AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (725.8 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

The immunomodulatory effect of milk-derived bioactive peptides on food allergy: a review

Fen Xie1,2Huming Shao1,2Jinyan Gao1,2,3Xuanyi Meng1,3,4Yong Wu1,3,4Hongbing Chen1,3,4Xin Li1,2,3( )
State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
School of Food Science and Technology, Nanchang University, Nanchang 330047, China
Jiangxi Provincial Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
Show Author Information

Graphical Abstract

Abstract

Bioactive peptides (BPs) not only have nutritional value, but also have a wide range of biological activities, such as opioid activity, antibacterial activity, antioxidant properties and immunomodulatory which were associated with potential health benefits. Milk-derived BPs are the most researched, deepest and most widely used food-derived BPs. Milk-derived BPs perform an increasingly important role in regulating inflammatory balance in food allergy (FA) due to the immunomodulatory effect. This review outlines its immunomodulatory role in FA around cytokine level and gut regulation, and also emphasizes the production methods and current market applications of milk-derived BPs.

References

[1]

J. Sun, H. He, B. J. Xie, Novel antioxidant peptides from fermented mushroom Ganoderma lucidum, J. Agric. Food Chem. 52(21) (2004) 6646–6652. https://doi.org/10.1021/jf0495136.

[2]

H. Meisel, R. J. Fitzgerald, Biofunctional peptides from milk proteins: mineral binding and cytomodulatory effects, Curr. Pharm. Des. 9(16) (2003) 1289–1295. https://doi.org/10.2174/1381612033454847.

[3]
H. S. Bahareh, I. Amin, Antioxidative peptides from food proteins: a review, Peptides 31(10) (2010) 1949–1956. https://doi.org/10.1016/j.peptides.2010.06.020.
[4]

H. Korhonen, A. Pihlanto, Technological options for the production of health-promoting proteins and peptides derived from milk and colostrum, Curr. Pharm. Des. 13(8) (2007) 829–843. https://doi.org/10.2174/138161207780363112.

[5]

M. Gobbetti, L. Stepaniak, M. Angelis, et al., Latent bioactive peptides in milk proteins: proteolytic activation and significance in dairy processing, Crit. Rev. Food Sci. Nutr. 42(3) (2002) 223–239. https://doi.org/10.1080/10408690290825538.

[6]
S. H. Sicherer, H. A. Sampson, Food allergy: epidemiology, pathogenesis, diagnosis, and treatment, J. Allergy Clin. Immunol. 133(2) (2014) 291–307; 308. https://doi.org/10.1016/j.jaci.2013.11.020.
[7]
C. Wai, N. Leung, K. H. Chu, et al., T-cell epitope immunotherapy in mouse models of food allergy, Methods Mol. Biol. 2223 (2021) 337–355. https://doi.org/10.1007/978-1-0716-1001-5_21.
[8]

H. Renz, K. J. Allen, S. H. Sicherer, et al., Food allergy, Nat. Rev. Dis. Primers. 4 (2018) 17098. https://doi.org/10.1038/nrdp.2017.98.

[9]

R. L. Peters, M. Krawiec, J. J. Koplin, et al., Update on food allergy, Pediatr. Allergy. Immu. 32(4) (2021) 647–657. https://doi.org/10.1111/pai.13443.

[10]

R. L. Peters, J. J. Koplin, L. C. Gurrin, et al., The prevalence of food allergy and other allergic diseases in early childhood in a population-based study: HealthNuts age 4-year follow-up, J. Allergy. Clin. Immu. 140(1) (2017) 145–153. https://doi.org/10.1016/j.jaci.2017.02.019.

[11]

A. Globinska, T. Boonpiyathad, P. Satitsuksanoa, et al., Mechanisms of allergen-specific immunotherapy: diverse mechanisms of immune tolerance to allergens, Ann. Allergy. Asthma Immu. 121(3) (2018) 306–312. https://doi.org/10.1016/j.anai.2018.06.026.

[12]

M. Yang, M. Tan, J. Wu, et al., Prevalence, characteristics, and outcome of cow's milk protein allergy in chinese infants: a population-based survey, J. Parenter. Enteral. Nutr. 43(6) (2019) 803–808. https://doi.org/10.1002/jpen.1472.

