AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2.6 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

Eggstraordinary health: exploring avian egg proteins and peptides in boosting immunity and health maintenance

Xiaomeng Li1Minquan Xia1Qi Zeng1Xinyue Zhang1Haoyang Sun1Xi Huang1Dong Uk Ahn2Mohamed Salama1,3Fayez Khalaf Mourad1Zhaoxia Cai1( )
National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
Department of Animal Science, Iowa State University, Ames 50011, USA
Dairy Department, National Research Center, Giza 999060, Egypt
Show Author Information

Abstract

Amidst the outbreak of the Corona Virus Disease 2019 (COVID-19), there has been a pivotal shift in nutritional focus towards adopting healthier lifestyles to enhance immune function. The successive resurgence of COVID-19 serves as a stark reminder that prioritizing the enhancement of our own immune systems is of paramount importance. Eggs are nutritious, productive, cost-effective, and affordable for consumption. Likewise, eggs are exclusive among the numerous ways consumers can obtain high-quality animal protein. Egg proteins and their peptide derivatives are abundant and biologically active and have significant therapeutic effects on chronic diseases induced by a variety of factors, including metabolic syndrome, making eggs an important raw material for the study of proteins and peptide-active substances. This paper reviewed methods for the isolation and purification of avian egg proteins and their derived peptides; the effects of the proteins and peptides in enhancing the body’s immunity, lowering blood pressure and expression levels of inflammatory factors; as well as the potential of the proteins and peptides in reducing the risk of chronic diseases such as osteoporosis and cardiovascular disease. This review was written with the expectation that it would provide a comprehensive understanding of the potential value of poultry egg proteins for maintaining health.

References

[1]

D. S. Chauhan, R. Prasad, R. Srivastava, et al., Comprehensive review on current interventions, diagnostics, and nanotechnology perspectives against SARS-CoV-2, Bioconjug. Chem. 31 (2020) 2021–2045. https://doi.org/10.1021/acs.bioconjchem.0c00323.

[2]

S. Gerber, M. O’Hearn, S. M. Cruz, et al., Changes in food security, healthfulness, and access during the coronavirus disease 2019 pandemic: results from a National United States Survey, Curr. Devel. Nutrit. 7 (2023) 100060. https://doi.org/10.1016/j.cdnut.2023.100060.

[3]

T. R. Pakki, N. Mariana, M. L. Tampubolon, et al., Side effects after mRNA COVID-19 vaccine as a booster in health workers, Iran. J. Public Health 51 (2022) 2504–2509. https://doi.org/10.18502/ijph.v51i11.11167.

[4]

R. Thirumdas, A. Kothakota, R. Pandiselvam, et al., Role of food nutrients and supplementation in fighting against viral infections and boosting immunity: a review, Trends Food Sci. Technol. 110 (2021) 66–77. https://doi.org/10.1016/j.jpgs.2021.01.069.

[5]

Z. Wang, Y. Liu, L. Wei, et al., What are the risk factors of hospital length of stay in the novel coronavirus pneumonia (COVID-19) patients? A survival analysis in southwest China, PLoS ONE 17 (2022) e0261216. https://doi.org/10.1371/journal.pone.0261216.

[6]

C. L. McIntyre, A. Temesgen, L. Lynch, Diet, nutrient supply, and tumor immune responses, Trends Cancer 9 (2023) 752–763. https://doi.org/10.1016/j.trecan.2023.06.003.

[7]

S. Basak, J. Gokhale, Immunity boosting nutraceuticals: current trends and challenges, J. Food Biochem. 46 (2022) e13902. https://doi.org/10.1111/jfbc.13902.

[8]

K. Kolbe, Mitigating climate change through diet choice: costs and CO2 emissions of different cookery book-based dietary options in Germany, Adv. Clim. Chang. Res. 11 (2020) 392–400. https://doi.org/10.1016/j.accre.2020.11.003.

[9]

X. H. Lv, X. Huang, B. Ma, et al., Modification methods and applications of egg protein gel properties: a review, Compr. Rev. Food Sci. F. 21 (2022) 2233–2252. https://doi.org/10.1111/1541-4337.12907.

[10]

X. Li, Z. Li, X. Zhang, et al., Restoration of immunity by whole egg was superior to egg white or egg yolk in a cyclophosphamide-induced immunocompromised mouse model, Food Biosci. 50 (2022) 102013. https://doi.org/10.1016/j.fbio.2022.102013.

[11]

S. Jalili-Firoozinezhad, M. Filippi, F. Mohabatpour, et al., Chicken egg white: Hatching of a new old biomaterial, Materials Today 40 (2020) 193–214. https://doi.org/10.1016/j.mattod.2020.05.022.

[12]
R. Huopalahti, R. López-Fandiño, M. Anton, et al., Bioactive Egg Compounds. Springer Berlin Heidelberg, 2007, pp. 99–102.
[13]

E. D. N. S. Abeyrathne, H. Y. Lee, D. U. Ahn, Egg white proteins and their potential use in food processing or as nutraceutical and pharmaceutical agents: a review, Poultry Sci. 92 (2013) 3292–3299. https://doi.org/10.3382/ps.2013-03391.

[14]

C. Guerin-Dubiard, M. Pasco, D. Molle, et al., Proteomic analysis of hen egg white, J. Agric. Food Chem. 54 (2006) 3901–3910. https://doi.org/10.1021/jf0529969.

