Home Friction Article
PDF (4.3 MB)
Collect
Submit Manuscript
Show Outline
Figures (7)

Research Article | Open Access | Online First

A generalized friction law depicting the thermal effects at chemical bonding interface

Yang Wang1,2,3()Yexin Li1Xiao Huang2Jingxiang Xu3,4Yusuke Ootani3Nobuki Ozawa3,5Koshi Adachi6Linmao Qian2Wen Wang2()Momoji Kubo3,5()
Research Institute of Frontier Science, Southwest Jiaotong University, Chengdu 610031, China
Tribology Research Institute, State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031, China
Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
College of Engineering Science and Technology, Shanghai Ocean University, Shanghai 201306, China
New Industry Creation Hatchery Center, Tohoku University, Sendai 980-8579, Japan
Department of Mechanical System Engineering, Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan
Show Author Information

Graphical Abstract

View original image Download original image

Abstract

Non-empirical law depicting how atomic-scale friction behaves is crucial for facilitating the practical design of tribosystems. However, progress in developing a practically usable friction law has stagnated because atomic-scale friction arises from the continuous formation and rupture of interfacial chemical bonds, and such interfacial chemical reactions are difficult to measure precisely. Here, we propose a usable friction law for atomic-scale contact by using large-scale atomistic simulations to correctly measure the interfacial chemical reactions of a realistic rough surface. This friction model is effective to predict how atomic-scale friction force varies with temperature, sliding velocity, and load. As a special example, our model predicts velocity-related mountain-like temperature dependence of friction, and this prediction result is then carefully validated by comparison with ultra-high-vacuum atomic force microscopy (AFM) experiments.

Electronic Supplementary Material

Download File(s)
F1031-ESM.pdf (625.7 KB)

References

[1]
Szeri A Z. Tribology: Friction, Lubrication, and Wear. London (UK): Hemisphere Pub. Corp., 1980.
[2]

Holmberg K, Erdemir A. Global impact of friction on energy consumption, economy and environment. FME Trans 43: 181–185 (2015)

[3]

Hsu S, Ying C, Zhao F. The nature of friction: A critical assessment. Friction 2(1): 1–26 (2014)

[4]

Vorholzer M, Vilhena J G, Perez R, Gnecco E, Dietzel D, Schirmeisen A. Temperature activates contact aging in silica nanocontacts. Phys Rev X 9(4): 041045 (2019)

[5]

Greenwood J A, Williamson J B P. Contact of nominally flat surfaces. P R Soc A 295(1442): 300–319 (1966)

[6]

Persson B N J. Theory of rubber friction and contact mechanics. J Chem Phys 115(8): 3840–3861 (2001)

[7]

Ouyang W G, Ramakrishna S N, Rossi A, Urbakh M, Spencer N D, Arcifa A. Load and velocity dependence of friction mediated by dynamics of interfacial contacts. Phys Rev Lett 123(11): 116102 (2019)

[8]

Weber B, Suhina T, Junge T, Pastewka L, Brouwer A M, Bonn D. Molecular probes reveal deviations from Amontons’ law in multi-asperity frictional contacts. Nat Commun 9: 888 (2018)

[9]

Vanossi A, Bechinger C, Urbakh M. Structural lubricity in soft and hard matter systems. Nat Commun 11: 4657 (2020)

[10]

Spikes H. Stress-augmented thermal activation: Tribology feels the force. Friction 6(1): 1–31 (2018)

[11]

Jacobs T D B, Gotsmann B, Lantz M A, Carpick R W. On the application of transition state theory to atomic-scale wear. Tribol Lett 39(3): 257–271 (2010)

[12]

Li S, Zhang S, Chen Z, Feng X Q, Li Q Y. Length scale effect in frictional aging of silica contacts. Phys Rev Lett 125(21): 215502 (2020)

[13]

Ouyang W G, Urbakh M. Microscopic mechanisms of frictional aging. J Mech Phys Solids 166: 104944 (2022)

[14]

Ouyang W G, Cheng Y, Ma M, Urbakh M. Load–velocity–temperature relationship in frictional response of microscopic contacts. J Mech Phys Solids 137: 103880 (2020)

[15]

Li Z H, Szlufarska I. Physical origin of the mechanochemical coupling at interfaces. Phys Rev Lett 126(7): 076001 (2021)

[16]

Riedo E, Gnecco E, Bennewitz R, Meyer E, Brune H. Interaction potential and hopping dynamics governing sliding friction. Phys Rev Lett 91(8): 084502 (2003)