[13]

X. Kong, M. Guo, Y. Hua, et al., Enzymatic preparation of immunomodulating hydrolysates from soy proteins, Bioresour. Technol. 99(18) (2008) 8873–8879. https://doi.org/10.1016/j.biortech.2008.04.056.

[14]
M. Julian, L. S. Paola, H. D. Guillermo, et al., Peptides of amaranth were targeted as containing sequences with potential anti-inflammatory properties, J. Funct. Foods 21 (2016) 463–473. https://doi.org/10.1016/j.jff.2015.12.022.
[15]
C. Chatterjee, S. Gleddie, C. W. Xiao, Soybean bioactive peptides and their functional properties, Nutrients 10(9) (2018) 1211. https://doi.org/10.3390/nu10091211.
[16]

S. Hu, J. Yuan, J. Gao, et al., Antioxidant and anti-inflammatory potential of peptides derived from in vitro gastrointestinal digestion of germinated and heat-treated foxtail millet (Setaria italica) proteins, J. Agric. Food Chem. 68(35) (2020) 9415–9426. https://doi.org/10.1021/acs.jafc.0c03732.

[17]

L. Hoz, A. N. Ponezi, R. F. Milani, et al., Iron-binding properties of sugar cane yeast peptides, Food Chem. 142 (2014) 166–169. https://doi.org/10.1016/j.foodchem.2013.06.133.

[18]

H. Yonezawa, K. Okamoto, K. Tomokiyo, et al., Mode of antibacterial action by gramicidin S, J. Biochem. 100(5) (1986) 1253–1259. https://doi.org/10.1093/oxfordjournals.jbchem.a121831.

[19]
S. Luti, V. Galli, M. Venturi, et al. , Bioactive properties of breads made with sourdough of hullless barley or conventional and pigmented wheat flours, Appl. Sci. 11(7) (2021) 3291. https://doi.org/10.3390/app11073291.
[20]

A. Sánchez, A. Vázquez, Bioactive peptides: a review, Food Qual. Saf. 1 (2017) 29–46. https://doi.org/10.1093/fqsafe/fyx006.

[21]

V. Brantl, H. Teschemacher, A. Henschen, et al., Novel opioid peptides derived from casein (β-casomorphins). I. Isolation from bovine casein peptone, Hoppe Seylers Z Physiol. Chem. 360(9) (1979) 1211–1216. https://doi.org/10.1515/bchm2.1979.360.2.1211.

[22]
E. K. Eriksen, G. E. Vegarud, T. Langsrud, et al. , Effect of milk proteins and their hydroly-sates on in vitro immune responses, Small Ruminant Res. 79(1) (2008) 29–37. https://doi.org/10.1016/j.smallrumres.2008.07.003.
[23]

K. Mizumachi, N. M. Tsuji, J. Kurisaki, Suppression of immune responses to β-lactoglobulin in mice by the oral administration of peptides representing dominant T cell epitopes, J. Sci. Food Agr. 88(3) (2008) 542–549. https://doi.org/10.1002/jsfa.3122.

[24]
P. Rupa, Y. Mine, Oral immunotherapy with immunodominant T-cell epitope peptides alleviates allergic reactions in a Balb/c mouse model of egg allergy, Allergy 67(1) (2012) 74–82. https://doi.org/10.1111/j.1398-9995.2011.02724.x.
[25]

F. Ferreira, C. Ebner, B. Kramer, et al., Modulation of IgE reactivity of allergens by site-directed mutagenesis: potential use of hypoallergenic variants for immunotherapy, FASEB J. 12(2) (1998) 231–242. https://doi.org/10.1096/fasebj.12.2.231.

[26]

J. W. Gouw, J. Jo, L. Meulenbroek, et al., Identification of peptides with tolerogenic potential in a hydrolysed whey-based infant formula, Clin. Exp. Allergy. 48(10) (2018) 1345–1353. https://doi.org/10.1111/cea.13223.

[27]

W. Bellamy, M. Takase, H. Wakabayashi, et al., Antibacterial spectrum of lactoferricin B, a potent bactericidal peptide derived from the N-terminal region of bovine lactoferrin, J. Appl. Bacteriol. 73(6) (1992) 472–479. https://doi.org/10.1111/j.1365-2672.1992.tb05007.x.