[15]

Y. Cui, X. Li, M. Lu, et al., Role of polysaccharide conjugation in physicochemical and emulsifying properties of egg phosvitin and the calcium binding capacity of its phosphopeptides, Food Funct. 10 (2019) 1808–1815. https://doi.org/10.1039/c8fo02464b.

[16]

H. Sugino, M. Ishikawa, T. Nitoda, et al., Antioxidative activity of egg yolk phospholipids, J. Agric. Food Chem. 45 (1997) 551–554. https://doi.org/10.1021/jf960416p.

[17]

X. He, J. Wang, Y. Wang, et al., Quantitative lipidomic analysis of egg yolk, yolk granule, and yolk plasma, J. Food Compos. Anal. 115 (2023) 104880. https://doi.org/10.1016/j.jfca.2022.104880.

[18]

J. Zheng, T. Bu, L. Liu, et al., Naturally occurring low molecular peptides identified in egg white show antioxidant activity, Food Res. Int. 138 (2020) 109766. https://doi.org/10.1016/j.foodres.2020.109766.

[19]

S. Arena, G. Renzone, A. Scaloni, A multi-approach peptidomic analysis of hen egg white reveals novel putative bioactive molecules, J. Proteomics. 215 (2020) 103646. https://doi.org/10.1016/j.jprot.2020.103646.

[20]
C. J. Sun, J. N. Liu, W. B. Li, et al., Divergent proteome patterns of egg albumen from domestic chicken, duck, goose, turkey, quail and pigeon, Proteomics 17 (2017). https://doi.org/10.1002/pmic.201700145.
[21]

S. Arena, A. Scaloni, An extensive description of the peptidomic repertoire of the hen egg yolk plasma, J. Agric. Food Chem. 66 (2018) 3239–3255. https://doi.org/10.1021/acs.jafc.8b01183.

[22]

T. A. E. Ahmed, H. P. Suso, M. T. Hincke, In-depth comparative analysis of the chicken eggshell membrane proteome, J. Proteomics 155 (2017) 49–62. https://doi.org/10.1016/j.jprot.2017.01.002.

[23]
J. Haginaka, Chromatographic separations and analysis: protein and glycoprotein stationary phases, in: Reference module in chemistry, molecular sciences and chemical engineering, 2022, Elsevier.
[24]

C. Chang, T. Lahti, T. Tanaka, et al., Egg proteins: fractionation, bioactive peptides and allergenicity, J. Sci. Food Agric. 98 (2018) 5547–5558. https://doi.org/10.1002/jsfa.9150.

[25]

X. M. Jiang, T. Diraviyam, X. Y. Zhang, Affinity purification of egg yolk immunoglobulins (IgY) using a human mycoplasma protein, J. Chromatogr. B 1012 (2016) 37–41. https://doi.org/10.1016/j.jchromb.2016.01.012.

[26]

L. Q. Sun, H. X. Lu, J. Y. Wang, et al., Electroseparation of lysozyme from egg white by electrodialysis with ultrafiltration membrane, Sep. Purif. Technol. 317 (2023) 123710. https://doi.org/10.1016/j.seppur.2023.123710.

[27]

S. Ji, D. U. Ahn, Y. Zhao, et al., An easy and rapid separation method for five major proteins from egg white: successive extraction and MALDI-TOF-MS identification, Food Chem. 315 (2020) 126207. https://doi.org/10.1016/j.foodchem.2020.126207.

[28]

X. Ma, R. Liang, X. Yang, et al., Simultaneous separation of the four major allergens of hen egg white, J. Chromatogr. B 1152 (2020) 122231. https://doi.org/10.1016/j.jchromb.2020.122231.

[29]

J. Zhang, J. Sun, Y. Liu, et al., Separation and purification of phosvitin phosphopeptides using immobilized metal affinity nanoparticles, J. Chromatogr. B. 893/894 (2012) 121–126. https://doi.org/10.1016/j.jchromb.2012.02.046.

[30]

X. Zhang, X. Huang, M. Ma, Role of phosphorylation of phosvitin in the phase transformation of mineralization, Int. J. Biol. Macromol. 101 (2017) 712–718. https://doi.org/10.1016/j.ijbiomac.2017.03.158.

[31]

B. Lei, J. Wu, Purification of egg yolk phosvitin by anion exchange chromatography, J. Chromatogr. A 1223 (2012) 41–46. https://doi.org/10.1016/j.chroma.2011.12.023.

[32]

H. Y. Lee, E. D. N. S. Abeyrathne, I. Choi, et al., Sequential separation of immunoglobulin Y and phosvitin from chicken egg yolk without using organic solvents, Poultry Sci. 93 (2014) 2668–2677. https://doi.org/10.3382/ps.2014-04093.

[33]

E. M. Redwan, A. A. Aljadawi, V. N. Uversky, Simple and efficient protocol for immunoglobulin Y purification from chicken egg yolk, Poultry Sci. 100 (2021) 100956. https://doi.org/10.1016/j.psj.2020.12.053.

[34]

M. R. Almeida, F. Ferreira, P. Domingues, et al., Towards the purification of IgY from egg yolk by centrifugal partition chromatography, Sep. Purif. Technol. 299 (2022) 121697. https://doi.org/10.1016/j.seppur.2022.121697.