[17]

Jansen L, Hölscher H, Fuchs H, Schirmeisen A. Temperature dependence of atomic-scale stick-slip friction. Phys Rev Lett 104(25): 256101 (2010)

[18]

Tian K W, Goldsby D L, Carpick R W. Rate and state friction relation for nanoscale contacts: Thermally activated Prandtl-tomlinson model with chemical aging. Phys Rev Lett 120(18): 186101 (2018)

[19]

Liu X Z, Ye Z J, Dong Y L, Egberts P, Carpick R W, Martini A. Dynamics of atomic stick-slip friction examined with atomic force microscopy and atomistic simulations at overlapping speeds. Phys Rev Lett 114(14): 146102 (2015)

[20]

Wang Y, Xu J X, Zhang J, Chen Q, Ootani Y, Higuchi Y, Ozawa N, Martin J M, Adachi K, Kubo M. Tribochemical reactions and graphitization of diamond-like carbon against alumina give volcano-type temperature dependence of friction coefficients: A tight-binding quantum chemical molecular dynamics simulation. Carbon 133: 350–357 (2018)

[21]

Mo Y F, Turner K T, Szlufarska I. Friction laws at the nanoscale. Nature 457(7233): 1116–1119 (2009)

[22]

Mo Y F, Szlufarska I. Roughness picture of friction in dry nanoscale contacts. Phys Rev B 81(3): 035405 (2010)

[23]

Tian K W, Li Z H, Gosvami N N, Goldsby D L, Szlufarska I, Carpick R W. Memory distance for interfacial chemical bond-induced friction at the nanoscale. ACS Nano 13(7): 7425–7434 (2019)

[24]

Li Q Y, Tullis T E, Goldsby D, Carpick R W. Frictional ageing from interfacial bonding and the origins of rate and state friction. Nature 480(7376): 233–236 (2011)

[25]

Li Z H, Pastewka L, Szlufarska I. Chemical aging of large-scale randomly rough frictional contacts. Phys Rev E 98(2): 023001 (2018)

[26]

Tian K W, Li Z H, Liu Y, Gosvami N N, Goldsby D L, Szlufarska I, Carpick R W. Linear aging behavior at short timescales in nanoscale contacts. Phys Rev Lett 124(2): 026801 (2020)

[27]

Mazo J J, Dietzel D, Schirmeisen A, Vilhena J G, Gnecco E. Time strengthening of crystal nanocontacts. Phys Rev Lett 118(24): 246101 (2017)

[28]

Dudko O K, Filippov A E, Klafter J, Urbakh M. Beyond the conventional description of dynamic force spectroscopy of adhesion bonds. P Natl Acad Sci USA 100(20): 11378–11381 (2003)

[29]

Filippov A E, Klafter J, Urbakh M. Friction through dynamical formation and rupture of molecular bonds. Phys Rev Lett 92(13): 135503 (2004)

[30]

Barel I, Urbakh M, Jansen L, Schirmeisen A. Multibond dynamics of nanoscale friction: The role of temperature. Phys Rev Lett 104(6): 066104 (2010)

[31]

Barel I, Urbakh M, Jansen L, Schirmeisen A. Unexpected temperature and velocity dependencies of atomic-scale stick-slip friction. Phys Rev B 84(11): 115417 (2011)

[32]

Wang Y, Shi Y Q, Sun Q, Lu K, Kubo M, Xu J X. Development of a transferable ReaxFF parameter set for carbon- and silicon-based solid systems. J Phys Chem C 124(18): 10007–10015 (2020)

[33]

Wang Y, Yamada N, Xu J X, Zhang J, Chen Q, Ootani Y, Higuchi Y, Ozawa N, De Barros Bouchet M I, Martin J M, et al. Triboemission of hydrocarbon molecules from diamond-like carbon friction interface induces atomic-scale wear. Sci Adv 5(11): eaax9301 (2019)

[34]

Wang Y, Su Y X, Zhang J, Chen Q, Xu J X, Bai S D, Ootani Y, Ozawa N, De Barros Bouchet M I, Martin J M, et al. Reactive molecular dynamics simulations of wear and tribochemical reactions of diamond like carbon interfaces with nanoscale asperities under H2 gas: Implications for solid lubricant coatings. ACS Appl Nano Mater 3(7): 7297–7304 (2020)

[35]

