79–89 (1993)

[169]

Mazzucco D, Scott R, Spector M. Composition of joint fluid in patients undergoing total knee replacement and revision arthroplasty: Correlation with flow properties. Biomaterials 25(18): 4433–4445 (2004)

[170]

Banquy X, Lee D W, Das S, Hogan J, Israelachvili J N. Shear-induced aggregation of mammalian synovial fluid components under boundary lubrication conditions. Adv Funct Mater 24(21): 3152–3161 (2014)

[171]

Balazs E A. The role of hyaluronan in the structure and function of the biomatrix of connective tissues. Struct Chem 20(2): 233–243 (2009)

[172]

Mansfield J, Yu J, Attenburrow D, Moger J, Tirlapur U, Urban J, Cui Z F, Winlove P. The elastin network: Its relationship with collagen and cells in articular cartilage as visualized by multiphoton microscopy. J Anat 215(6): 682–691 (2009)

[173]

Majd S E, Kuijer R, Köwitsch A, Groth T, Schmidt T A, Sharma P K. Both hyaluronan and collagen type II keep proteoglycan 4 (lubricin) at the cartilage surface in a condition that provides low friction during boundary lubrication. Langmuir 30(48): 14566–14572 (2014)

[174]

Andresen Eguiluz R C, Cook S G, Brown C N, Wu F, Pacifici N J, Bonassar L J, Gourdon D. Fibronectin mediates enhanced wear protection of lubricin during shear. Biomacromolecules 16(9): 2884–2894 (2015)

[175]

Seror J, Zhu L Y, Goldberg R, Day A J, Klein J. Supramolecular synergy in the boundary lubrication of synovial joints. Nat Commun 6: 6497 (2015)

[176]

Raj A, Wang M, Zander T, Wieland DCF, Liu XY, An J X, Garamus VM, Willumeit-Römer R, Fielden M, Claesson PM, et al. Lubrication synergy: Mixture of hyaluronan and dipalmitoylphosphatidylcholine (DPPC) vesicles. J Colloid Interface Sci 488: 225–233 (2017)

[177]

Pasquali-Ronchetti I, Quaglino D, Mori G, Bacchelli B, Ghosh P. Hyaluronan–phospholipid interactions. J Struct Biol 120(1): 1–10 (1997)

[178]

Ghosh P, Hutadilok N, Adam N, Lentini A. Interactions of hyaluronan (hyaluronic acid) with phospholipids as determined by gel permeation chromatography, multi-angle laser-light-scattering photometry and 1H-NMR spectroscopy. Int J Biol Macromol 16(5): 237–244 (1994)

[179]

Nitzan D W, Nitzan U, Dan P, Yedgar S. The role of hyaluronic acid in protecting surface-active phospholipids from lysis by exogenous phospholipase a(2). Rheumatology 40(3): 336–340 (2001)

[180]

Ayhan E, Kesmezacar H, Akgun I. Intraarticular injections (corticosteroid, hyaluronic acid, platelet rich plasma) for the knee osteoarthritis. World J Orthop 5(3): 351–361 (2014)

[181]

Band P A, Heeter J, Wisniewski H G, Liublinska V, Pattanayak C W, Karia R J, Stabler T, Balazs E A, Kraus V B. Hyaluronan molecular weight distribution is associated with the risk of knee osteoarthritis progression. Osteoarthr Cartil 23(1): 70–76 (2015)

[182]

Liu Z, Lin W F, Fan Y X, Kampf N, Wang Y L, Klein J. Effects of hyaluronan molecular weight on the lubrication of cartilage-emulating boundary layers. Biomacromolecules 21(10): 4345–4354 (2020)

[183]

Lin W F, Liu Z, Kampf N, Klein J. The role of hyaluronic acid in cartilage boundary lubrication. Cells 9(7): 1606 (2020)

[184]

Moro-Oka T, Miura H, Mawatari T, Kawano T, Nakanishi Y, Higaki H, Iwamoto Y. Mixture of hyaluronic acid and phospholipid prevents adhesion formation on the injured flexor tendon in rabbits. J Orthop Res 18(5): 835–840 (2000)

[185]

Forsey R W, Fisher J, Thompson J, Stone M H, Bell C, Ingham E. The effect of hyaluronic acid and phospholipid based lubricants on friction within a human cartilage damage model. Biomaterials 27(26): 4581–4590 (2006)

[186]