[35]

M. Xia, C. Liu, D. U. Ahn, et al., Large-scale isolation and purification of yolk immunoglobulin with different purity levels via a combination technique based on high-speed-shear crossflow membrane separation, Food Hydrocoll. 140 (2023) 108618. https://doi.org/10.1016/j.foodhyd.2023.108618.

[36]

S. Moreno-Fernández, M. Garcés-Rimón, M. Miguel, Egg-derived peptides and hydrolysates: a new bioactive treasure for cardiometabolic diseases, Trends Food Sci. Technol. 104 (2020) 208–218. https://doi.org/10.1016/j.jpgs.2020.08.002.

[37]

Y. H. Zhang, J. Bai, W. N. Jiang, et al., Promising hen egg-derived proteins/peptides (EDPs) for food engineering, natural products and precision medicines, Res. Vet. Sci. 128 (2020) 153–161. https://doi.org/10.1016/j.rvsc.2019.11.011.

[38]

C. Raveschot, B. Cudennec, F. Coutte, et al., Production of bioactive peptides by Lactobacillus species: from gene to application, Front. Microbiol. 9 (2018) 2354. https://doi.org/10.3389/fmicb.2018.02354.

[39]

N. Wisuthiphaet, S. C. Napathorn, Optimisation of the use of products from the cane sugar industry for poly(3-hydroxybutyrate) production by Azohydromonas lata DSM 1123 in fed-batch cultivation, Process Biochem. 51 (2016) 352–361. https://doi.org/10.1016/j.procbio.2015.12.009.

[40]

Y. Liu, Z. Wang, A. Kelimu, et al., Novel iron-chelating peptide from egg yolk: Preparation, characterization, and iron transportation, Food Chem. X 18 (2023) 100692. https://doi.org/10.1016/j.fochx.2023.100692.

[41]

S. K. Ulug, F. Jahandideh, J. Wu, Novel technologies for the production of bioactive peptides, Trends Food Sci. Technol. 108 (2021) 27–39. https://doi.org/10.1016/j.jpgs.2020.12.002.

[42]

S. Y. Lin, Y. Guo, Q. You, et al., Preparation of antioxidant peptide from egg white protein and improvement of its activities assisted by high-intensity pulsed electric field, J. Sci. Food Agr. 92 (2012) 1554–1561. https://doi.org/10.1002/jsfa.4742.

[43]

W. Z. Zhao, D. Zhang, Z. P. Yu, et al., Novel membrane peptidase inhibitory peptides with activity against angiotensin converting enzyme and dipeptidyl peptidase IV identified from hen eggs, J. Funct. Foods 64 (2020) 103649. https://doi.org/10.1016/j.jff.2019.103649.

[44]

C. Nimalaratne, N. Bandara, J. P. Wu, Purification and characterization of antioxidant peptides from enzymatically hydrolyzed chicken egg white, Food Chem. 188 (2015) 467–472. https://doi.org/10.1016/j.foodchem.2015.05.014.

[45]

E. D. N. S. Abeyrathne, X. Huang, D. U. Ahn, Antioxidant, angiotensin-converting enzyme inhibitory activity and other functional properties of egg white proteins and their derived peptides: a review, Poultry Sci. 97 (2018) 1462–1468. https://doi.org/10.3382/ps/pex399.

[46]

I. Kumar, B. Yaseen, C. Gangwar, et al., Ovalbumin mediated eco-friendly synthesis of silver oxide nanoparticles and their antibacterial and antifungal studies, Mater. Today 46 (2021) 2330–2334. https://doi.org/10.1016/j.matpr.2021.04.403.

[47]

L. Sheng, G. Y. Tang, Q. Wang, et al., Molecular characteristics and foaming properties of ovalbumin-pullulan conjugates through the Maillard reaction, Food Hydrocoll. 100 (2020) 105384. https://doi.org/10.1016/j.foodhyd.2019.105384.

[48]

G. Hu, Z. Batool, Z. Cai, et al., Production of self-assembling acylated ovalbumin nanogels as stable delivery vehicles for curcumin, Food Chem. 355 (2021) 129635. https://doi.org/10.1016/j.foodchem.2021.129635.

[49]

P. Rupa, L. Schnarr, Y. Mine, Effect of heat denaturation of egg white proteins ovalbumin and ovomucoid on CD4+ T cell cytokine production and human mast cell histamine production, J. Funct. Foods 18 (2015) 28–34. https://doi.org/10.1016/j.jff.2015.06.030.

[50]

N. Sun, A. Teng, Y. Zhao, et al., Immunological and anticancer activities of seleno-ovalbumin (Se-OVA) on H22-bearing mice, Int. J. Biol. Macromol. 163 (2020) 657–665. https://doi.org/10.1016/j.ijbiomac.2020.07.006.

[51]

X. Fu, Y. Chen, G. Hu, et al., A novel antibacterial hydrogel based on thiolated ovalbumin/gelatin with silver ions to promote wound healing in mice, Int. J. Biol. Macromol. 253 (2023) 127116. https://doi.org/10.1016/j.ijbiomac.2023.127116.

[52]
B. Ma, X. Fu, P. Zhu, et al., Allergenicity, assembly and applications of ovalbumin in egg white: a review, Crit. Rev. Food Sci. (2023). https://doi.org/10.1080/10408398.2023.2202774.
[53]

N. Zhou, Y. Zhao, Y. Yao, et al., Antioxidant stress and anti-inflammatory activities of egg white proteins and their derived peptides: a review, J. Agric. Food Chem. 70 (2022) 5–20. https://doi.org/10.1021/acs.jafc.1c04742.