[28]

D. P. Mohanty, S. Mohapatra, S. Misra, et al., Milk derived bioactive peptides and their impact on human health: a review, Saudi J. Biol. Sci. 23(5) (2016) 577–583. https://doi.org/10.1016/j.sjbs.2015.06.005.

[29]

D. E. Cruz-Casas, C. N. Aguilar, J. A. Ascacio-Valdes, et al., Enzymatic hydrolysis and microbial fermentation: the most favorable biotechnological methods for the release of bioactive peptides, Food Chem. 3 (2021) 100047. https://doi.org/10.1016/j.fochms.2021.100047.

[30]
F. Bamdad, S. H. Shin, J. W. Suh, et al., Anti-inflammatory and antioxidant properties of casein hydrolysate produced using high hydrostatic pressure combined with proteolytic enzymes, Molecules 22(4) (2017) 609. https://doi.org/10.3390/molecules22040609.
[31]

K. F. Chai, A. Voo, W. N. Chen, Bioactive peptides from food fermentation: a comprehen-sive review of their sources, bioactivities, applications, and future development, Compr. Rev. Food Sci. Food Saf. 19(6) (2020) 3825–3885. https://doi.org/10.1111/1541-4337.12651.

[32]
A. Singh, R. T. Duche, A. G. Wandhare, et al. , Milk-derived antimicrobial peptides: over-view, applications, and future perspectives, Probiotics Antimicro 15(1) (2023) 44–62. https://doi.org/10.1007/s12602-022-10004-y.
[33]

M. G. Venegas-Ortega, A. C. Flores-Gallegos, J. L. Martinez-Hernandez, et al., Production of bioactive peptides from lactic acid bacteria: a sustainable approach for healthier foods, Compr. Rev. Food Sci. Food Saf. 18(4) (2019) 1039–1051. https://doi.org/10.1111/1541-4337.12455.

[34]

R. Pei, D. A. Martin, D. M. Dimarco, et al., Evidence for the effects of yogurt on gut health and obesity, Crit. Rev. Food Sci. Nutr. 57(8) (2017) 1569–1583. https://doi.org/10.1080/10408398.2014.883356.

[35]

B. Dziuba, M. Dziuba, Milk proteins-derived bioactive peptides in dairy products: molecular, biological and methodological aspects, Acta. Sci. Pol. Technol. Aliment. 13(1) (2014) 5–25. https://doi.org/10.17306/j.afs.2014.1.1.

[36]

J. F. Viana, S. C. Dias, O. L. Franco, et al., Heterologous production of peptides in plants: fu-sion proteins and beyond, Curr. Protein Pept. Sci. 14(7) (2013) 568–579. https://doi.org/10.2174/13892037113149990072.

[37]

Y. Cui, Y. Yu, S. Lin, et al., Alteration of allergen fold of Bos d 5 into a hypoallergenic vaccine for immunotherapy of cow’s milk allergy, Int. Arch. Allergy Immunol. 183(1) (2022) 93–104. https://doi.org/10.1159/000517998.

[38]

J. Zhou, X. Yan, W. Zhang, et al., Construction of an anticancer fusion peptide (ACFP) derived from milk proteins and an assay of anti-ovarian cancer cells in vitro, Anticancer Agents. Med. Chem. 17(4) (2017) 635–643. https://doi.org/10.2174/1871520616666160627091131.

[39]
B. Iglesias-Figueroa, N. Valdiviezo-Godina, T. Siqueiros-Cendon, et al., High-level expression of recombinant bovine lactoferrin in pichia pastoris with antimicrobial activity, Int. J. Mol. Sci. 17(6) (2016) 902. https://doi.org/10.3390/ijms17060902.
[40]

K. K. Dubey, G. A. Luke, C. Knox, et al., Vaccine and antibody production in plants: devel-opments and computational tools, Brief Funct. Genomics. 17(5) (2018) 295–307. https://doi.org/10.1093/bfgp/ely020.

[41]
H. Punia, J. Tokas, A. Malik, et al., Identification and detection of bioactive peptides in milk and dairy products: remarks about agro-foods, Molecules 25(15) (2020) 3328. https://doi.org/10.3390/molecules25153328.
[42]

J. M. Heck, A. Schennink, H. Valenberg, et al., Effects of milk protein variants on the protein composition of bovine milk, J. Dairy Sci. 92(3) (2009) 1192–1202. https://doi.org/10.3168/jds.2008-1208.

