Water friction in nanoconfinement is of great importance in water lubrication and membrane-based applications, yet remains fraught with doubts despite great efforts. Our molecular dynamics simulations demonstrate that the first water layer adjacent to the surface plays an important role in interfacial friction. Applying a uniform strain to the surface (changing the lattice constant) can induce a significant change in friction and is quite different for the hydrophilic and hydrophobic cases. Specifically, in the hydrophilic case, there is maximum friction when the lattice constant approaches the preferential oxygen‒oxygen distance of the first water layer (a constant value), and the further it deviates, the smaller the friction. The maximum friction corresponds to the most ordered first water layer. While in the hydrophobic case, the friction increases monotonically with increasing lattice constant, which hardly changes the first water layer structure but only increases the difficulty of water molecular jump (meaning jump from one equilibrium position to another). Starting from the molecular jump in the first water layer, theoretical dependence of friction on the molecular activation barrier and shear velocity is established, which provides a reasonable explanation for the friction behavior. Moreover, the water transport behavior in nanochannels supports the finding of the friction dependence on the lattice constant, suggesting great potential for improving and controlling water transport. Our results not only provide a novel understanding of nanoconfined water friction but are also instructive for friction control and water transport.
Pal S K, Zewail A H. Dynamics of water in biological recognition. Chem Rev 104(4): 2099–2124 (2004)
Zhong D P, Pal S K, Zewail A H. Biological water: A critique. Chem Phys Lett 503(1–3): 1–11 (2011)
Laage D, Elsaesser T, Hynes J T. Water dynamics in the hydration shells of biomolecules. Chem Rev 117(16): 10694–10725 (2017)
Rasaiah J C, Garde S, Hummer G. Water in nonpolar confinement: From nanotubes to proteins and beyond. Annu Rev Phys Chem 59: 713–740 (2008)
Ewing G E. Ambient thin film water on insulator surfaces. Chem Rev 106(4): 1511–1526 (2006)
Chakraborty S, Kumar H, Dasgupta C, Maiti P K. Confined water: Structure, dynamics, and thermodynamics. Acc Chem Res 50(9): 2139–2146 (2017)
Calero C, Franzese G. Water under extreme confinement in graphene: Oscillatory dynamics, structure, and hydration pressure explained as a function of the confinement width. J Mol Liq 317: 114027 (2020)
Cobeña-Reyes J, Sahimi M. Rheology of water in small nanotubes. Phys Rev E 102(2): 023106 (2020)
Wang D Y, Tian, Y, Jiang L. Abnormal properties of low-dimensional confined water. Small 17(31): 2100788 (2021)
Algara-Siller G, Lehtinen O, Wang F C, Nair R R, Kaiser U, Wu H A, Geim A K, Grigorieva I V. Square ice in graphene nanocapillaries. Nature 519(7544): 443–445 (2015)
Giovambattista N, Rossky P J, Debenedetti P G. Effect of pressure on the phase behavior and structure of water confined between nanoscale hydrophobic and hydrophilic plates. Phys Rev E 73(4): 041604 (2006)
Chen W, Foster A S, Alava M J, Laurson L. Stick-slip control in nanoscale boundary lubrication by surface wettability. Phys Rev Lett 114(9): 095502 (2015)
de Wijn A S, Pettersson L G M. How square ice helps lubrication. Phys Rev B 95(16): 165433 (2017)
Zhao X, Qiu H, Zhou W Q, Guo Y F, Guo W L. Phase-dependent friction of nanoconfined water meniscus. Nanoscale 13(5): 3201–3207 (2021)
Cottin-Bizonne C, Barrat J L, Bocquet L, Charlaix E. Low-friction flows of liquid at nanopatterned interfaces. Nat Mater 2(4): 237–240 (2003)
Bocquet L, Barrat J L. On the Green-Kubo relationship for the liquid‒solid friction coefficient. J Chem Phys 139(4): 044704 (2013)
Ortiz-Young D, Chiu H C, Kim S, Voïtchovsky K, Riedo E. The interplay between apparent viscosity and wettability in nanoconfined water. Nat Commun 4(1): 2482 (2013)
Lynch C I, Rao S L, Sansom M S P. Water in nanopores and biological channels: A molecular simulation perspective. Chem Rev 120(18): 10298–10335 (2020)
Zhang X Q, Liu H L, Jiang L. Wettability and applications of nanochannels. Adv Mater 31(5): 1804508 (2019)
Keerthi A, Goutham S, You Y, Iamprasertkun P, Dryfe R A W, Geim A K, Radha B. Water friction in nanofluidic channels made from two-dimensional crystals. Nat Commun 12(1): 3092 (2021)
Neek Amal M, Peeters F M, Grigorieva I V, Geim A K. Commensurability effects in viscosity of nanoconfined water. ACS Nano 10(3): 3685–3692 (2016)
Ho T A, Papavassiliou D V, Lee L L, Striolo A. Liquid water can slip on a hydrophilic surface. P Natl Acad Sci USA 108(39): 16170–16175 (2011)