[54]

X. Zhang, Q. Zeng, Y. Liu, et al., Enhancing the resistance of anthocyanins to environmental stress by constructing ovalbumin-propylene glycol alginate nanocarriers with novel configurations, Food Hydrocoll. 118 (2021) 106668. https://doi.org/10.1016/j.foodhyd.2021.106668.

[55]

Q. Zeng, W. Zeng, Y. Jin, et al., Construction and evaluation of ovalbumin-pullulan nanogels as a potential delivery carrier for curcumi, . Food Chem. 367 (2022) 130716. https://doi.org/10.1016/j.foodchem.2021.130716.

[56]

H. Y. Cho, J. E. Lee, J. H. Lee, et al., The immune-enhancing activity of egg white ovalbumin hydrolysate prepared with papain via MAPK signaling pathway in RAW264.7 macrophages, J. Funct. Foods 103 (2023) 105487. https://doi.org/10.1016/j.jff.2023.105487.

[57]

X. Wang, Z. Wei, C. Xue, The past and future of ovotransferrin: physicochemical properties, assembly and applications, Trends Food Sci. Technol. 116 (2021) 47–62. https://doi.org/10.1016/j.jpgs.2021.07.003.

[58]

E. R. Werner, C. D. Arnold, B. L. Caswell, et al., The effects of 1 egg per day on iron and anemia status among young malawian children: a secondary analysis of a randomized controlled trial, Curr. Devel. Nutrit. 6 (2022) nzac094. https://doi.org/10.1093/cdn/nzac094.

[59]

S. H. Moon, J. H. Lee, D. U. Ahn, et al., In vitro antioxidant and mineral-chelating properties of natural and autocleaved ovotransferrin, J. Sci. Food Agric. 95 (2015) 2065–2070. https://doi.org/10.1002/jsfa.6921.

[60]

N. Shang, J. Wu, Egg white ovotransferrin attenuates RANKl-induced osteoclastogenesis and bone resorption, Nutrients 11 (2019) 2254. https://doi.org/10.3390/nu11092254.

[61]

G. Zhu, J. Luo, H. Du, et al., Ovotransferrin enhances intestinal immune response in cyclophosphamide-induced immunosuppressed mice, Int. J. Biol. Macromol. 120 (2018) 1–9. https://doi.org/10.1016/j.ijbiomac.2018.08.058.

[62]

Y. Huang, S. Chen, Y. Yao, et al., Ovotransferrin inhibits TNF-α induced inflammatory response in gastric epithelial cells via MAPK and NF-κB pathway, J. Agric. Food Chem. 71 (2023) 12474–12486. https://doi.org/10.1021/acs.jafc.3c00950.

[63]

K. Majumder, S. Chakrabarti, S. T. Davidge, et al., Structure and activity study of egg protein ovotransferrin derived peptides (IRW and IQW) on Endothelial inflammatory response and oxidative stress, J. Agric. Food Chem. 61 (2013) 2120–2129. https://doi.org/10.1021/jf3046076.

[64]

K. S. Bhullar, F. Ashkar, J. Wu, Peptides GWN and GW protect kidney cells against Dasatinib induced mitochondrial injury in a SIRT1 dependent manner, Food Chem. Mol. Sci. 4 (2022) 100069. https://doi.org/10.1016/j.fochms.2021.100069.

[65]

J. K. Mann, T. Ndung’u, The potential of lactoferrin, ovotransferrin and lysozyme as antiviral and immune-modulating agents in COVID-19, Future Virol. 15 (2020) 609–624. https://doi.org/10.2217/fvl-2020-0170.

[66]

Y. Li, J. Ding, S. Zhang, et al., Pulsed electric field-assisted alcalase treatment reduces the allergenicity and eliminates the antigenic epitopes of ovomucoid, J. Agric. Food Chem. 71 (2023) 3424–3432. https://doi.org/10.1021/acs.jafc.2c07824.

[67]

H. Ando, R. Movérare, Y. Kondo, et al., Utility of ovomucoid-specific IgE concentrations in predicting symptomatic egg allergy, J. Allergy Clin. Immunol. 122 (2008) 583–588. https://doi.org/10.1016/j.jaci.2008.06.016.

[68]

E. D. N. S. Abeyrathne, H. Y. Lee, C. Jo, et al., Enzymatic hydrolysis of ovomucoid and the functional properties of its hydrolysates, Poultry Sci. 94 (2015) 2280–2287. https://doi.org/10.3382/ps/pev196.

[69]

E. D. Abeyrathne, H. Y. Lee, C. Jo, et al., Enzymatic hydrolysis of ovomucin and the functional and structural characteristics of peptides in the hydrolysates, Food Chem. 192 (2016) 107–113. https://doi.org/10.1016/j.foodchem.2015.06.055.

[70]

Q. Xu, X. Li, Y. Lv, et al., Effects of ultrasonic treatment on ovomucin: structure, functional properties and bioactivity, Ultrason. Sonochem. 89 (2022) 106153. https://doi.org/10.1016/j.ultsonch.2022.106153.

[71]

A. Tu, X. Zhao, Y. Shan, et al., Potential role of ovomucin and its peptides in modulation of intestinal health: a review, Int. J. Biol. Macromol. 162 (2020) 385–393. https://doi.org/10.1016/j.ijbiomac.2020.06.148.

