Home Friction Article
PDF (4.3 MB)
Collect
Submit Manuscript
Research Article | Open Access

Mechanisms of MoS2 dry film lubricant behavior at low temperatures

Abrar Faiyad1Fakhrul H. Bhuiyan1Azhar Vellore2Duval A. Johnson2Andrew Kennett2Ashlie Martini1()
Department of Mechanical Engineering, University of California Merced, Merced CA 95343, USA
NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena CA 91109, USA
Show Author Information

Graphical Abstract

View original image Download original image

Abstract

MoS2 dry film lubricants (DFLs) are widely used in space applications, but their performance can deteriorate at cold temperatures. In this study, reactive molecular dynamics simulations were used to test the hypothesis that this deterioration is attributable to the effect of temperature on the size of MoS2 wear debris generated during sliding. First, tribometer measurements of wear life confirmed the poor tribological performance of MoS2-based DFLs below room temperature. Then, simulations of the temperature-dependent fracture strength of MoS2 provided a mechanism by which smaller flake-like debris may be formed by DFLs at low temperatures. Simulations of MoS2 flakes of varying sizes showed that smaller flakes were more susceptible to water adsorption. However, even in the absence of water, simulations demonstrated that smaller flakes were less lubricious. Analysis of the flake orientation with respect to the shear direction revealed that smaller flakes were less aligned with shear during sliding. This misorientation along with the accelerated adsorption of water by the smaller flakes may contribute to deterioration of the tribological performance at cold temperatures.

Electronic Supplementary Material

Download File(s)
F1020-ESM.pdf (2.7 MB)

References

[1]

Vazirisereshk M R, Martini A, Strubbe D A, Baykara M Z. Solid lubrication with MoS2: A review. Lubricants 7(7): 57 (2019)

[2]
Fusaro R L, Khonsari M M. Liquid lubrication for space applications. In: Proceedings of the Flight-vehicle Materials, Structures, and Dynamics—Assessment and Future Directions, 1992.
[3]
Conley P, Packard D, Purdy W. Space Vehicle Mechanisms: Elements of Successful Design. New York (USA): John Wiley & Sons, 1998.
[4]

Donnet C, Erdemir A. Historical developments and new trends in tribological and solid lubricant coatings. Surf Coat Tech 180: 76–84 (2004)

[5]

Song I, Park C, Choi H C. Synthesis and properties of molybdenum disulphide: From bulk to atomic layers. RSC Adv 5(10): 7495–7514 (2015)

[6]

Donnet C, Martin J M, Le Mogne T, Belin M. Super-low friction of MoS2 coatings in various environments. Tribol Int 29(2): 123–128 (1996)

[7]
Killeffer D H, Linz A. Molybdenum compounds, their chemistry and technology. Soil Sci 75 (1): 83 (1952)
[8]
William K. Antifriction and antiabrasive metal. U.S. Patent 1 714 564, May 1929.
[9]
Lansdown A R. Molybdenum Disulphide Lubrication. Oxford (UK): Elsevier, 1999.
[10]

Fleischauer P D, Bauer R. Chemical and structural effects on the lubrication properties of sputtered MoS2 films. Tribol Trans 31(2): 239–250 (1988)

[11]
Martin J M. Superlubricity of molybdenum disulfide. In: Superlubricity. Erdemir A, Martin J M, Eds. the Netherlands (Amsterdam): Elsevier Science B. V., 2007: 207–225.
[12]

Martin J M, Pascal H, Donnet C, Le Mogne T, Loubet J L, Epicier T. Superlubricity of MoS2: Crystal orientation mechanisms. Surf Coat Tech 68: 427–432 (1994)

[13]

Serles P, Sun H, Colas G, Tam J, Nicholson E, Wang G R, Howe J, Saulot A, Singh C V, Filleter T. Structure-dependent wear and shear mechanics of nanostructured MoS2 coatings. Adv Mater Interfaces 7(14): 1901870 (2020)

[14]

Vellore A, Garcia S R, Walters N, Johnson D A, Kennett A, Heverly M, Martini A. Ni-doped MoS2 dry film lubricant life. Adv Mater Interfaces 7(22): 2001109 (2020)

[15]

Curry J F, Hinkle A R, Babuska T F, Wilson M A, Dugger M T, Krick B A, Argibay N, Chandross M. Atomistic origins of temperature-dependent shear strength in 2D materials. ACS Appl Nano Mater 1(10): 5401–5407 (2018)

[16]

Hoffman E E, Marks L D. Soft interface fracture transfer in nanoscale MoS2. Tribol Lett 64(1): 16 (2016)