[43]

H. Kayser, H. Meisel, Stimulation of human peripheral blood lymphocytes by bioactive peptides derived from bovine milk proteins, FEBS Lett. 383(1/2) (1996) 18–20. https://doi.org/10.1016/0014-5793(96)00207-4.

[44]

T. Saito, Antihypertensive peptides derived from bovine casein and whey proteins, Adv Exp Med Biol. 606 (2008) 295–317. https://doi.org/10.1007/978-0-387-74087-4_12.

[45]
O. Power, P. Jakeman, R. J. FitzGerald, Antioxidative peptides: enzymatic production, in vitro and in vivo antioxidant activity and potential applications of milk-derived antioxidative peptides, Amino Acids 44(3) (2003) 797–820. https://doi.org/10.1007/s00726-012-1393-9.
[46]

N. P. Shah, Effects of milk-derived bioactives: an overview, Br. J. Nutr. 84(Suppl 1) (2000) S3–S10. https://doi.org/10.1017/s000711450000218x.

[47]

T. Takano, Anti-hypertensive activity of fermented dairy products containing biogenic peptides, Antonie. Van. Leeuwenhoek. 82(1/4) (2002) 333–340. https://doi.org/10.1023/A:1020600119907.

[48]
P. Jäkälä, H. Vapaatalo, Antihypertensive peptides from milk proteins, Pharmaceuticals 3(1) (2010) 251–272. https://doi.org/10.3390/ph3010251.
[49]

J. Wan, R. Mawson, M. Ashokkumar, et al., Emerging processing technologies for functional foods, Aust. J. Dairy Technol. 60(2) (2005) 167–169.

[50]

A. Henschen, F. Lottspeich, V. Brantl, et al., Novel opioid peptides derived from casein (β-casomorphins). II. Structure of active components from bovine casein peptone, Hoppe-Seyler's Zeitschrift für. Physiologische Chemie. 360(9) (1979) 1217. https://doi.org/10.1515/bchm2.1980.361.2.1835.

[51]
M. A. Corrons, C. S. Liggieri, S. A. Trejo, et al. , ACE-inhibitory peptides from bovine ca-seins released with peptidases from Maclura pomifera Latex, Food Res. Int. 93 (2017) 8–15. https://doi.org/10.1016/j.foodres.2017.01.003.
[52]
H. A. Elbarbary, A. M. Abdou, Y. Nakamura, et al., Identification of novel antibacterial pep-tides isolated from a commercially available casein hydrolysate by autofocusing technique, Biofactors 38(4) (2012) 309–315. https://doi.org/10.1002/biof.1023.
[53]

M. Tanaka, H. Watanabe, Y. Yoshimoto, et al., Anti-allergic effects of His-Ala-Gln tripep-tide in vitro and in vivo, Biosci. Biotechnol. Biochem. 81(2) (2017) 380–383. https://doi.org/10.1080/09168451.2016.1243984.

[54]

A. Pellegrini, U. Thomas, N. Bramaz, et al., Isolation and identification of three bactericid-al domains in the bovine α-lactalbumin molecule, Biochim. Biophys. Acta 1426(3) (1999) 439–448. https://doi.org/10.1016/s0304-4165(98)00165-2.

[55]

D. Xie, Y. Shen, E. Su, et al., The effects of angiotensin I-converting enzyme inhibitory peptide VGINYW and the hydrolysate of α-lactalbumin on blood pressure, oxidative stress and gut microbiota of spontaneously hypertensive rats, Food Funct. 13(5) (2022) 2743–2755. https://doi.org/10.1039/d1fo03570c.

[56]

M. Martin, D. Hagemann, T. Henle, et al., The angiotensin converting enzyme-inhibitory effects of the peptide isoleucine-tryptophan after oral intake via whey hydrolysate in men, J. Hypertens. 36(Suppl 1) (2018) e220. https://doi.org/10.1097/01.hjh.0000539622.35704.22.

[57]

A. Pihlanto-Leppala, P. Koskinen, K. Piilola, et al., Angiotensin I-converting enzyme inhibitory properties of whey protein digests: concentration and characterization of active peptides, J. Dairy Res. 67(1) (2000) 53–64. https://doi.org/10.1017/s0022029999003982.

