Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Reduced immunity can harm the health of the organism, and nowadays, improving immunity is getting more and more attention, so the nutrients with immune boosting function (acerola cherry, taurine, zinc gluconate, and lactoferrin) are compounded in the best ratio to develop a nutritional formula food, and evaluated by cellular immunity, humoral immunity, non-specific immunity. In this study, an immunocompromised mice model was established using cyclophosphamide (CTX), the ability and difference of different components to enhance the immunity of mice were determined by the gavage of different components. The results showed that the nutritional formula food could recover the body weight of immunocompromised mice, promote the development of immune organs in immunocompromised mice, enhance the delayed-type hypersensitivity (DTH) response, the ability to produce serum hemolysin and the phagocytosis of monocytes in immunocompromised mice, and increase the levels of immunoglobulin A (IgA), IgG and IgM in the serum of immunocompromised mice. It has proved that this nutritional formula food (containing acerola cherry, taurine, zinc gluconate, and lactoferrin) has synergistic effect and can work together on humoral immunity, cellular immunity and non-specific immunity to improve the immune resistance of mice, and has promising application.
M. G. Netea, J. Dominguez-Andres, L. B. Barreiro, et al., Defining trained immunity and its role in health and disease, Nat. Rev. Immunol. 20 (2020) 375–388. https://doi.org/10.1038/s41577-020-0285-6.
K. J. Kaczorowski, K. Shekhar, D. Nkulikiyimfura, et al., Continuous immunotypes describe human immune variation and predict diverse responses, Proc. Natl. Acad. Sci. 114 (2017) E6097–E6106. https://doi.org/10.1073/pnas.1705065114.
G. J. Ding, J. Bai, B. H. Feng, et al., An EGFP-marked recombinant Lactobacillus oral tetravalent vaccine constitutively expressing alpha, epsilon, beta 1, and beta 2 toxoids for Clostridium perfringens elicits effective anti-toxins protective immunity, Virulence 10 (2019) 754–767. https://doi.org/10.1080/21505594.2019.1653720.
X. W. Li, B. Z. Zhang, D. S. Zhang, et al., The construction of recombinant Lactobacillus casei vaccine of PEDV and its immune responses in mice, BMC Vet. Res. 17 (2021) 1–10. https://doi.org/10.1186/s12917-021-02885-y.
H. T. Huang, Y. F. Hu, B. H. Lee, et al., Dietary of Lactobacillus paracasei and Bifidobacterium longum improve nonspecific immune responses, growth performance, and resistance against Vibrio parahaemolyticus in Penaeus vannamei, Fish Shellfish Immunol. 128 (2022) 307–315. https://doi.org/10.1016/j.fsi.2022.07.062.
K. Adel-Patient, M. Guinot, B. Guillon, et al., Administration of extensive hydrolysates from caseins and Lactobacillus rhamnosus GG probiotic does not prevent cow’s milk proteins allergy in a mouse model, Front. Immunol. 11 (2020) 1700. https://doi.org/10.3389/fimmu.2020.01700.
J. M. Huang, J. S. Yang, K. Tang, et al., A study on the factors influencing the preservation rate of ascorbic acid in acerola cherry pulp, Food Sci. Technol. 42 (2022) e16322. https://doi.org/10.1590/ fst.16322.
V. V. De Rosso, A. Z. Mercadante, Carotenoid composition of two Brazilian genotypes of acerola ( Malpighia punicifolia L.) from two harvests, Food Res. Int. 38 (2005) 1073–1077. https://doi.org/10.1016/j.foodres.2005.02.023.
A. A. Badejo, S. T. Jeong, N. Goto-Yamamoto, et al., Cloning and expression of GDP- D-mannose pyrophosphorylase gene and ascorbic acid content of acerola ( Malpighia glabra L.) fruit at ripening stages, Plant Physiol. Biochem. 45 (2007) 665–672. https://doi.org/10.1016/j.plaphy.2007.07.003.
R. D. Nunes, V. F. S. Kahl, M. D. Sarmento, et al., Antigenotoxicity and antioxidant activity of acerola fruit ( Malpighia glabra L.) at two stages of ripeness, Plant Foods Hum. Nutr. 66 (2011) 129–135. https://doi.org/10.1007/s11130-011- 0223-7.
Y. Rezende, J. P. Nogueira, N. Narain, Microencapsulation of extracts of bioactive compounds obtained from acerola ( Malpighia emarginata DC) pulp and residue by spray and freeze drying: chemical, morphological and chemometric characterization, Food Chem. 254 (2018) 281–291. https://doi.org/10.1016/j.foodchem.2018.02.026.