[17]

Scharf T W, Kotula P G, Prasad S V. Friction and wear mechanisms in MoS2/Sb2O3/Au nanocomposite coatings. Acta Mater 58(12): 4100–4109 (2010)

[18]

Colbert R S, Sawyer W G. Thermal dependence of the wear of molybdenum disulphide coatings. Wear 269(11–12): 719–723 (2010)

[19]

Jiang Y C, Liu Z H, Zhou H M, Sharma A, Deng J, Ke C H. Physical adsorption and oxidation of ultra-thin MoS2 crystals: Insights into surface engineering for 2D electronics and beyond. Nanotechnology 34(40): 405701 (2023)

[20]

Peelaers H, Van de Walle C G. First-principles study of van der waals interactions in MoS2 and MoO3. J Phys: Condens Matter 26(30): 305502 (2014)

[21]

Bobbitt N S, Curry J F, Babuska T F, Chandross M. Water adsorption on MoS2 under realistic atmosphere conditions and impacts on tribology. RSC Adv 14(7): 4717–4729 (2024)

[22]

Curry J F, Wilson M A, Luftman H S, Strandwitz N C, Argibay N, Chandross M, Sidebottom M A, Krick B A. Impact of microstructure on MoS2 oxidation and friction. ACS Appl Mater Inter 9(33): 28019–28026 (2017)

[23]

Khare H S, Burris D L. The effects of environmental water and oxygen on the temperature-dependent friction of sputtered molybdenum disulfide. Tribol Lett 52(3): 485–493 (2013)

[24]

Curry J F, Ohta T, DelRio F W, Mantos P, R Jones M, F Babuska T, Bobbitt N S, Argibay N, A Krick B, Dugger M T, et al. Structurally driven environmental degradation of friction in MoS2 films. Tribol Lett 69(3): 96 (2021)

[25]

Tedstone A A, Lewis D J, O’Brien P. Synthesis, properties, and applications of transition metal-doped layered transition metal dichalcogenides. Chem Mater 28(7): 1965–1974 (2016)

[26]
Lince J R. Doped MoS2 coatings and their tribology. In: Encyclopedia of Tribology. Wang Q J, Chung Y W, Eds. Berlin (Germany): Springer, 2013: 782–785.
[27]

Zabinski J S, Donley M S, Walck S D, Schneider T R, McDevitt N T. The effects of dopants on the chemistry and tribology of sputter-deposited MoS2 films. Tribol Trans 38(4): 894–904 (1995)

[28]

Renevier N M, Fox V C, Teer D G, Hampshire J. Coating characteristics and tribological properties of sputter-deposited MoS2/metal composite coatings deposited by closed field unbalanced magnetron sputter ion plating. Surf Coat Tech 127(1): 24–37 (2000)

[29]

Teer D G. New solid lubricant coatings. Wear 251(1–12): 1068–1074 (2001)

[30]

Ye M, Zhang G J, Ba Y W, Wang T, Wang X, Liu Z N. Microstructure and tribological properties of MoS2+Zr composite coatings in high humidity environment. Appl Surf Sci 367: 140–146 (2016)

[31]

Stoyanov P, Chromik R R, Goldbaum D, Lince J R, Zhang X L. Microtribological performance of Au–MoS2 and Ti–MoS2 coatings with varying contact pressure. Tribol Lett 40(1): 199–211 (2010)

[32]

Li H, Li X, Zhang G G, Wang L P, Wu G Z. Exploring the tribophysics and tribochemistry of MoS2 by sliding MoS2/Ti composite coating under different humidity. Tribol Lett 65(2): 38 (2017)

[33]

Nainaparampil J J, Phani A R, Krzanowski J E, Zabinski J S. Pulsed laser-ablated MoS2–Al films: Friction and wear in humid conditions. Surf Coat Tech 187(2–3): 326–335 (2004)

[34]

Hamilton M A, Alvarez L A, Mauntler N A, Argibay N, Colbert R, Burris D L, Muratore C, Voevodin A A, Perry S S, Sawyer W G. A possible link between macroscopic wear and temperature dependent friction behaviors of MoS2 coatings. Tribol Lett 32(2): 91–98 (2008)

[35]

Gradt T, Schneider T. Tribological performance of MoS2 coatings in various environments. Lubricants 4(3): 32 (2016)

[36]

Zhao X Y, Phillpot S R, Sawyer W G, Sinnott S B, Perry S S. Transition from thermal to athermal friction under cryogenic conditions. Phys Rev Lett 102(18): 186102 (2009)

[37]