Park J B, Duong C T, Chang H G, Sharma A R, Thompson M S, Park S, Kwak B C, Kim T Y, Lee S S, Park S. Role of hyaluronic acid and phospholipid in the lubrication of a cobalt-chromium head for total hip arthroplasty. Biointerphases 9(3): 031007 (2014)

[187]

Xie R J, Yao H, Mao A S, Zhu Y, Qi D W, Jia Y G, Gao M, Chen Y H, Wang L, Wang D A, et al. Biomimetic cartilage-lubricating polymers regenerate cartilage in rats with early osteoarthritis. Nat Biomed Eng 5(10): 1189–1201 (2021)

[188]

Ishihara K. Biomimetic materials based on zwitterionic polymers toward human-friendly medical devices. Sci Technol Adv Mater 23(1): 498–524 (2022)

[189]

Ishihara K, Ueda T, Nakabayashi N. Preparation of phospholipid polymers and their properties as polymer hydrogel membranes. Polym J 22(5): 355–360 (1990)

[190]

Ueda T, Oshida H, Kurita K, Ishihara K, Nakabayashi N. Preparation of 2-methacryloyloxyethyl phosphorylcholine copolymers with alkyl methacrylates and their blood compatibility. Polym J 24(11): 1259–1269 (1992)

[191]
Monge S, David G. Phosphorus-based Polymers: From Synthesis to Applications. London (UK): Royal Society of Chemistry, 2014.
[192]

Yaminsky V V, Vogler E A. Hydrophobic hydration. Curr Opin Colloid In 6(4): 342–349 (2001)

[193]

Kitano H. Characterization of polymer materials based on structure analyses of vicinal water. Polym J 48(1): 15–24 (2016)

[194]

Ishihara K, Mu M W, Konno T, Inoue Y, Fukazawa K. The unique hydration state of poly(2-methacryloyloxyethyl phosphorylcholine). J Biomater Sci Polym Ed 28(10-12): 884–899 (2017)

[195]

Kyomoto M, Moro T, Yamane S, Watanabe K, Hashimoto M, Takatori Y, Tanaka S, Ishihara K. Poly(2-methacryloyloxyethyl phosphorylcholine) grafting and vitamin E blending for high wear resistance and oxidative stability of orthopedic bearings. Biomaterials 35(25): 6677–6686 (2014)

[196]

Kyomoto M, Moro T, Iwasaki Y, Miyaji F, Kawaguchi H, Takatori Y, Nakamura K, Ishihara K. Superlubricious surface mimicking articular cartilage by grafting poly(2-methacryloyloxyethyl phosphorylcholine) on orthopaedic metal bearings. J Biomed Mater Res A 91A(3): 730–741 (2009)

[197]

Moro T, Kyomoto M, Ishihara K, Saiga K, Hashimoto M, Tanaka S, Ito H, Tanaka T, Oshima H, Kawaguchi H, et al. Grafting of poly(2-methacryloyloxyethyl phosphorylcholine) on polyethylene liner in artificial hip joints reduces production of wear particles. J Mech Behav Biomed 31: 100–106 (2014)

[198]

Han Y, Yang J L, Zhao W W, Wang H M, Sun Y L, Chen Y J, Luo J, Deng L F, Xu X Y, Cui W G, et al. Biomimetic injectable hydrogel microspheres with enhanced lubrication and controllable drug release for the treatment of osteoarthritis. Bioact Mater 6(10): 3596–3607 (2021)

[199]

Jiao Y Y, Liu S Z, Sun Y L, Yue W, Zhang H Y. Bioinspired surface functionalization of nanodiamonds for enhanced lubrication. Langmuir 34(41): 12436–12444 (2018)

[200]

Zhao W W, Wang H, Han Y, Wang H M, Sun Y L, Zhang H Y. Dopamine/phosphorylcholine copolymer as an efficient joint lubricant and ROS scavenger for the treatment of osteoarthritis. ACS Appl Mater Inter 12(46): 51236–51248 (2020)

[201]

Suo D, Rao J D, Wang H M, Zhang Z H, Leung P H, Zhang H Y, Tao X M, Zhao X. A universal biocompatible coating for enhanced lubrication and bacterial inhibition. Biomater Sci 10(13): 3493–3502 (2022)

[202]

Xiao F, Tang J X, Huang X, Kang W J, Zhou G Y. A robust, low swelling, and lipid-lubricated hydrogel for bionic articular cartilage substitute. J Colloid Interface Sci 629: 467–477 (2023)

[203]

El Afify M S, Zein El Dein E A, Elsadek B E M, Mohamed M A, El-Gizawy S A. Development and optimization of a novel drug free nanolipid vesicular system for treatment of osteoarthritis. Drug Dev Ind Pharm 44(5): 767–777 (2018)