[72]

Q. Xu, Y. Shan, N. Wang, et al., Sialic acid involves in the interaction between ovomucin and hemagglutinin and influences the antiviral activity of ovomucin, Int. J. Biol. Macromol. 119 (2018) 533–539. https://doi.org/10.1016/j.ijbiomac.2018.07.186.

[73]

T. Oguro, K. Watanabe, H. Tani, Morphological observations on antitumor activities of 70 kDa fragment in α-subunit from pronase-treated ovomucin in a double grafted tumor system, Food Sci. Technol. Res. 6 (2000) 179–185. https://doi.org/10.3136/fstr.6.179.

[74]

T. Aobai, W. X. Chao, C. Hongwang, et al., Ovomucin ameliorates intestinal barrier and intestinal bacteria to attenuate DSS-induced colitis in mice, J. Agric. Food Chem. 69 (2021) 5887–5896. https://doi.org/10.1021/acs.jafc.1c00865.

[75]

J. E. Yi, J. Zhao, J. P. Wu, Egg ovotransferrin derived IRW exerts protective effect against H2O2-induced oxidative stress in Caco-2 cells, J. Funct. Foods 39 (2017) 160–167. https://doi.org/10.1016/j.jff.2017.10.012.

[76]

O. K. Chang, G. E. Ha, G. S. Han, et al., Novel antioxidant peptide derived from the ultrafiltrate of ovomucin hydrolysate, J. Agric. Food Chem. 61 (2013) 7294–7300. https://doi.org/10.1021/jf4013778.

[77]

W. Krzysciak, A. Jurczak, J. Piatkowski, et al., Effect of histatin-5 and lysozyme on the ability of Streptococcus mutans to form biofilms in vitro conditions, Postepy. Hig. Med. Dosw. 69 (2015) 1056–1066. https://doi.org/10.5604/01.3001.0009.6575.

[78]

Y. Mine, F. P. Ma, S. Lauriau, Antimicrobial peptides released by enzymatic hydrolysis of hen egg white lysozyme, J. Agric. Food Chem. 52 (2004) 1088–1094. https://doi.org/10.1021/jf0345752.

[79]

Y. M. Ha, S. H. Chun, S. T. Hong, et al., Immune enhancing effect of a Maillard-type lysozyme-galactomannan conjugate via signaling pathways, Int. J. Biol. Macromol. 60 (2013) 399–404. https://doi.org/10.1016/j.ijbiomac.2013.06.007.

[80]

S. Rao, J. Sun, Y. Liu, et al., ACE inhibitory peptides and antioxidant peptides derived from in vitro digestion hydrolysate of hen egg white lysozyme, Food Chem. 135 (2012) 1245–1252. https://doi.org/10.1016/j.foodchem.2012.05.059.

[81]

S. Mahanta, S. Paul, A. Srivastava, et al., Stable self-assembled nanostructured hen egg white lysozyme exhibits strong anti-proliferative activity against breast cancer cells, Colloid. Surfaces B 130 (2015) 237–245. https://doi.org/10.1016/j.colsurfb.2015.04.017.

[82]

X. L. Zhang, Y. Lei, Y. B. Xiao, et al., Hen egg lysozyme alleviates static mechanical pain via NRF1-Parkin-TACAN signaling axis in sensory neurons, Neuroscience 502 (2022) 52–67. https://doi.org/10.1016/j.neuroscience.2022.08.010.

[83]

L. Pellegrino, A. Tirelli, A sensitive HPLC method to detect hen’s egg white lysozyme in milk and dairy products, Int. Dairy J. 10 (2000) 435–442. https://doi.org/10.1016/S0958-6946(00)00065-0.

[84]

P. Attri, N. K. Kaushik, N. Kaushik, et al., Plasma treatment causes structural modifications in lysozyme, and increases cytotoxicity towards cancer cells, Int. J. Biol. Macromol. 182 (2021) 1724–1736. https://doi.org/10.1016/j.ijbiomac.2021.05.146.

[85]

Z. Wei, S. Wu, J. Xia, et al., Enhanced antibacterial activity of hen egg-white lysozyme against Staphylococcus aureus and Escherichia coli due to protein fibrillation, Biomacromolecules 22 (2021) 890–897. https://doi.org/10.1021/acs.biomac.0c01599.

[86]

X. Zhou, Y. Wang, D. U. Ahn, et al., An easy and simple separation method for Fc and Fab fragments from chicken immunoglobulin Y (IgY), J. Chromatogr. B 1141 (2020) 122011. https://doi.org/10.1016/j.jchromb.2020.122011.

[87]

X. Zhang, R. A. Calvert, B. J. Sutton, et al., IgY: a key isotype in antibody evolution, Biol. Rev. Camb. Philos. Soc. 92 (2017) 2144–2156. https://doi.org/10.1111/brv.12325.

[88]

W. Lee, A. Syed Atif, S. C. Tan, et al., Insights into the chicken IgY with emphasis on the generation and applications of chicken recombinant monoclonal antibodies, J. Immunol. Methods 447 (2017) 71–85. https://doi.org/10.1016/j.jim.2017.05.001.

[89]

L. Sheng, Z. He, Y. Liu, et al., Mass spectrometry characterization for N-glycosylation of immunoglobulin Y from hen egg yolk, Int. J. Biol. Macromol. 108 (2018) 277–283. https://doi.org/10.1016/j.ijbiomac.2017.12.012.