Dunckle C G, Aggleton M, Glassman J, Taborek P. Friction of molybdenum disulfide–titanium films under cryogenic vacuum conditions. Tribol Int 44(12): 1819–1826 (2011)

[38]

Curry J F, Babuska T F, Brumbach M T, Argibay N. Temperature-dependent friction and wear of MoS2/Sb2O3/Au nanocomposites. Tribol Lett 64(1): 18 (2016)

[39]

Khare H S, Burris D L. Surface and subsurface contributions of oxidation and moisture to room temperature friction of molybdenum disulfide. Tribol Lett 53(1): 329–336 (2014)

[40]

Kumar H, Er D Q, Dong L, Li J W, Shenoy V B. Elastic deformations in 2D van der waals heterostructures and their impact on optoelectronic properties: Predictions from a multiscale computational approach. Sci Rep 5: 10872 (2015)

[41]

Ostadhossein A, Rahnamoun A, Wang Y X, Zhao P, Zhang S L, Crespi V H, van Duin A C T. ReaxFF reactive force-field study of molybdenum disulfide (MoS2). J Phys Chem Lett 8(3): 631–640 (2017)

[42]

Mohammadtabar K, Guerrero E, Romero Garcia S, Shin Y K, van Duin A C T, Strubbe D A, Martini A. Development and application of a ReaxFF reactive force field for Ni-doped MoS2. J Phys Chem C 127(25): 12171–12183 (2023)

[43]

Nayir N, Bartolucci S, Wang T, Chen C, Maurer J, Redwing J M, van Duin A C T. Modulation effect of substrate interactions on nucleation and growth of MoS2 on silica. J Phys Chem C 127(19): 9039–9048 (2023)

[44]

Serpini E, Rota A, Valeri S, Ukraintsev E, Rezek B, Polcar T, Nicolini P. Nanoscale frictional properties of ordered and disordered MoS2. Tribol Int 136: 67–74 (2019)

[45]

Onodera T, Morita Y, Suzuki A, Koyama M, Tsuboi H, Hatakeyama N, Endou A, Takaba H, Kubo M, Dassenoy F, et al. A computational chemistry study on friction of h-MoS2. Part I. mechanism of single sheet lubrication. J Phys Chem B 113(52): 16526–16536 (2009)

[46]

Onodera T, Morita Y, Nagumo R, Miura R, Suzuki A, Tsuboi H, Hatakeyama N, Endou A, Takaba H, Dassenoy F, et al. A computational chemistry study on friction of h-MoS2. part II. Friction anisotropy. J Phys Chem B 114(48): 15832–15838 (2010)

[47]

Chen R M, Jusufi A, Schilowitz A, Martini A. Formation of MoS2 from elemental Mo and S using reactive molecular dynamics simulations. J Vac Sci Technol A 38(2): 022201 (2020)

[48]

Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117(1): 1–19 (1995)

[49]

Smidstrup S, Markussen T, Vancraeyveld P, Wellendorff J, Schneider J, Gunst T, Verstichel B, Stradi D, Khomyakov P A, Vej-Hansen U G, et al. QuantumATK: An integrated platform of electronic and atomic-scale modelling tools. J Phys: Condens Matter 32(1): 015901 (2020)

[50]

Stukowski A. Visualization and analysis of atomistic simulation data with OVITO—the Open Visualization Tool. Model Simul Mater Sc 18(1): 015012 (2010)

[51]

Senftle T P, Hong S, Islam M M, Kylasa S B, Zheng Y X, Shin Y K, Junkermeier C, Engel-Herbert R, Janik M J, Aktulga H M, et al. The ReaxFF reactive force-field: Development, applications and future directions. npj Comput Mater 2: 15011 (2016)

[52]

Hong S, Krishnamoorthy A, Rajak P, Tiwari S, Misawa M, Shimojo F, Kalia R K, Nakano A, Vashishta P. Computational synthesis of MoS2 layers by reactive molecular dynamics simulations: Initial sulfidation of MoO3 surfaces. Nano Lett 17(8): 4866–4872 (2017)

[53]
Oviroh P O, Han J T, Jen T C. Simulation of MoS2 nanolayer membrane performance for water desalination using ReaxFF. In: Proceedings of the ASME International Mechanical Engineering Congress and Exposition, Salt Lake City, USA, 2019: 11–14.
[54]

Hestenes M R, Stiefel E. Methods of conjugate gradients for solving linear systems. J Res Natl Bur Stand 49(6): 409 (1952)

[55]

Barsom J M. Fracture of tempered glass. J Am Ceram Soc 51(2): 75–78 (1968)

[56]

