Non-empirical law depicting how atomic-scale friction behaves is crucial for facilitating the practical design of tribosystems. However, progress in developing a practically usable friction law has stagnated because atomic-scale friction arises from the continuous formation and rupture of interfacial chemical bonds, and such interfacial chemical reactions are difficult to measure precisely. Here, we propose a usable friction law for atomic-scale contact by using large-scale atomistic simulations to correctly measure the interfacial chemical reactions of a realistic rough surface. This friction model is effective to predict how atomic-scale friction force varies with temperature, sliding velocity, and load. As a special example, our model predicts velocity-related mountain-like temperature dependence of friction, and this prediction result is then carefully validated by comparison with ultra-high-vacuum atomic force microscopy (AFM) experiments.
Holmberg K, Erdemir A. Global impact of friction on energy consumption, economy and environment. FME Trans 43: 181–185 (2015)
Hsu S, Ying C, Zhao F. The nature of friction: A critical assessment. Friction 2(1): 1–26 (2014)
Vorholzer M, Vilhena J G, Perez R, Gnecco E, Dietzel D, Schirmeisen A. Temperature activates contact aging in silica nanocontacts. Phys Rev X 9(4): 041045 (2019)
Greenwood J A, Williamson J B P. Contact of nominally flat surfaces. P R Soc A 295(1442): 300–319 (1966)
Persson B N J. Theory of rubber friction and contact mechanics. J Chem Phys 115(8): 3840–3861 (2001)
Ouyang W G, Ramakrishna S N, Rossi A, Urbakh M, Spencer N D, Arcifa A. Load and velocity dependence of friction mediated by dynamics of interfacial contacts. Phys Rev Lett 123(11): 116102 (2019)
Weber B, Suhina T, Junge T, Pastewka L, Brouwer A M, Bonn D. Molecular probes reveal deviations from Amontons’ law in multi-asperity frictional contacts. Nat Commun 9: 888 (2018)
Vanossi A, Bechinger C, Urbakh M. Structural lubricity in soft and hard matter systems. Nat Commun 11: 4657 (2020)
Spikes H. Stress-augmented thermal activation: Tribology feels the force. Friction 6(1): 1–31 (2018)
Jacobs T D B, Gotsmann B, Lantz M A, Carpick R W. On the application of transition state theory to atomic-scale wear. Tribol Lett 39(3): 257–271 (2010)
Li S, Zhang S, Chen Z, Feng X Q, Li Q Y. Length scale effect in frictional aging of silica contacts. Phys Rev Lett 125(21): 215502 (2020)
Ouyang W G, Urbakh M. Microscopic mechanisms of frictional aging. J Mech Phys Solids 166: 104944 (2022)
Ouyang W G, Cheng Y, Ma M, Urbakh M. Load–velocity–temperature relationship in frictional response of microscopic contacts. J Mech Phys Solids 137: 103880 (2020)
Li Z H, Szlufarska I. Physical origin of the mechanochemical coupling at interfaces. Phys Rev Lett 126(7): 076001 (2021)
Riedo E, Gnecco E, Bennewitz R, Meyer E, Brune H. Interaction potential and hopping dynamics governing sliding friction. Phys Rev Lett 91(8): 084502 (2003)
Jansen L, Hölscher H, Fuchs H, Schirmeisen A. Temperature dependence of atomic-scale stick-slip friction. Phys Rev Lett 104(25): 256101 (2010)
Tian K W, Goldsby D L, Carpick R W. Rate and state friction relation for nanoscale contacts: Thermally activated Prandtl-tomlinson model with chemical aging. Phys Rev Lett 120(18): 186101 (2018)
Liu X Z, Ye Z J, Dong Y L, Egberts P, Carpick R W, Martini A. Dynamics of atomic stick-slip friction examined with atomic force microscopy and atomistic simulations at overlapping speeds. Phys Rev Lett 114(14): 146102 (2015)
Wang Y, Xu J X, Zhang J, Chen Q, Ootani Y, Higuchi Y, Ozawa N, Martin J M, Adachi K, Kubo M. Tribochemical reactions and graphitization of diamond-like carbon against alumina give volcano-type temperature dependence of friction coefficients: A tight-binding quantum chemical molecular dynamics simulation. Carbon 133: 350–357 (2018)
Mo Y F, Turner K T, Szlufarska I. Friction laws at the nanoscale. Nature 457(7233): 1116–1119 (2009)
Mo Y F, Szlufarska I. Roughness picture of friction in dry nanoscale contacts. Phys Rev B 81(3): 035405 (2010)
Tian K W, Li Z H, Gosvami N N, Goldsby D L, Szlufarska I, Carpick R W. Memory distance for interfacial chemical bond-induced friction at the nanoscale. ACS Nano 13(7): 7425–7434 (2019)
Li Q Y, Tullis T E, Goldsby D, Carpick R W. Frictional ageing from interfacial bonding and the origins of rate and state friction. Nature 480(7376): 233–236 (2011)
Li Z H, Pastewka L, Szlufarska I. Chemical aging of large-scale randomly rough frictional contacts. Phys Rev E 98(2): 023001 (2018)
Tian K W, Li Z H, Liu Y, Gosvami N N, Goldsby D L, Szlufarska I, Carpick R W. Linear aging behavior at short timescales in nanoscale contacts. Phys Rev Lett 124(2): 026801 (2020)