[90]

X. Zhou, D. U. Ahn, M. Xia, et al., Fab fragment of immunoglobulin Y modulates NF-kappaB and MAPK signaling through TLR4 and alphaVbeta3 integrin and inhibits the inflammatory effect on R264.7 macrophages, J. Agric. Food Chem. 69 (2021) 8747–8757. https://doi.org/10.1021/acs.jafc.1c03330.

[91]

E. W. Bachtiar, A. Afdhal, R. Meidyawati, et al., Effect of topical anti-Streptococcus mutans IgY gel on quantity of S. mutans on rats’ tooth surface, Acta Microbiol. Imm. H. 63 (2016) 159–169. https://doi.org/10.1556/030.63.2016.2.2.

[92]

C. L. Leiva, M. J. Gallardo, N. Casanova, et al., IgY-technology (egg yolk antibodies) in human medicine: a review of patents and clinical trials, Int. Immunopharmacol. 81 (2020) 106269. https://doi.org/10.1016/j.intimp.2020.106269.

[93]

S. V. Nguyen, M. T. H. Nguyen, B. C. Tran, et al., Evaluation of lozenges containing egg yolk antibody against Porphyromonas gingivalis gingipains as an adjunct to conventional non-surgical therapy in periodontitis patients: a randomized controlled clinical trial, J. Periodontol. 89 (2018) 1334–1339. https://doi.org/10.1002/Jper.18-0037.

[94]

X. T. Wang, L. J. Song, W. P. Tan, et al., Clinical efficacy of oral immunoglobulin Y in infant rotavirus enteritis systematic review and meta-analysis, Medicine 98 (2019) e16100. https://doi.org/10.1097/MD.0000000000016100.

[95]

V. B. Gyawu, C. K. Firempong, J. A. Hamidu, et al., Production and evaluation of monovalent anti-snake immunoglobulins from chicken egg yolk using Ghanaian puff adder (Bitis arietans) Venom: isolation, purification, and neutralization efficacy, Toxicon. 231 (2023) 170180. https://doi.org/10.1016/j.toxicon.2023.107180.

[96]

M. Hirose, T. Ando, R. Shofiqur, et al., Anti-obesity activity of hen egg anti-lipase immunoglobulin yolk, a novel pancreatic lipase inhibitor, Nutr. Metab. 10 (2013) 70. https://doi.org/10.1186/1743-7075-10-70.

[97]

H. Wang, Q. Zhong, J. Lin, Egg yolk antibody for passive immunization: status, challenges, and prospects, J. Agric. Food Chem. 71 (2023) 5053–5061. https://doi.org/10.1021/acs.jafc.2c09180.

[98]

L. R. Frumkin, M. Lucas, C. L. Scribner, et al., Egg-derived anti-SARS-CoV-2 immunoglobulin Y (IgY) with broad variant activity as intranasal prophylaxis against COVID-19, Front. Immunol. 13 (2022) 899617. https://doi.org/10.3389/fimmu.2022.899617.

[99]

S. A. El-Kafrawy, A. T. Abbas, C. Oelkrug, et al., IgY antibodies: the promising potential to overcome antibiotic resistance, Front. Immunol. 14 (2023) 1065353. https://doi.org/10.3389/fimmu.2023.1065353.

[100]

X. Gao, S. Yuan, High density lipoproteins-based therapies for cardiovascular disease, J. Cardiovas. Dis. Res. 1 (2010) 99–103. https://doi.org/10.4103/0975-3583.70898.

[101]

N. Xiao, Y. Zhao, Y. Yao, et al., Biological activities of egg yolk lipids: a review, J. Agric. Food Chem. 68 (2020) 1948–1957. https://doi.org/10.1021/acs.jafc.9b06616.

[102]

D. Groche, L. G. Rashkovetsky, K. H. Falchuk, et al., Subunit composition of the zinc proteins alpha- and beta-lipovitellin from chicken, J. Protein Chem. 19 (2000) 379–387. https://doi.org/10.1023/a:1026487414167.

[103]

S. Eftekhar, H. Parsaei, Z. Keshavarzi, et al., The prevention and treatment effects of egg yolk high density lipoprotein on the formation of atherosclerosis plaque in rabbits, Iran. J. Basic Med. Sci. 18 (2015) 343–349.

[104]

D. M. DiMarco, A. Missimer, A. G. Murillo, et al., Intake of up to 3 eggs/day Increases HDL cholesterol and plasma choline while plasma trimethylamine-N-oxide is unchanged in a healthy population, Lipids 52 (2017) 255–263. https://doi.org/10.1007/s11745-017-4230-9.

[105]

Z. Yu, C. Mao, X. Fu, et al., High density lipoprotein from egg yolk (EYHDL) improves dyslipidemia by mediating fatty acids metabolism in high fat diet-induced obese mice, Food Sci. Anim. Resources 39 (2019) 179–195. https://doi.org/10.1016/j.fbio.2019.100492.

[106]

C. J. Andersen, C. N. Blesso, J. Lee, et al., Egg consumption modulates HDL lipid composition and increases the cholesterol-accepting capacity of serum in metabolic syndrome, Lipids 48 (2013) 557–567. https://doi.org/10.1007/s11745-013-3780-8.