Lankford J, Blanchard C R. Fragmentation of brittle materials at high rates of loading. J Mater Sci 26(11): 3067–3072 (1991)

[57]

Zhou F H, Molinari J F, Ramesh K T. Effects of material properties on the fragmentation of brittle materials. Int J Fract 139(2): 169–196 (2006)

[58]
Jiang J W, Park H S. Mechanical properties of MoS2/graphene heterostructures. Appl Phys Lett 105 (3): 033108 (2014)
[59]

Xiong S, Cao G X. Molecular dynamics simulations of mechanical properties of monolayer MoS2. Nanotechnology 26(18): 185705 (2015)

[60]

Faiyad A, Munshi M A M, Islam M M, Saha S. Deformation mechanisms of Inconel-718 at the nanoscale by molecular dynamics. Phys Chem Chem Phys 23(17): 10650–10661 (2021)

[61]
Ying P H, Zhang J, Zhong Z. Mechanical properties of monolayer ternary transitional metal dichalogenides MoS2 xTe2(1− x): A molecular dynamics study. J Appl Phys 126 (21): 215105 (2019)
[62]

Bao H W, Huang Y H, Yang Z, Sun Y J, Bai Y, Miao Y P, Chu P K, Xu K W, Ma F. Molecular dynamics simulation of nanocrack propagation in single-layer MoS2 nanosheets. J Phys Chem C 122(2): 1351–1360 (2018)

[63]

Liu P, Pei Q X, Zhang Y W. Low-cycle fatigue failure of MoS2 monolayer. Extreme Mech Lett 58: 101942 (2023)

[64]

Zhao J H, Jiang J W, Rabczuk T. Temperature-dependent mechanical properties of single-layer molybdenum disulphide: Molecular dynamics nanoindentation simulations. Appl Phys Lett 103(23): 231913 (2013)

[65]

Pham V T, Fang T H. Thermal and mechanical characterization of nanoporous two-dimensional MoS2 membranes. Sci Rep 12: 7777 (2022)

[66]

Ghuman K K, Yadav S, Singh C V. Adsorption and dissociation of H2O on monolayered MoS2 edges: Energetics and mechanism from ab initio simulations. J Phys Chem C 119(12): 6518–6529 (2015)

[67]

Panitz J K G, Pope L E, Lyons J E, Staley D J. The tribological properties of MoS2 coatings in vacuum, low relative humidity, and high relative humidity environments. J Vac Sci Technol A 6(3): 1166–1170 (1988)

[68]

Xu J, Zhu M H, Zhou Z R, Kapsa P, Vincent L. An investigation on fretting wear life of bonded MoS2 solid lubricant coatings in complex conditions. Wear 255(1–6): 253–258 (2003)

[69]

Salomon G, De Gee A W J, Zaat J H. Mechano-chemical factors in MoS2-film lubrication. Wear 7(1): 87–101 (1964)

[70]

Stewart T B, Fleischauer P D. Chemistry of sputtered molybdenum disulfide films. Inorg Chem 21(6): 2426–2431 (1982)

[71]

Fleischauer P D. Effects of crystallite orientation on environmental stability and lubrication properties of sputtered MoS2Thin films. ASLE Trans 27(1): 82–88 (1984)

[72]

Hebbar Kannur K, Huminiuc T, Bin Yaqub T, Polcar T, Pupier C, Héau C, Cavaleiro A. An insight on the MoS2 tribo-film formation to determine the friction performance of Mo–S–N sputtered coatings. Surf Coat Tech 408: 126791 (2021)

[73]

Curry J F, Argibay N, Babuska T, Nation B, Martini A, Strandwitz N C, Dugger M T, Krick B A. Highly oriented MoS2 coatings: Tribology and environmental stability. Tribol Lett 64(1): 11 (2016)

[74]

Chen F Y, Feng Y, Shao H, Zhang X B, Chen J, Chen N N. Friction and wear behaviors of Ag/MoS2/G composite in different atmospheres and at different temperatures. Tribol Lett 47(1): 139–148 (2012)

[75]

Cai S, Guo P, Liu J Z, Zhang D, Ke P L, Wang A Y, Zhu Y J. Friction and wear mechanism of MoS2/C composite coatings under atmospheric environment. Tribol Lett 65(3): 79 (2017)

Friction
Article number: 9441020
Cite this article:
Faiyad A, Bhuiyan FH, Vellore A, et al. Mechanisms of MoS2 dry film lubricant behavior at low temperatures. Friction, 2025, 13(4): 9441020. https://doi.org/10.26599/FRICT.2025.9441020
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return