Wang Y, Xu J X, Ootani Y, Ozawa N, Adachi K, Kubo M. Proposal of a new formation mechanism for hydrogenated diamond-like carbon transfer films: Hydrocarbon-emission-induced transfer. Carbon 154: 7–12 (2019)

[36]

Xu J X, Lu K, Fan D, Wang Y, Xu S L, Kubo M. Different etching mechanisms of diamond by oxygen and hydrogen plasma: A reactive molecular dynamics study. J Phys Chem C 125(30): 16711–16718 (2021)

[37]

Xu J X, Higuchi Y, Ozawa N, Sato K, Hashida T, Kubo M. Parallel large-scale molecular dynamics simulation opens new perspective to clarify the effect of a porous structure on the sintering process of Ni/YSZ multiparticles. ACS Appl Mater Inter 9(37): 31816–31824 (2017)

[38]

van Duin A C T, Dasgupta S, Lorant F, Goddard W A. ReaxFF: A reactive force field for hydrocarbons. J Phys Chem A 105(41): 9396–9409 (2001)

[39]

Senftle T P, Hong S, Islam M M, Kylasa S B, Zheng Y X, Shin Y K, Junkermeier C, Engel-Herbert R, Janik M J, Aktulga H M, et al. The ReaxFF reactive force-field: Development, applications and future directions. NPJ Comput Mater 2: 15011 (2016)

[40]

Xu J X, Wang Y, Cen Y X, Xing B W, Zheng X W, Ootani Y, Kubo M. Prediction of macroscopic properties of diamond-like carbon from atomic-scale structure. J Phys Chem C 123(40): 24609–24614 (2019)

[41]

Verlet L. Computer “experiments” on classical fluids. I. Thermodynamical properties of lennard-Jones molecules. Phys Rev 159(1): 98–103 (1967)

[42]

Verlet L. Computer “experiments” on classical fluids. II. equilibrium correlation functions. Phys Rev 165(1): 201–214 (1968)

[43]

Wang Y, Xu J X, Ootani Y, Ozawa N, Adachi K, Kubo M. Non-empirical law for nanoscale atom-by-atom wear. Adv Sci 8(2): 2002827 (2021)

[44]

Erdemir A, Donnet C. Tribology of diamond-like carbon films: Recent progress and future prospects. J Phys D: Appl Phys 39(18): R311–R327 (2006)

[45]

Al Mahmud K A H, Kalam M A, Masjuki H H, Mobarak H M, Zulkifli N W M. An updated overview of diamond-like carbon coating in tribology. Crit Rev Solid State 40(2): 90–118 (2015)

[46]

Yan W, Komvopoulos K. Contact analysis of elastic–plastic fractal surfaces. J Appl Phys 84(7): 3617–3624 (1998)

[47]

Hänggi P, Talkner P, Borkovec M. Reaction-rate theory: Fifty years after Kramers. Rev Mod Phys 62(2): 251–341 (1990)

[48]

Müser M H. Velocity dependence of kinetic friction in the Prandtl–Tomlinson model. Phys Rev B 84(12): 125419 (2011)

[49]

Tshiprut Z, Zelner S, Urbakh M. Temperature-induced enhancement of nanoscale friction. Phys Rev Lett 102(13): 136102 (2009)

[50]

Barel I, Urbakh M, Jansen L, Schirmeisen A. Temperature dependence of friction at the nanoscale: When the unexpected turns normal. Tribol Lett 39(3): 311–319 (2010)

[51]

Schirmeisen A, Jansen L, Hölscher H, Fuchs H. Temperature dependence of point contact friction on silicon. Appl Phys Lett 88(12): 123108 (2006)

[52]

Jacobs T D B, Ryan K E, Keating P L, Grierson D S, Lefever J A, Turner K T, Harrison J A, Carpick R W. The effect of atomic-scale roughness on the adhesion of nanoscale asperities: A combined simulation and experimental investigation. Tribol Lett 50(1): 81–93 (2013)

[53]

Ryan K E, Keating P L, Jacobs T D, Grierson D S, Turner K T, Carpick R W, Harrison J A. Simulated adhesion between realistic hydrocarbon materials: Effects of composition, roughness, and contact point. Langmuir 30(8): 2028–2037 (2014)

Friction
Cite this article:
Wang Y, Li Y, Huang X, et al. A generalized friction law depicting the thermal effects at chemical bonding interface. Friction, 2025, https://doi.org/10.26599/FRICT.2025.9441031
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return