[107]

W. Liu, M. Zhao, S. Li, et al., Advances in preparation and bioactivity of phosvitin phosphopeptides, J. Future Foods 2 (2022) 213–222. https://doi.org/10.1016/j.jfutfo.2022.06.003.

[108]

G. Taborsky, Interaction of cytochrome c and the phosphoprotein phosvitin. Formation of a complex with an intact 695-mmicron absorption band, Biochemistry 9 (1970) 3768–3774. https://doi.org/10.1021/bi00821a016.

[109]

K. Si, T. Gong, S. Ding, et al., Binding mechanism and bioavailability of a novel phosvitin phosphopeptide (Glu-Asp-Asp-pSer-pSer) calcium complex, Food Chem. 404 (2023) 134567. https://doi.org/10.1016/j.foodchem.2022.134567.

[110]

B. Jiang, Y. Mine, Preparation of novel functional oligophosphopeptides from hen egg yolk phosvitin, J. Agric. Food Chem. 48 (2000) 990–994. https://doi.org/10.1021/jf990600l.

[111]

X. Zhang, X. Huang, M. Ma, Phosphorylated serine clusters of phosvitin plays a crucial role in the regulatory mineralization, Int. J. Biol. Macromol. 115 (2018) 1109–1115. https://doi.org/10.1016/j.ijbiomac.2018.04.130.

[112]

X. Zhang, Q. Jia, M. Li, et al., Isolation of a novel calcium-binding peptide from phosvitin hydrolysates and the study of its calcium chelation mechanism, Food Res. Int. 141 (2021) 110169. https://doi.org/10.1016/j.foodres.2021.110169.

[113]

M. Zhao, S. Li, D. U. Ahn, et al., Phosvitin phosphopeptides produced by pressurized hea-trypsin hydrolysis promote the differentiation and mineralization of MC3T3-E1 cells via the OPG/RANKL signaling pathways, Poultry Sci. 100 (2021) 527–536. https://doi.org/10.1016/j.psj.2020.10.053.

[114]

X. Xu, S. Katayama, Y. Mine, Antioxidant activity of tryptic digests of hen egg yolk phosvitin, J. Sci. Food Agric. 87 (2007) 2604–2608. https://doi.org/10.1002/jsfa.3015.

[115]

D. Young, F. Nau, M. Pasco, et al., Identification of hen egg yolk-derived phosvitin phosphopeptides and their effects on gene expression profiling against oxidative stress-induced Caco-2 cells, J. Agric. Food Chem. 59 (2011) 9207–9218. https://doi.org/10.1021/jf202092d.

[116]

J. E. Lee, B. J. An, C. Jo, et al., The elastase and melanogenesis inhibitory and anti-inflammatory activities of phosvitin phosphopeptides produced using high-temperature and mild-pressure (HTMP) pretreatment and enzyme hydrolysis combinations, Poultry Sci. 102 (2023) 102680. https://doi.org/10.1016/j.psj.2023.102680.

[117]

H. Duan, X. Zhang, Z. Li, et al., Synergistic effect and antibiofilm activity of an antimicrobial peptide with traditional antibiotics against multi-drug resistant bacteria, Microb. Pathogenesis 158 (2021) 105056. https://doi.org/10.1016/j.micpath.2021.105056.

[118]

S. Tang, X. Zhou, M. Gouda, et al., Effect of enzymatic hydrolysis on the solubility of egg yolk powder from the changes in structure and functional properties, LWT-Food Sci. Technol. 110 (2019) 214–222. https://doi.org/10.1016/j.lwt.2019.04.070.

[119]

H. K. Kim, S. Lee, andK. H. Leem, Protective effect of egg yolk peptide on bone metabolism, Menopause 18 (2011) 307–313. https://doi.org/10.1097/gme.0b013e3181f31b1f.

[120]

N. Xiao, Y. Zhao, W. He, et al., Egg yolk oils exert anti-inflammatory effect via regulating Nrf2/NF-kappaB pathway, J. Ethnopharmacol. 274 (2021) 114070. https://doi.org/10.1016/j.jep.2021.114070.

[121]

Y. Kitaura, U. Nakamura, C. Awada, et al., Orally administrable peptides derived from egg yolk promote skeletal repair and ameliorate degenerative skeletal disorders in mouse models, Regen. Ther. 21 (2022) 584–595. https://doi.org/10.1016/j.reth.2022.11.002.

[122]

Y. Liu, S. Lu, J. Meng, et al., Complexation between egg yolk protein hydrolysate, phytic acid and calcium ion: binding mechanisms and influence on protein digestibility and calcium uptake, LWT-Food Sci. Technol. 184 (2023) 114986. https://doi.org/10.1016/j.lwt.2023.114986.

[123]

Z. J. Bao, Y. Zhao, X. Y. Wang, et al., Effects of degree of hydrolysis (DH) on the functional properties of egg yolk hydrolysate with alcalase, J. Food Sci. Technol. 54 (2017) 669–678. https://doi.org/10.1007/s13197-017-2504-0.

[124]

I. Marcet, J. Delgado, N. Díaz, et al., Peptides recovery from egg yolk lipovitellins by ultrafiltration and their in silico bioactivity analysis, Food Chem. 379 (2022) 132145. https://doi.org/10.1016/j.foodchem.2022.132145.

[125]

T. Pimchan, F. Tian, K. Thumanu, et al., Isolation, identification, and mode of action of antibacterial peptides derived from egg yolk hydrolysate, Poultry Sci. (2023) 102695. https://doi.org/10.1016/j.psj.2023.102695.