[204]

Lin W F, Kluzek M, Iuster N, Shimoni E, Kampf N, Goldberg R, Klein J. Cartilage-inspired, lipid-based boundary-lubricated hydrogels. Science 370(6514): 335–338 (2020)

[205]

Lei Y T, Wang X K, Liao J Y, Shen J L, Li Y L, Cai Z W, Hu N, Luo X J, Cui W G, Huang W. Shear-responsive boundary-lubricated hydrogels attenuate osteoarthritis. Bioact Mater 16: 472–484 (2022)

[206]

Lei Y T, Wang Y P, Shen J L, Cai Z W, Zhao C, Chen H, Luo X J, Hu N, Cui W G, Huang W. Injectable hydrogel microspheres with self-renewable hydration layers alleviate osteoarthritis. Sci Adv 8(5): eabl6449 (2022)

[207]

Zhong Y Q, Zhou Y Y, Ding R Y, Zou L X, Zhang H Y, Wei X H, He D M. Intra-articular treatment of temporomandibular joint osteoarthritis by injecting actively-loaded meloxicam liposomes with dual-functions of anti-inflammation and lubrication. Mater Today Bio 19: 100573 (2023)

[208]

Yang L, Sun L Y, Zhang H, Bian F K, Zhao Y J. Ice-inspired lubricated drug delivery particles from microfluidic electrospray for osteoarthritis treatment. ACS Nano 15(12): 20600–20606 (2021)

[209]

Bennell K L, Hunter D J, Paterson K L. Platelet-rich plasma for the management of hip and knee osteoarthritis. Curr Rheumatol Rep 19(5): 24 (2017)

[210]

Jia Z F, Liu Q S, Liang Y J, Li X F, Xu X, Ouyang K, Xiong J Y, Wang D P, Duan L. Repair of articular cartilage defects with intra-articular injection of autologous rabbit synovial fluid-derived mesenchymal stem cells. J Transl Med 16(1): 123 (2018)

[211]

Wang X J, Wang G Q, Liu C L, Cai D Z. Effectiveness of intra-articular ozone injections on outcomes of post-arthroscopic surgery for knee osteoarthritis. Exp Ther Med 15(6): 5323–5329 (2018)

[212]

Geng Y Y, Chen J F, Alahdal M, Chang C F, Duan L, Zhu W M, Mou L S, Xiong J Y, Wang M Y, Wang D P. Intra-articular injection of hUC-MSCs expressing miR-140-5p induces cartilage self-repairing in the rat osteoarthritis. J Bone Miner Metab 38(3): 277–288 (2020)

[213]

Liang Y J, Xu X, Xu L M, Prasadam I, Duan L, Xiao Y, Xia J. Non-surgical osteoarthritis therapy, intra-articular drug delivery towards clinical applications. J Drug Target 29(6): 609–616 (2021)

[214]

Lin P Y, Tsai S Y, Cheng C Y, Liu J H, Chou P, Hsu W M. Prevalence of dry eye among an elderly Chinese population in Taiwan: The Shihpai Eye Study. Ophthalmology 110(6): 1096–1101 (2003)

[215]

Reddy P, Grad O, Rajagopalan K. The economic burden of dry eye: A conceptual framework and preliminary assessment. Cornea 23(8): 751–761 (2004).

[216]

Mertzanis P, Abetz L, Rajagopalan K, Espindle D, Chalmers R, Snyder C, Caffery B, Edrington T, Simpson T, Daniel Nelson J, et al. The relative burden of dry eye in patients’ lives: Comparisons to a U.S. normative sample. Invest Ophthalmol Vis Sci 46(1): 46–50 (2005)

[217]

Smith J A, Albeitz J, Begley C, Caffery B, Nichols K, Schaumberg D, Schein O. The epidemiology of dry eye disease: Report of the epidemiology subcommittee of the international dry eye WorkShop. Ocul Surf 5(2): 93–107 (2007)

[218]

Yu J H, Asche C V, Fairchild C J. The economic burden of dry eye disease in the United States: A decision tree analysis. Cornea 30(4): 379–387 (2011)

[219]

Craig J P, Tomlinson A. Importance of the lipid layer in human tear film stability and evaporation. Optom Vis Sci 74(1): 8–13 (1997)

[220]