[58]

D. A. Clare, H. E. Swaisgood, Bioactive milk peptides: a prospectus, J. Dairy Sci. 83(6) (2000) 1187–1195. https://doi.org/10.3168/jds.S0022-0302(00)74983-6.

[59]

Y. Ma, J. Liu, H. Shi, et al., Isolation and characterization of anti-inflammatory peptides derived from whey protein, J. Dairy Sci. 99(9) (2016) 6902–6912. https://doi.org/10.3168/jds.2016-11186.

[60]

E. Barrett, M. Hayes, G. F. Fitzgerald, et al., Fermentation, cell factories and bioactive peptides: food grade bacteria for production of biogenic compounds, Aust. J. Dairy Technol. 60(2) (2005) 157–162.

[61]

B. Hernandez-Ledesma, A. Davalos, B. Bartolome, et al., Preparation of antioxidant enzymatic hydrolysates from α-lactalbumin and β-lactoglobulin. Identification of active petides by HPLC-MS/MS, J. Agric. Food Chem. 53(3) (2005) 588–593. https://doi.org/10.1021/jf048626m.

[62]
H. Teschemacher, G, Koch, V. Brantl, Milk protein-derived opioid receptor ligands, Biopolymers 43(2) (1997) 99–117. https://doi.org/10.2174/1381612033454856.
[63]

L. Meulenbroek, B. van Esch, G. Hofman, et al., Treatment with synthetic β-lactoglobulin peptides can prevent clinical symptoms in a mouse model for cow's milk allergy, Clin. Transl. Allergy 3(3) (2013) 83. https://doi.org/10.1186/2045-7022-3-S3-P83.

[64]

F. Fan, P. Shi, M. Liu, et al., Lactoferrin preserves bone homeostasis by regulating the RANKL/RANK/OPG pathway of osteoimmunology, Food Funct. 9(5) (2018) 2653–2660. https://doi.org/10.1039/c8fo00303c.

[65]

F. Fan, P. Shi, H. Chen, et al., Identification and availability of peptides from lactoferrin in the gastrointestinal tract of mice, Food Funct. 10(2) (2019) 879–885. https://doi.org/10.1039/c8fo01998c.

[66]

H. Chiba, F. Tani, M. Yoshikawa, Opioid antagonist peptides derived from κ-casein, J. Dairy Res. 56(3) (1989) 363–366. https://doi.org/10.1017/s0022029900028818.

[67]
P. B. Tsafack, C. Li, A. Tsopmo, Food peptides, gut microbiota modulation, and antihypertensive effects, Molecules 27(24) (2022) 8806. https://doi.org/10.3390/molecules 27248806.
[68]

A. Pihlanto, Antioxidative peptides derived from milk proteins, Int. Dairy J. 16(11) (2006) 1306–1314. https://doi.org/10.1016/j.idairyj.2006.06.005.

[69]

S. Ranathunga, S. Rajapakse, S. K. Kim, Purification and characterization of antioxidative peptide derived from muscle of conger eel (Conger myriaster), Eur. Food Res. Technol. 222(3/4) (2006) 310–315. https://doi.org/10.1007/s00217-005-0079-x.

[70]
I. López-Expósito, J. Á. Gómez-Ruiz, L. Amigo, et al., Identification of antibacterial pep-tides from ovine αs2-casein, Int. Dairy J. 16(9) (2006) 1072–1080. https://doi.org/10.1016/j.idairyj.2005.10.006.
[71]

R. Hancock, A. Rozek, Role of membranes in the activities of antimicrobial cationic peptides, FEMS Microbiol. Lett. 206(2) (2002) 143–149. https://doi.org/10.1111/j.1574-6968.2002.tb11000.x.

[72]
A. Silva, O. Teschke, Effects of the antimicrobial peptide PGLa on live Escherichia coli, Biochim. Biophys. Acta 1643(1) (2003) 95–103. https://doi.org/10.1016/j.bbamcr.2003.10.001.
[73]

T. Baar, B. Esch, L. Ooijen, et al., Raw milk kefir: microbiota, bioactive peptides, and immune modulation, Food Funct. 14(3) (2023) 1648–1661. https://doi.org/10.1039/d2fo03248a.

