AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (771.1 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Determination of human milk oligosaccharides by porous graphite carbon adsorption coupled with high-performance liquid chromatography-mass spectrometry

Xiaoqian Chen1Wanfu He1Rui Fan1Tingting Liu1Libo Liu1( )Guofang Zhang1,2( )Reshetnik Ekaterina Ivanovna3Chun Li1,2
Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
Heilongjiang Green Food Science Research Institute, Harbin 150028, China
Far Eastern State Agrarian University, Blagoveshchensk 675005, Russia
Show Author Information

Abstract

Human milk oligosaccharides (HMOs) have become a hot topic in the field of maternal and infant nutrition and health research, and are also widely used as innovative functional ingredients in infant formulas, but their complex structure makes its isolation and analysis difficult. This paper presents a simple method for the extraction and analysis of HMOs. The effect of the presence of lactose on the determination of HMO content was investigated by high-performance liquid chromatography-mass spectrometry (HPLC-MS). Human milk is dynamically enriched with oligosaccharides using graphite carbon pipes to reduce the interference of lactose with the assay. It was found that the mass concentrations of HMOs obtained after removing more than 90% of lactose were more accurate. 2’-Fucosyllactose (2’-FL) and 3-fucosyllactose (3-FL) were linear in the range of 1.50–100.00 μg/mL (R2 > 0.997), and the remaining eight HMOs were linear in the range of 0.75–50.00 μg/mL (R2 > 0.995). Precision (relative standard deviation (RSD)) values for each HMO detection result ranged from 1.47% to 5.26%. Accuracy is from 98.74% to 102.26%. This analytical technique is a sensitive, precise, and accurate quantitative method for the quantification of ten HMOs in human milk. This method can provide accurate and reliable quantification of the oligosaccharide content of human milk, providing a reference for determining the specific functions performed by HMOs and at what concentrations they function, as well as for studying the effects of different HMO components and concentrations in human milk on infants.

References

[1]

R. M. Erney, W. T. Malone, M. B. Skelding, et al., Variability of human milk neutral oligosaccharides in a diverse population, J. Pediatr. Gastr. Nutr. 30 (2000) 181–192. https://doi.org/10.1097/00005176-200002000-00016.

[2]
L. Bode, Human milk oligosaccharides: every baby needs a sugar mama, Glycobiology 22 (2012) 1147–1162. https://doi.org/10.1093/glycob/cws074.
[3]

L. R. Ruhaak, C. B. Lebrilla, Advances in analysis of human milk oligosaccharides, Adv. Nutr. 3 (2012) 406S–414S. https://doi.org/10.3945/an.112.001883.

[4]

S. Thurl, M. Munzert, J. Henker, et al., Variation of human milk oligosaccharides in relation to milk groups and lactational periods, Brit. J. Nutri. 104 (2010) 1261–1271. https://doi.org/10.1017/s0007114510002072.

[5]

J. T. Smilowitz, C. B. Lebrilla, D. A. Mills, et al., Breast milk oligosaccharides: structure-function relationships in the neonate, Annu. Rev. Nutr. 34 (2014) 143–169. https://doi.org/10.1146/annurev-nutr-071813-105721.

[6]

W. A. Walker, R. S. Iyengar, Breast milk, microbiota, and intestinal immune homeostasis, Pediatr. Res. 77 (2015) 220–228. https://doi.org/10.1038/pr.2014.160.

[7]

N. J. Andreas, B. Kampmann, K. M. Le-Doare, Human breast milk: a review on its composition and bioactivity, Early Hum. Dev. 91 (2015) 629–635. https://doi.org/10.1016/j.earlhumdev.2015.08.013.

[8]

M. Turfkruyer, V. Verhasselt, Breast milk and its impact on maturation of the neonatal immune system, Curr. Opin. Infect. Dis. 28 (2015) 199–206. https://doi.org/10.1097/qco.0000000000000165.

[9]

A. E. Lin, C. A. Autran, A. Szyszka, et al., Human milk oligosaccharides inhibit growth of group B Streptococcus, J. Biol. Chem. 292 (2017) 11243–11249. https://doi.org/10.1074/jbc.M117.789974.