Mazo J J, Dietzel D, Schirmeisen A, Vilhena J G, Gnecco E. Time strengthening of crystal nanocontacts. Phys Rev Lett 118(24): 246101 (2017)
Dudko O K, Filippov A E, Klafter J, Urbakh M. Beyond the conventional description of dynamic force spectroscopy of adhesion bonds. P Natl Acad Sci USA 100(20): 11378–11381 (2003)
Filippov A E, Klafter J, Urbakh M. Friction through dynamical formation and rupture of molecular bonds. Phys Rev Lett 92(13): 135503 (2004)
Barel I, Urbakh M, Jansen L, Schirmeisen A. Multibond dynamics of nanoscale friction: The role of temperature. Phys Rev Lett 104(6): 066104 (2010)
Barel I, Urbakh M, Jansen L, Schirmeisen A. Unexpected temperature and velocity dependencies of atomic-scale stick-slip friction. Phys Rev B 84(11): 115417 (2011)
Wang Y, Shi Y Q, Sun Q, Lu K, Kubo M, Xu J X. Development of a transferable ReaxFF parameter set for carbon- and silicon-based solid systems. J Phys Chem C 124(18): 10007–10015 (2020)
Wang Y, Yamada N, Xu J X, Zhang J, Chen Q, Ootani Y, Higuchi Y, Ozawa N, De Barros Bouchet M I, Martin J M, et al. Triboemission of hydrocarbon molecules from diamond-like carbon friction interface induces atomic-scale wear. Sci Adv 5(11): eaax9301 (2019)
Wang Y, Su Y X, Zhang J, Chen Q, Xu J X, Bai S D, Ootani Y, Ozawa N, De Barros Bouchet M I, Martin J M, et al. Reactive molecular dynamics simulations of wear and tribochemical reactions of diamond like carbon interfaces with nanoscale asperities under H2 gas: Implications for solid lubricant coatings. ACS Appl Nano Mater 3(7): 7297–7304 (2020)
Wang Y, Xu J X, Ootani Y, Ozawa N, Adachi K, Kubo M. Proposal of a new formation mechanism for hydrogenated diamond-like carbon transfer films: Hydrocarbon-emission-induced transfer. Carbon 154: 7–12 (2019)
Xu J X, Lu K, Fan D, Wang Y, Xu S L, Kubo M. Different etching mechanisms of diamond by oxygen and hydrogen plasma: A reactive molecular dynamics study. J Phys Chem C 125(30): 16711–16718 (2021)
Xu J X, Higuchi Y, Ozawa N, Sato K, Hashida T, Kubo M. Parallel large-scale molecular dynamics simulation opens new perspective to clarify the effect of a porous structure on the sintering process of Ni/YSZ multiparticles. ACS Appl Mater Inter 9(37): 31816–31824 (2017)
van Duin A C T, Dasgupta S, Lorant F, Goddard W A. ReaxFF: A reactive force field for hydrocarbons. J Phys Chem A 105(41): 9396–9409 (2001)
Senftle T P, Hong S, Islam M M, Kylasa S B, Zheng Y X, Shin Y K, Junkermeier C, Engel-Herbert R, Janik M J, Aktulga H M, et al. The ReaxFF reactive force-field: Development, applications and future directions. NPJ Comput Mater 2: 15011 (2016)
Xu J X, Wang Y, Cen Y X, Xing B W, Zheng X W, Ootani Y, Kubo M. Prediction of macroscopic properties of diamond-like carbon from atomic-scale structure. J Phys Chem C 123(40): 24609–24614 (2019)
Verlet L. Computer “experiments” on classical fluids. I. Thermodynamical properties of lennard-Jones molecules. Phys Rev 159(1): 98–103 (1967)
Verlet L. Computer “experiments” on classical fluids. II. equilibrium correlation functions. Phys Rev 165(1): 201–214 (1968)
Wang Y, Xu J X, Ootani Y, Ozawa N, Adachi K, Kubo M. Non-empirical law for nanoscale atom-by-atom wear. Adv Sci 8(2): 2002827 (2021)
Erdemir A, Donnet C. Tribology of diamond-like carbon films: Recent progress and future prospects. J Phys D: Appl Phys 39(18): R311–R327 (2006)
Al Mahmud K A H, Kalam M A, Masjuki H H, Mobarak H M, Zulkifli N W M. An updated overview of diamond-like carbon coating in tribology. Crit Rev Solid State 40(2): 90–118 (2015)
Yan W, Komvopoulos K. Contact analysis of elastic–plastic fractal surfaces. J Appl Phys 84(7): 3617–3624 (1998)
Hänggi P, Talkner P, Borkovec M. Reaction-rate theory: Fifty years after Kramers. Rev Mod Phys 62(2): 251–341 (1990)
Müser M H. Velocity dependence of kinetic friction in the Prandtl–Tomlinson model. Phys Rev B 84(12): 125419 (2011)
Tshiprut Z, Zelner S, Urbakh M. Temperature-induced enhancement of nanoscale friction. Phys Rev Lett 102(13): 136102 (2009)
Barel I, Urbakh M, Jansen L, Schirmeisen A. Temperature dependence of friction at the nanoscale: When the unexpected turns normal. Tribol Lett 39(3): 311–319 (2010)
Schirmeisen A, Jansen L, Hölscher H, Fuchs H. Temperature dependence of point contact friction on silicon. Appl Phys Lett 88(12): 123108 (2006)
Jacobs T D B, Ryan K E, Keating P L, Grierson D S, Lefever J A, Turner K T, Harrison J A, Carpick R W. The effect of atomic-scale roughness on the adhesion of nanoscale asperities: A combined simulation and experimental investigation. Tribol Lett 50(1): 81–93 (2013)
Ryan K E, Keating P L, Jacobs T D, Grierson D S, Turner K T, Carpick R W, Harrison J A. Simulated adhesion between realistic hydrocarbon materials: Effects of composition, roughness, and contact point. Langmuir 30(8): 2028–2037 (2014)