[74]
J. Cai, X. Li, H. Du, et al., Immunomodulatory significance of natural peptides in mammalians: promising agents for medical application, Immunobiology 225(3) (2020) 151936. https://doi.org/10.1016/j.imbio.2020.151936.
[75]

H. S. Gill, F. Doull, K. J. Rutherfurd, et al., Immunoregulatory peptides in bovine milk, Brit. J. Nutr. 84(Suppl 1) (2000) S111. https://doi.org/10.1017/s0007114500002336.

[76]
M. Pavlicevic, N. Marmiroli, E. Maestri, Immunomodulatory peptides: a promising source for novel functional food production and drug discovery, Peptides 148 (2022) 170696. https://doi.org/10.1016/j.peptides.2021.170696.
[77]

K. Takatsu, Cytokines involved in B-cell differentiation and their sites of action, Proc. Soc. Exp. Biol. Med. 215(2) (1997) 121–133. https://doi.org/10.3181/00379727-215-44119.

[78]

F. Wijk, L. Knippels, Initiating mechanisms of food allergy: oral tolerance versus allergic sensitization, Biomed. Pharmacother. 61(1) (2007) 8–20. https://doi.org/10.1016/j.biopha.2006.11.003.

[79]

M. Chalamaiah, W. Yu, J. Wu, Immunomodulatory and anticancer protein hydrolysates (peptides) from food proteins: a review, Food Chem. 245 (2018) 205–222. https://doi.org/10.1016/j.foodchem.2017.10.087.

[80]

G. Badr, H. Ebaid, M. Mohany, et al., Modulation of immune cell proliferation and chemotaxis towards CC chemokine ligand (CCL)-21 and CXC chemokine ligand (CXCL)-12 in undenatured whey protein-treated mice, J. Nutr. Biochem. 23(12) (2012) 1640–1646. https://doi.org/10.1016/j.jnutbio.2011.11.006.

[81]

S. F. Gauthier, Y. Pouliot, D. Saint-Sauveur, Immunomodulatory peptides obtained by the enzymatic hydrolysis of whey proteins, Int. Dairy J. 16(11) (2006) 1315–1323. https://doi.org/10.1016/j.idairyj.2006.06.014.

[82]
K. Adel-Patient, S. Wavrin, H. Bernard, et al., Oral tolerance and Treg cells are induced in BALB/c mice after gavage with bovine β-lactoglobulin, Allergy 66(10) (2011) 1312–1321. https://doi.org/10.1111/j.1398-9995.2011.02653.x.
[83]

P. C. Fulkerson, M. E. Rothenberg, Targeting eosinophils in allergy, inflammation and beyond, Nat. Rev. Drug Discov. 12(2) (2013) 117–129. https://doi.org/10.1038/nrd3838.

[84]
X. Ma, F. Yang, X. Meng, et al., Immunomodulatory role of BLG-derived peptides based on simulated gastrointestinal digestion and DC-T cell from mice allergic to cow’s milk, Foods 11(10) (2022) 1450. https://doi.org/10.3390/foods11101450.
[85]

L. Meulenbroek, B. Esch, G. Hofman, et al., Oral treatment with β-lactoglobulin peptides prevents clinical symptoms in a mouse model for cow’s milk allergy, Pediat. Allerg. Imm. 24(7) (2013) 656–664. https://doi.org/10.1111/pai.12120.

[86]

F. Minshawi, S. Lanvermann, E. Mckenzie, et al., The generation of an engineered interleukin-10 protein with improved stability and biological function, Front. Immunol. 11 (2020) 1794. https://doi.org/10.3389/fimmu.2020.01794.

[87]

J. Zhang, Yin and yang interplay of IFN-γ in inflammation and autoimmune disease, J. Clin. Invest. 117(4) (2007) 871–873. https://doi.org/10.1172/JCI31860.

[88]

K. Sowmya, M. I. Bhat, R. Bajaj, et al., Antioxidative and anti-inflammatory potential with transepithelial transport of a buffalo casein-derived hexapeptide (YFYPQL), Food Biosci. 28 (2019) 151–163. https://doi.org/10.1016/j.fbio.2019.02.003.

[89]

M. Tanaka, K. Yamagishi, T. Sugahara, et al., Impact of peptides from casein and peptide-related amino acids on degranulation in rat basophilic leukemia cell line RBL-2H3, Nippon Shokuhin Kagaku Kaishi 59(11) (2012) 556–561. https://doi.org/10.3136/nskkk.59.556.