Lichter S, Roxin A, Mandre S. Mechanisms for liquid slip at solid surfaces. Phys Rev Lett 93(8): 086001 (2004)
Barrat J, Bocquet L. Large slip effect at a nonwetting fluid‒solid interface. Phys Rev Lett 82: 4671–46714 (1998)
Bocquet L, Barrat J L. Flow boundary conditions from nano- to microscales. Soft Matter 3(6): 685–693 (2007)
Joly L, Ybert C, Bocquet L. Probing the nanohydrodynamics at liquid‒solid interfaces using thermalmotion. Phys Rev Lett 96(4): 046101 (2006)
Joly L, Ybert C, Trizac E, Bocquet L. Hydrodynamics within the electric double layer on slipping surfaces. Phys Rev Lett 93(25): 257805 (2004)
Khan S H, Matei G, Patil S, Hoffmann P M. Dynamic solidification in nanoconfined water films. Phys Rev Lett 105(10): 106101 (2010)
Kapoor K, Amandeep, Patil S. Viscoelasticity and shear thinning of nanoconfined water. Phys Rev E 89: 013004 (2014)
Li T D, Riedo E. Nonlinear viscoelastic dynamics of nanoconfined wetting liquids. Phys Lett 100(10): 106102 (2008)
Han T Y, Zhang S W, Zhang C H. Unlocking the secrets behind liquid superlubricity: A state-of-the-art review on phenomena and mechanisms. Friction 10(8): 1137–1165 (2022)
Li S W, Bai P P, Li Y Z, Pesika N S, Meng Y G, Ma L R, Tian Y. Quantification/mechanism of interfacial interaction modulated by electric potential in aqueous salt solution. Friction 9(3): 513–523 (2021)
Jensen M Ø, Mouritsen O G, Peters G H. The hydrophobic effect: Molecular dynamics simulations of water confined between extended hydrophobic and hydrophilic surfaces. J Chem Phys 120(20): 9729–9744 (2004)
Xiong W, Liu J Z, Ma M, Xu Z P, Sheridan J, Zheng Q S. Strain engineering water transport in graphene nanochannels. Phys Rev E 84(5): 056329 (2011)
Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117(1): 1–19 (1995)
Jorgensen W L, Chandrasekhar J, Madura J D, Impey R W, Klein M L. Comparison of simple potential functions for simulating liquid water. J Chem Phys 79(2): 926–935 (1983)
Yong X, Zhang L T. Investigating liquid‒solid interfacial phenomena in a Couette flow at nanoscale. Phys Rev E 82(5): 056313 (2010)
Bao L Y, Priezjev N V, Hu H B, Luo K. Effects of viscous heating and wall-fluid interaction energy on rate-dependent slip behavior of simple fluids. Phys Rev E 96(3): 033110 (2017)
Giovambattista N, Debenedetti P G, Rossky P J. Effect of surface polarity on water contact angle and interfacial hydration structure. J Phys Chem B 111(32): 9581–9587 (2007)
Baran Ł, MacDowell L G. Confinement enhanced viscosity vs shear thinning in lubricated ice friction. J Chem Phys 160(5): 056101 (2024)
Zhao Y, Wu Y, Bao L Y, Zhou F, Liu W M. A new mechanism of the interfacial water film dominating low ice friction. J Chem Phys 157(23): 234703 (2022)
Bocquet L, Charlaix E. Nanofluidics, from bulk to interfaces. Chem Soc Rev 39(3): 1073–1095 (2010)
Smith E D, Robbins M O, Cieplak M. Friction on adsorbed monolayers. Phys Rev B 54(11): 8252–8260 (1996)
He G, Müser M H, Robbins M O. Adsorbed layers and the origin of static friction. Science 284(5420): 1650–1652 (1999)
Culp T E, Khara B, Brickey K P, Geitner M, Zimudzi T J, Wilbur J D, Jons S D, Roy A, Paul M, Ganapathysubramanian B, et al. Nanoscale control of internal inhomogeneity enhances water transport in desalination membranes. Science 371(6524): 72–75 (2021)
Liu J X, Liu X H, Tao W Q, Li Z, Xu H. Understanding of water desalination in two-dimensional porous membrane via molecular dynamics. J Mol Liq 360: 119408 (2022)
Kannam S K, Todd B D, Hansen J S, Daivis PJ. How fast does water flow in carbon nanotubes. J Chem Phys 138(9): 094701 (2013)
Kannam S K, Todd B D, Hansen J S, Daivis PJ. Slip flow in graphene nanochannels. J Chem Phys 135(14): 144701 (2011)
De Luca S, Todd B D, Hansen J S, Daivis P J. Molecular dynamics study of nanoconfined water flow driven by rotating electric fields under realistic experimental conditions. Langmuir 30(11): 3095–3109 (2014)
Kannam S K, Todd B D, Hansen J S, Daivis P J. Slip length of water on graphene: Limitations of non-equilibrium molecular dynamics simulations. J Chem Phys 136(2): 024705 (2012)
Remsing R C, Xi E T, Vembanur S, Sharma S, Debenedetti P G, Garde S, Patel A J. Pathways to dewetting in hydrophobic confinement. P Natl Acad Sci USA 112(27): 8181–8186 (2015)
Hua L, Zangi R, Berne B J. Hydrophobic interactions and dewetting between plates with hydrophobic and hydrophilic domains. J Phys Chem C 113(13): 5244–5253 (2009)
Powell M R, Cleary L, Davenport M, Shea K J, Siwy Z S. Electric-field-induced wetting and dewetting in single hydrophobic nanopores. Nature Nanotech 6(12): 798–802 (2011)
Bratko D, Daub C D, Leung K, Luzar A. Effect of field direction on electrowetting in a nanopore. J Am Chem Soc 129(9): 2504–2510 (2007)