Lemp M A, Baudouin C, Baum J, Dogru M, Foulks G N, Kinoshita S, Laibson P, McCulley J, Murube J, Pflugfelder S C, Rolando M, Toda I. The definition and classification of dry eye disease: Report of the definition and classification subcommittee of the international dry eye workshop (2007). Ocul Surf 5(2): 75–92 (2007)

[221]

Knop E, Knop N, Millar T, Obata H, Sullivan D A. The international workshop on meibomian gland dysfunction: Report of the subcommittee on anatomy, physiology, and pathophysiology of the meibomian gland. Invest Ophthalmol Vis Sci 52(4): 1938–1978 (2011)

[222]

Clayton J A. Dry eye. N Engl J Med 378(23): 2212–2223 (2018)

[223]

Murube J, Murube A, Zhuo C. Classification of artificial tears. II: Additives and commercial formulas. Adv Exp Med Biol 438: 705–715 (1998)

[224]

Murube J, Paterson A, Murube E. Classification of artificial tears. I: Composition and properties. Adv Exp Med Biol 438: 693–704 (1998)

[225]

Behrens A, Doyle J J, Stern L, Chuck R S, McDonnell P J, Azar D T, Dua H S, Hom M, Karpecki P M, Laibson P R, et al. Dysfunctional tear syndrome: A Delphi approach to treatment recommendations. Cornea 25(8): 900–907 (2006)

[226]

Foulks G, Lemp M, Jester J, Sutphin J, Novack G. Report of the international dry eye workshop. The Ocular Surface 5: 65–203 (2007)

[227]

Rieger G. Lipid-containing eye drops: A step closer to natural tears. Ophthalmologica 201(4): 206–212 (1990)

[228]

Ham B M, Jacob J T, Keese M M, Cole R B. Identification, quantification and comparison of major non-polar lipids in normal and dry eye tear lipidomes by electrospray tandem mass spectrometry. J Mass Spectrom 39(11): 1321–1336 (2004)

[229]

Gipson I K. The ocular surface: The challenge to enable and protect vision: The friedenwald lecture. Invest Ophthalmol Vis Sci 48(10): 4390–4391,4398 (2007)

[230]

Spurr-Michaud S, Argüeso P, Gipson I. Assay of mucins in human tear fluid. Exp Eye Res 84(5): 939–950 (2007)

[231]

Butovich I A. The meibomian puzzle: Combining pieces together. Prog Retin Eye Res 28(6): 483–498 (2009)

[232]

Green-Church K B, Butovich I, Willcox M, Borchman D, Paulsen F, Barabino S, Glasgow B J. The international workshop on meibomian gland dysfunction: Report of the subcommittee on tear film lipids and lipid-protein interactions in health and disease. Invest Ophthalmol Vis Sci 52(4): 1979–1993 (2011)

[233]

Rantamäki A H, Seppänen-Laakso T, Oresic M, Jauhiainen M, Holopainen J M. Human tear fluid lipidome: From composition to function. PLoS One 6(5): e19553 (2011)

[234]

Saville J T, Zhao Z J, Willcox M D P, Ariyavidana M A, Blanksby S J, Mitchell T W. Identification of phospholipids in human meibum by nano-electrospray ionisation tandem mass spectrometry. Exp Eye Res 92(3): 238–240 (2011)

[235]

Vicario-de-la-Torre M, Benítez-del-Castillo JM, Vico E, Guzmán M, de-Las-Heras B, Herrero-Vanrell R, Molina-Martínez IT. Design and characterization of an ocular topical liposomal preparation to replenish the lipids of the tear film. Invest Ophthalmol Vis Sci 55(12): 7839–7847 (2014)

[236]

Lee S, Dausch S, Maierhofer G, Dausch D. A new therapy concept for the treatment of dry eye: The usefulness of phospholipid liposomes. Klin Monbl Augenheilkd 221(10): 825–836 (2004)

[237]

Dausch D, Lee S, Dausch S, Kim J C, Schwert G, Michelson W. Comparative study of treatment of the dry eye syndrome due to disturbances of the tear film lipid layer with lipid-containing tear substitutes. Klin Monbl Augenheilkd 223(12): 974–983 (2006)

[238]

Craig J P, Purslow C, Murphy P J, Wolffsohn J S. Effect of a liposomal spray on the pre-ocular tear film. Contact Lens Anterio 33(2): 83–87 (2010)

[239]

Khaireddin R, Schmidt K G. Comparative investigation of treatments for evaporative dry eye. Klin Monbl Augenheilkd 227(2): 128–134 (2010)

[240]

Pult H, Gill F, Riede-Pult B H. Effect of three different liposomal eye sprays on ocular comfort and tear film. Cont Lens Anterio 35(5): 203–207 (2012)