[90]

K. Adel-Patient, H. Bernard, S. Wavrin, et al., Oral tolerance and functional Treg cells are induced in BALB/c mice after gavage with bovine β-lactoglobulin (BLG), Clin Transl Allergy. 1(1) (2011) 37. https://doi.org/10.1186/2045-7022-1-S1-P37.

[91]

S. Guha, K. Majumder, Structural-features of food-derived bioactive peptides with antiinflammatory activity: a brief review, J. Food Biochem. 43(1) (2019) e12531. https://doi.org/10.1111/jfbc.12531.

[92]

E. K. Kim, E. J. Choi, Pathological roles of MAPK signaling pathways in human diseases, Biochim. Biophys. Acta 1802(4) (2010) 396–405. https://doi.org/10.1016/j.bbadis.2009.12.009.

[93]

M. Zhang, Y. Zhao, Y. Yao, et al., Isolation and identification of peptides from simulated gastrointestinal digestion of preserved egg white and their anti-inflammatory activity in TNF-α-induced Caco-2 cells, J. Nutr. Biochem. 63 (2019) 44–53. https://doi.org/10.1016/j.jnutbio.2018.09.019.

[94]

D. Lozano-Ojalvo, R. Lopez-Fandino, Immunomodulating peptides for food allergy prevention and treatment, Crit. Rev. Food Sci. Nutr. 58(10) (2018) 1629–1649. https://doi.org/10.1080/10408398.2016.1275519.

[95]
T. Nakamura, T. Hirota, K. Mizushima, et al., Milk-derived peptides, Val-Pro-Pro and Ile-Pro-Pro, attenuate atherosclerosis development in apolipoprotein e-deficient mice: a preliminary study, J. Med. Food 16(5) (2013) 396–403. https://doi.org/10.1089/jmf.2012.2541.
[96]

D. Artis, Epithelial-cell recognition of commensal bacteria and maintenance of immune homeostasis in the gut, Nat. Rev. Immunol. 8(6) (2008) 411–420. https://doi.org/10.1038/nri2316.

[97]

M. Kiewiet, M. Gros, R. Neerven, et al., Immunomodulating properties of protein hydrolysates for application in cow’s milk allergy, Pediatr. Allergy Immunol. 26(3) (2015) 206–217. https://doi.org/10.1111/pai.12354.

[98]

M. Heyman, Gut barrier dysfunction in food allergy, Eur. J. Gastroenterol Hepatol. 17(12) (2005) 1279–1285. https://doi.org/10.1097/00042737-200512000-00003.

[99]

H. Yasumatsu, S. Tanabe, The casein peptide Asn-Pro-Trp-Asp-Gln enforces the intestinal tight junction partly by increasing occludin expression in Caco-2 cells, Br. J. Nutr. 104(7) (2010) 951–956. https://doi.org/10.1017/S0007114510001698.

[100]
S. Zoghbi, A. Trompette, J. Claustre, et al., β-Casomorphin-7 regulates the secretion and expression of gastrointestinal mucins through a mu-opioid pathway, Am. J. Physiol. Gastrointest. Liver Physiol. 290(6) (2006) G1105–G1113. https://doi.org/10.1152/ajpgi.00455.2005.
[101]

G. Vinderola, C. Matar, G. Perdigón, Milk fermentation products of L. helveticus R389 ac-tivate calcineurin as a signal to promote gut mucosal immunity, BMC Immunology. 8(1) (2007) 19. https://doi.org/10.1186/1471-2172-8-19.