[10]
C. A. Autran, B. P. Kellman, J. H. Kim, et al., Human milk oligosaccharide composition predicts risk of necrotising enterocolitis in preterm infants, Gut 67 (2018) 1064–1070. https://doi.org/10.1136/gutjnl-2016-312819.
[11]
J. Aakko, H. Kumar, S. Rautava, et al., Human milk oligosaccharide categories define the microbiota composition in human colostrum, Benef. Microbes 8 (2017) 563–567. https://doi.org/10.3920/BM2016.0185.
[12]

A. E. Seppo, C. A. Autran, L. Bode, et al., Human milk oligosaccharides and development of cow’s milk allergy in infants, Allergy Clin. Immunol. 139 (2017) 708–711. https://doi.org/10.1016/j.jaci.2016.08.031.

[13]
K. Miliku, B. Robertson, A. K. Sharma, et al., Human milk oligosaccharide profiles and food sensitization among infants in the CHILD Study, Allergy (2018) https://doi.org/10.1111/all.13476.
[14]

L. Xiao, B. Van’t Land, P. A. Engen, et al., Human milk oligosaccharides protect against the development of autoimmune diabetes in NOD-mice, Sci. Rep. 8 (2018) 1–15. https://doi.org/10.1038/s41598-018-22052-y.

[15]

T. L. Alderete, C. Autran, B. E. Brekke, et al., Associations between human milk oligosaccharides and infant body composition in the first 6 mo of life, Am. J. Clin. Nutr. 102 (2015) 1381–1388. https://doi.org/10.3945/ajcn.115.115451.

[16]
Y. Kamiya, K. Yanagi, T. Kitajima, et al., Application of metabolic 13C labeling in conjunction with high-field nuclear magnetic resonance spectroscopy for comparative conformational analysis of high mannose-type oligosaccharides, Biomolecules 3 (2013) 108–123. https://doi.org/10.3390/biom3010108.
[17]

D. Zhou, Q. Xu, X. Xue, et al., Identification of O-diglycosyl flavanones in fructus aurantii by liquid chromatography with electrospray ionization and collision-induced dissociation mass spectrometry, J. Pharmaceut. Biomed. 42 (2006) 441–448. https://doi.org/10.1016/j.jpba.2006.05.015.

[18]

S. Martín-Sosa, M. J. Martín, L. A. García-Pardo, et al., Sialyloligosaccharides in human and bovine milk and in infant formulas: variations with the progression of lactation, J. Dairy Sci. 86 (2003) 52–59. https://doi.org/10.3168/jds.s0022-0302(03)73583-8.

[19]

Y. Bao, C. Chen, D. S. Newburg, Quantification of neutral human milk oligosaccharides by graphitic carbon high-performance liquid chromatography with tandem mass spectrometry, Anal. Biochemi. 433 (2013) 28–35. https://doi.org/10.1016/j.ab.2012.10.003.

[20]

M. Szigeti, A. Meszaros-Matwiejuk, D. Molnar-Gabor, et al., Rapid capillary gel electrophoresis analysis of human milk oligosaccharides for food additive manufacturing in-process control, Anal. Bioanal. Chem. 413 (2021) 1595–1603. https://doi.org/10.1007/s00216-020-03119-0.

[21]
F. Auer, G. Jarvas, A. Guttman, Recent advances in the analysis of human milk oligosaccharides by liquid phase separation methods, J. Chromatogr. B 1162 (2021) 122497. https://doi.org/10.1016/j.jchromb.2020.122497.
[22]

A. S. Christensen, S. H. Skov, S. E. Lendal, et al., Quantifying the human milk oligosaccharides 2’-fucosyllactose and 3-fucosyllactose in different food applications by high performance liquid chromatography with refractive index detection, J. Food Sci. 85 (2020) 332–339. https://doi.org/10.1111/1750-3841.15005.

[23]

M. Meyrand, D. C. Dallas, H. Caillat, et al., Comparison of milk oligosaccharides between goats with and without the genetic ability to synthesize αs1-casein, Small Ruminant Res. 113 (2013) 411–420. https://doi.org/10.1016/j.smallrumres.2013.03.014.