[241]

Wang M T, Ganesalingam K, Loh C S, Alberquerque T, Al-Kanani S, Misra S L, Craig J P. Compatibility of phospholipid liposomal spray with silicone hydrogel contact lens wear. Cont Lens Anterio 40(1): 53–58 (2017)

[242]

Nosch D S, Joos R E, Job M. Prospective randomized study to evaluate the efficacy and tolerability of Ectoin® containing Eye Spray (EES09) and comparison to the liposomal Eye Spray Tears Again® (TA) in the treatment of dry eye disease. Contact Lens Anterio 44(3): 101318 (2021)

[243]

Pult H, Khatum F S, Trave-Huarte S, Wolffsohn J S. Effect of eye spray phospholipid concentration on the tear film and ocular comfort. Eye Contact Lens 47(8): 445–448 (2021)

[244]

Garrigue J S, Amrane M, Faure M O, Holopainen J M, Tong L. Relevance of lipid-based products in the management of dry eye disease. J Ocul Pharmacol Ther 33(9): 647–661 (2017)

[245]

Chávez-Hurtado P, Pesqueda-Pinedo L, Ceballos-Delgadillo H A, Liñán-Segura A, Figueroa-Ponce H, Quintana-Hau J D. Physicochemical characterization of a DMPC-based nanoemulsion for dry eye and compatibility test with soft contact lenses in vitro. Contact Lens Anterio 45(2): 101428 (2022)

[246]

Baiza-Durán L M, Muñoz-Villegas P, Sánchez-Ríos A, Olvera-Montaño O. Efficacy and safety of an ophthalmic DMPC-based nanoemulsion in patients with dry eye disease: A phase I/II randomized clinical trial. J Ophthalmol 2023: 1431473 (2023)

[247]

Scifo C, Barabino S, De Pasquale G, Blanco A R, Mazzone M G, Rolando M. Effects of a new lipid tear substitute in a mouse model of dry eye. Cornea 29(7): 802–806 (2010)

[248]

Theobald P S, Dowson D, Khan I M, Jones M D. Tribological characteristics of healthy tendon. J Biomech 45(11): 1972–1978 (2012)

[249]

Amadio P C. Gliding resistance and modifications of gliding surface of tendon: Clinical perspectives. Hand Clin 29(2): 159–166 (2013)

[250]

Sirovy M, Krupova M, Hyspler R, Ticha A, Kolackova M, Andrys C, Radochova V, Astapenko D, Odlozilová S, Kotek J, et al. Lipid emulsions prevent postoperative abdominal adhesions. Asian J Surg 46(1): 465–471 (2023)

[251]

Cheng L, Wang Y, Sun G M, Wen S Z, Deng L F, Zhang H Y, Cui W G. Hydration-enhanced lubricating electrospun nanofibrous membranes prevent tissue adhesion. Research 2020: 4907185 (2020)

[252]

Jayakumar K, Lielpetere A, Domingo-Lopez D A, Levey R E, Duffy G P, Schuhmann W, Leech D. Tethering zwitterionic polymer coatings to mediated glucose biosensor enzyme electrodes can decrease sensor foreign body response yet retain sensor sensitivity to glucose. Biosens Bioelectron 219: 114815 (2023)

[253]

Wu C Z, Kim M J, Mangal U, Seo J Y, Kim J Y, Kim J, Park J Y, Kwon J S, Choi S H. Effect of bacterial resistant zwitterionic derivative incorporation on the physical properties of resin-modified glass ionomer luting cement. Sci Rep 13(1): 3589 (2023)

[254]

Asha A B, Ounkaew A, Peng Y Y, Gholipour M R, Ishihara K, Liu Y, Narain R. Bioinspired antifouling and antibacterial polymer coating with intrinsic self-healing property. Biomater Sci 11(1): 128–139 (2022)

[255]

Wang Y, Zhai W J, Zhang H Y, Cheng S J, Li J H. Injectable polyzwitterionic lubricant for complete prevention of cardiac adhesion. Macromol Biosci 23(4): 2200554 (2023)

[256]

Aguiar A O, Yi H, Asatekin A. Fouling-resistant membranes with zwitterion-containing ultra-thin hydrogel selective layers. J Membr Sci 669: 121253 (2023)

Friction
Cite this article:
Xue Y, Niu X, Zhou J, et al. Recent development in understanding the role of lipids in cartilage lubrication. Friction, 2025, https://doi.org/10.26599/FRICT.2025.9441014
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return