[102]
J. R. Mcdole, L. W. Wheeler, K. G. Mcdonald, et al., Goblet cells deliver luminal antigen to CD103+ dendritic cells in the small intestine, Nature 483(7389) (2012) 345–349. https://doi.org/10.1038/nature10863.
[103]
P. Plaisancié, J. Claustre, M. Estienne, et al., A novel bioactive peptide from yoghurts modulates expression of the gel-forming MUC2 mucin as well as population of goblet cells and Paneth cells along the small intestine, J. Nutr. Biochem. 24(1) (2013) 213–221. https://doi.org/10.1016/j.jnutbio.2012.05.004.
[104]
W. M. Bruck, S. L. Kelleher, G. R. Gibson, et al., rRNA probes used to quantify the effects of glycomacropeptide and α-lactalbumin supplementation on the predominant groups of intestinal bacteria of infant rhesus monkeys challenged with enteropathogenic Escherichia coli, J. Pediatr. Gastroenterol. Nutr. 37(3) (2003) 273–280. https://doi.org/10.1097/00005176-200309000-00014.
[105]

Z. Ming, Y. Jia, Y. Yan, et al., Amelioration effect of bovine casein glycomacropeptide on ulcerative colitis in mice, Food Agr. Immunol. 26(5) (2015) 717–728. https://doi.org/10.1080/09540105.2015.1018874.

[106]

Y. Sutas, M. Hurme, E. Isolauri, Down-regulation of anti-CD3 antibody-induced IL-4 production by bovine caseins hydrolysed with Lactobacillus GG-derived enzymes, Scand. J. Immunol. 43(6) (1996) 687–689. https://doi.org/10.1046/j.1365-3083.1996.d01-258.x.

[107]

T. Pessi, E. Isolauri, Y. Sutas, et al., Suppression of T-cell activation by Lactobacillus rhamnosus GG-degraded bovine casein, Int. Immunopharmacol. 1(2) (2001) 211–218. https://doi.org/10.1016/s1567-5769(00)00018-7.

[108]

B. Spanier, Transcriptional and functional regulation of the intestinal peptide transporter PEPT1, J. Physiol. 592(5) (2014) 871–879. https://doi.org/10.1113/jphysiol.2013.258889.

[109]

F. Tidona, A. Criscion, A. M. Guastella, et al., Bioactive peptides in dairy products, Ital. J. Anim. Sci. 8(3) (2009) 315–340. https://doi.org/10.4081/ijas.2009.315.

[110]

M. F. Sauvé, S. Spahis, E. Delvi, et al., Glycomacropeptide: a bioactive milk derivative to alleviate metabolic syndrome outcomes, Antioxid. Redox. Signal. 34(3) (2021) 201–222. https://doi.org/10.1089/ars.2019.7994.

[111]

C. Thomä-Worringer, J. Sørensen, R. López-Fandiño, Health effects and technological fea-tures of caseinomacropeptide, Int. Dairy J. 16(11) (2006) 1324–1333. https://doi.org/10.1016/j.idairyj.2006.06.012.

[112]
D. Reyes-Pavon, D. Cervantes-Garcia, L. G. Bermudez-Humaran, et al., Protective effect of glycomacropeptide on food allergy with gastrointestinal manifestations in a rat model through down-regulation of type 2 immune response, Nutrients 12(10) (2020) 2942. https://doi.org/10.3390/nu12102942.
[113]
A. Dullius, M. I. Goettert, C. F. V. de Souza, Whey protein hydrolysates as a source of bioac-tive peptides for functional foods-biotechnological facilitation of industrial scale-up, J. Funct. Foods 42(2018) 58–74. https://doi.org/10.1016/j.jff.2017.12.063.
[114]
L. B. Olvera-Rosales, A. E. Cruz-Guerrero, J. M. García-Garibay, et al., Bioactive peptides of whey: obtaining, activity, mechanism of action, and further applications, Crit. Rev. Food Sci. (2022) 1–31. https://doi.org/10.1080/10408398.2022.2079113.
[115]

T. Siqueiros-Cendón, S. Arévalo-Gallegos, B. F. Iglesias-Figueroa, et al., Immunomodulatory effects of lactoferrin, Acta Pharmacol. Sin. 35(5) (2014) 557–566. https://doi.org/10.1038/aps.2013.200.

Food Science of Animal Products
Article number: 9240018
Cite this article:
Xie F, Shao H, Gao J, et al. The immunomodulatory effect of milk-derived bioactive peptides on food allergy: a review. Food Science of Animal Products, 2023, 1(2): 9240018. https://doi.org/10.26599/FSAP.2023.9240018

1722

Views

375

Downloads

0

Crossref

Altmetrics

Received: 03 May 2023
Revised: 12 June 2023
Accepted: 13 June 2023
Published: 17 July 2023
© Beijing Academy of Food Sciences 2023.

Food Science of Animal Products published by Tsinghua University Press. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return