[126]

J. H. Lee, J. E. Lee, H. D. Paik, Immunomodulatory activity of egg yolk protein hydrolysates prepared by novel two-step hydrolysis: a study of mechanism and stability after in vitro digestion model, Poultry Sci. (2022) 101802. https://doi.org/10.1016/j.psj.2022.101802.

[127]

K. Kaweewong, W. Garnjanagoonchorn, W. Jirapakkul, et al., Solubilization and identification of hen eggshell membrane proteins during different times of chicken embryo development using the proteomic approach, Protein J. 32 (2013) 297–308. https://doi.org/10.1007/s10930-013-9487-0.

[128]

M. K. Sah, S. N. Rath, Soluble eggshell membrane: a natural protein to improve the properties of biomaterials used for tissue engineering applications, Mater. Sci. Eng. C-Materi. Biol. Appl. 67 (2016) 807–821. https://doi.org/10.1016/j.msec.2016.05.005.

[129]

G. J. Ahlborn, D. A. Clare, B. W. Sheldon, et al., Identification of eggshell membrane proteins and purification of ovotransferrin and beta-NAGase from hen egg white, Protein J. 25 (2006) 71–81. https://doi.org/10.1007/s10930-006-0010-8.

[130]

X. Li, Z. Cai, D. U. Ahn, et al., Development of an antibacterial nanobiomaterial for wound-care based on the absorption of AgNPs on the eggshell membrane, Colloid. Surfaces B 183 (2019) 110449. https://doi.org/10.1016/j.colsurfb.2019.110449.

[131]

N. Xiao, X. Huang, W. He, et al., A review on recent advances of egg byproducts: preparation, functional properties, biological activities and food applications, Food Res. Int. 147 (2021) 110563. https://doi.org/10.1016/j.foodres.2021.110563.

[132]

J. Hohlfeld, A. D. Roessingh, N. Hirt-Burri, et al., Tissue engineered fetal skin constructs for paediatric burns, Lancet 366 (2005) 840–842. https://doi.org/10.1016/S0140-6736(05)67107-3.

[133]

Z. Y. Cheng, S. H. Teoh, Surface modification of ultra thin poly (epsilon-caprolactone) films using acrylic acid and collagen, Biomaterials 25 (2004) 1991–2001. https://doi.org/10.1016/j.biomaterials.2003.08.038.

[134]

Y. Shi, J. Kovacs-Nolan, B. Jiang, et al., Antioxidant activity of enzymatic hydrolysates from eggshell membrane proteins and its protective capacity in human intestinal epithelial Caco-2 cells, J. Funct. Foods 10 (2014) 35–45. https://doi.org/10.1016/j.jff.2014.05.004.

[135]

M. C. Lee, Y. C. Huang, Soluble eggshell membrane protein-loaded chitosan/fucoidan nanoparticles for treatment of defective intestinal epithelial cells, Int. J. Biol. Macromol. 131 (2019) 949–958. https://doi.org/10.1016/j.ijbiomac.2019.03.113.

[136]

X. Chen, L. Zhu, W. Wen, et al., Biomimetic mineralisation of eggshell membrane featuring natural nanofiber network structure for improving its osteogenic activity, Colloid. Surfaces B 179 (2019) 299–308. https://doi.org/10.1016/j.colsurfb.2019.04.009.

[137]

K. Tonguc Altin, N. Topcuoglu, G. Duman, et al., Antibacterial effects of saliva substitutes containing lysozyme or lactoferrin against Streptococcus mutans, Arch. Oral Biol. 129 (2021) 105183. https://doi.org/10.1016/j.archoralbio.2021.105183.

[138]

Y. Yao, T. Liu, N. Wu, et al., An efficient, scalable and environmentally friendly separation method for ovoinhibitor from chicken egg white, LWT-Food Sci. Technol. 127 (2020) 109367. https://doi.org/10.1016/j.lwt.2020.109367.

[139]
W. Jianping, Eggs as functional foods and nutraceuticals for human health, Royal Society of Chemistry, 2019.
[140]

F. GENG, X. HUANG , M. H. MA, Hen egg white ovomacroglobulin promotes fibroblast migration via mediating cell adhesion and cytoskeleton, J. Sci. Food Agric. 96 (2016) 3188–3194. https://doi.org/10.1002/jsfa.7498.

[141]

Y. Kishimoto, C. Taguchi, E. Saita, et al., Additional consumption of one egg per day increases serum lutein plus zeaxanthin concentration and lowers oxidized low-density lipoprotein in moderately hypercholesterolemic males, Food Res. Int. 99 (2017) 944–949. https://doi.org/10.1016/j.foodres.2017.03.003.

Food Science of Animal Products
Article number: 9240047
Cite this article:
Li X, Xia M, Zeng Q, et al. Eggstraordinary health: exploring avian egg proteins and peptides in boosting immunity and health maintenance. Food Science of Animal Products, 2023, 1(4): 9240047. https://doi.org/10.26599/FSAP.2023.9240047

650

Views

160

Downloads

1

Crossref

Altmetrics

Received: 13 December 2023
Revised: 02 January 2024
Accepted: 18 January 2024
Published: 28 February 2024
© Beijing Academy of Food Sciences 2023.

Food Science of Animal Products published by Tsinghua University Press. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return