[24]

W. Zhang, T. Wang, X. Chen, et al., Absolute quantification of twelve oligosaccharides in human milk using a targeted mass spectrometry-based approach, Carbohyd. Polym. 219 (2019) 328–333. https://doi.org/10.1016/j.carbpol.2019.04.092.

[25]

R. Tedesco, E. Barbaro, R. Zangrando, et al., Carbohydrate determination in honey samples by ion chromatography -mass spectrometry (HPAEC-MS), Anal. Bioanal. Chem. 412 (2020) 5217–5227. https://doi.org/10.1007/s00216-020-02732-3.

[26]
K. Marino, J. A. Lane, J. L. Abrahams, et al., Method for milk oligosaccharide profiling by 2-aminobenzamide labeling and hydrophilic interaction chromatography, Glycobiology 21 (2010) 1317–1330. https://doi.org/10.1093/glycob/cwr067.
[27]

J. Yan, J. Ding, G. Jin, et al., Profiling of sialylated oligosaccharides in mammalian milk using online solid phase extraction-hydrophilic interaction chromatography coupled with negative-ion electrospray mass spectrometry, Anal. Chem. 90 (2018) 3174–3182. https://doi.org/10.1021/acs.analchem.7b04468.

[28]

C. A. Remoroza, T. D. Mak, M. L. A. de Leoz, et al., Creating a mass spectral reference library for oligosaccharides in human milk, Anal. Chem. 90 (2018) 8977–8988. https://doi.org/10.1021/acs.analchem.8b01176.

[29]
A. J. Caffrey, S. Lafontaine, J. Dailey, et al., Characterization of Humulus lupulus glycosides with porous graphitic carbon and sequential high performance liquid chromatography quadrupole time-of-flight mass spectrometry and high performance liquid chromatography fractionation, J. Chromatogr. A 1674 (2022) 463130. https://doi.org/10.1016/j.chroma.2022.463130.
[30]

K. Borewicz, F. Gu, E. Saccenti, et al., Correlating infant fecal microbiota composition and human milk oligosaccharide consumption by microbiota of 1 month old breastfed infants, Mol. Nutr. Food Res. 63 (2019) 1801214. https://doi.org/10.1002/mnfr.201801214.

[31]
J. H. Feng, K. Z. Wei, J. P. Gao, et al., Determination of adenosine phosphates in mouse myocardium tissue by HPLC with UV detection and using porous graphite carbon column, J. Chromatogr. B 1145 (2020) 122110. http://doi.org/10.1016/j.jchromb.2020.122110.
[32]

D. S. Newburg, Neonatal protection by an innate immune system of human milk consisting of oligosaccharides and glycans, J. Anim. Sci. 87 (2009) 26–34. https://doi.org/10.2527/jas.2008-1347.

[33]

T. Urashima, T. Saito, T. Nakamura, et al., Oligosaccharides of milk and colostrum in non-human mammals, Glycoconjugate J. 18 (2001) 357–371. https://doi.org/10.1023/a:1014881913541.

[34]

R. E. Ward, Isolation of milk oligosaccharides using solid-phase extraction, Open Glycosci. 2 (2009) 9–15. https://doi.org/10.2174/1875398100902010009.

[35]

F. Galeotti, G. V. Coppa, L. Zampini, et al., On-line high-performance liquid chromatography-fluorescence detection-electrospray ionization-mass spectrometry profiling of human milk oligosaccharides derivatized with 2-aminoacridone, Anal. Biochem. 430 (2012) 97–104. https://doi.org/10.1016/j.ab.2012.07.027.

[36]

B. Yang, M. Zhang, W. Qiao, et al., Cascaded membrane and chromatography technologies for fractionating and purifying of bovine milk oligosaccharides, Food Hydrocoll. 130 (2022) 107697. https://doi.org/10.1016/j.foodhyd.2022.107697.

[37]

L. J. Kvist, M. K. Mcguire, C. L. Meehan, et al., What's normal? Oligosaccharide concentrations and profiles in milk produced by healthy women vary geographically, Am. J. Clin. Nutr. 105(5) (2017) 1086–1100. https://doi.org/10.3945/ajcn.116.139980.

[38]
X. X. Chen, J. Lu, L. Liu, et al., Determination of 12 oligosaccharides in human milk by ultra-performance liquid chromatography-mass spectrometry, Food Science 39(4) (2018) 138–143.
[39]
E. J. Reverri, A. A. Devitt, J. A. Kajzer, et al., Review of the clinical experiences of feeding infants formula containing the human milk oligosaccharide 2’-fucosyllactose, Nutrients 10 (2018) 1346. https://doi.org/10.3390/nu10101346.
[40]

S. He, X. Wang, Y. Zhang, et al., Isolation and prebiotic activity of water-soluble polysaccharides fractions from the bamboo shoots (Phyllostachys praecox), Carbohyd. Polym. 151 (2016) 295–304. https://doi.org/10.1016/j.carbpol.2016.05.072.

[41]

S. Li, J. Li, Z. Zhi, et al., Macromolecular properties and hypolipidemic effects of four sulfated polysaccharides from sea cucumbers, Carbohyd. Polym. 173 (2017) 330–337. https://doi.org/10.1016/j.carbpol.2017.05.063.

[42]

X. Huang, B. Zhu, T. Jiang, et al., Improved simple sample pretreatment method for quantitation of major human milk oligosaccharides using ultrahigh pressure liquid chromatography with fluorescence detection, J. Agri. Food Chem. 67 (2019) 12237–12244. https://doi.org/10.1021/acs.jafc.9b03445.

[43]

X. Chen, Human milk oligosaccharides (HMOS): structure, function, and enzyme-catalyzed synthesis, Adv. Carbohyd. Chem. Bi. 72 (2015) 113–190. https://doi.org/10.1016/bs.accb.2015.08.002.

[44]
S. Austin, C. A. de Castro, T. Bénet, et al., Temporal change of the content of 10 oligosaccharides in the milk of Chinese urban mothers, Nutrients 8 (2016) 346. https://doi.org/10.3390/nu8060346.
[45]
S. Thurl, M. Munzert, G. Boehm, et al., Systematic review of the concentrations of oligosaccharides in human milk, Nutrition 75 (2017) 920–933.
[46]

L. Ma, P. McJarrow, H. J. B. J. Mohamed, et al., Lactational changes in the human milk oligosaccharide concentration in Chinese and Malaysian mothers’ milk, Int. Dairy J. 87 (2018) 1–10. https://doi.org/10.1016/j.idairyj.2018.07.015.

[47]

W. Sumiyoshi, T. Urashima, T. Nakamura, et al., Determination of each neutral oligosaccharide in the milk of Japanese women during the course of lactation, Brit. J. Nutr. 89 (2003) 61–69. https://doi.org/10.1079/BJN2002746.

[48]

S. Martin-Sosa, M. J. Martin, L. A. Garcia-Pardo, et al., Sialyloligosaccharides in human and bovine milk and in infant formulas: variations with the progression of lactation, J. Dairy Sci. 86 (2003) 52–59. https://doi.org/10.3168/jds.S0022-0302(03)73583-8.

[49]

J. Yan, J. Ding, X. Liang, Chromatographic methods for the analysis of oligosaccharides in human milk, Anal. Methods. 9 (2017) 1071–1077. https://doi.org/10.1039/C7AN02062G.

Food Science of Animal Products
Article number: 9240016
Cite this article:
Chen X, He W, Fan R, et al. Determination of human milk oligosaccharides by porous graphite carbon adsorption coupled with high-performance liquid chromatography-mass spectrometry. Food Science of Animal Products, 2023, 1(2): 9240016. https://doi.org/10.26599/FSAP.2023.9240016

1246

Views

212

Downloads

3

Crossref

Altmetrics

Received: 29 March 2023
Revised: 18 April 2023
Accepted: 18 May 2023
Published: 04 July 2023
© Beijing Academy of Food Sciences 2023.

Food Science of Animal Products published by Tsinghua University Press. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return