S. S. El-Hawary, R. A. El-Fitiany, O. M. Mousa, et al., Metabolic profiling and in vivo hepatoprotective activity of Malpighia glabra L. leaves, J. Food Biochem. 45(2) (2020) e13588. https://doi.org/10.1111/jfbc.13588.
T. T. Dai, D. J. McClements, T. Hu, et al., Improving foam performance using colloidal protein-polyphenol complexes: lactoferrin and tannic acid, Food Chem. 377 (2022) 131950. https://doi.org/10.1016/j.foodchem.2021.131950.
Š. Gruden, N. Poklar Ulrih, Diverse mechanisms of antimicrobial activities of lactoferrins, lactoferricins, and other lactoferrin-derived peptides, Int. J. Mol. Sci. 22 (2021) 11264. https://doi.org/10.3390/ijms222011264.
D. Legrand, Overview of lactoferrin as a natural immune modulator, J. Pediatr. 173 (2016) S10–S15. https://doi.org/10.1016/j.jpeds.2016.02.071.
W. Li, K. Fu, X. Lü, et al., Lactoferrin suppresses lipopolysaccharide-induced endometritis in mice via down-regulation of the NF-κB pathway, Int. Immunopharmacol. 28 (2015) 695–699. https://doi.org/10.1016/j.intimp.2015.07.040.
E. Elass-Rochard, A. Roseanu, D. Legrand, et al., Lactoferrin-lipopolysaccharide interaction: involvement of the 28-34 loop region of human lactoferrin in the high-affinity binding to Escherichia coli 055B5 lipopolysaccharide, Biochem. J. 312 (1995) 839–845. https://doi.org/10.1042/bj3120839.
P. Hu, F. Zhao, J. Wang, et al., Lactoferrin attenuates lipopolysaccharide-stimulated inflammatory responses and barrier impairment through the modulation of NF-κB/MAPK/Nrf2 pathways in IPEC-J2 cells, Food Funct. 11 (2020) 8516–8526. https://doi.org/10.1039/d0fo01570a.
C. Guo, Z. H. Yang, S. Zhang, et al., Intranasal lactoferrin enhances α-secretase-dependent amyloid precursor protein processing via the ERK1/2-CREB and HIF-1α pathways in an Alzheimer’s disease mouse model, Neuropsychopharmacology 42 (2017) 2504–2515. https://doi.org/10.1038/npp.2017.8.
Z. Hu, N. Li, C. Liu, et al., Evaluation on immune-enhancement effect of lactoferrin, Food Sci. 31 (2010) 244–247.
Z. Hao, J. Yang, K. Xiao, et al., Taurine: physiological function and application in pig production, Chin. J. Anim. Nutr. 30 (2018) 2050–2056.
C. J. Jong, P. Sandal, S. W. Schaffer, The role of taurine in mitochondria health: more than just an antioxidant, Molecules 26 (2021) 4913. https://doi.org/10.3390/molecules26164913.
N. Ma, F. He, J. Kawanokuchi, et al., Taurine and its anticancer functions: in vivo and in vitro study, Adv. Exp. Med. Biol. 1370 (2022) 121–128. https://doi.org/10.1007/978-3-030-93337-1_11.
F. He, N. Ma, K. Midorikawa, et al., Taurine exhibits an apoptosis-inducing effect on human nasopharyngeal carcinoma cells through PTEN/Akt pathways in vitro, Amino Acids 50 (2018) 1749–1758. https://doi.org/10.1007/s00726-018-2651-2.
Y. Ping, J. Shan, Y. Liu, et al., Taurine enhances the antitumor efficacy of PD-1 antibody by boosting CD8+ T cell function, Cancer Immunol. Immunother. 72 (2022) 1015–1027. https://doi.org/10.1007/s00262-022-03308-z.
N. Z. Gammoh, L. Rink, Zinc in infection and inflammation, Nutrients 9 (2017) 624. https://doi.org/10.3390/nu9060624.
S. Thomas, D. Patel, B. Bittel, et al., Effect of high-dose zinc and ascorbic acid supplementation vs usual care on symptom length and reduction among ambulatory patients With SARS-CoV-2 infection the COVID A to Z randomized clinical trial, JAMA Network Open 4 (2021) e210369. https://doi.org/10.1001/ jamanetworkopen.2021.0369.
M. Andriollo-Sanchez, R. Claeyssen, J. Arnaud, et al., Toxic effects of iterative intraperitoneal administration of zinc gluconate in rats, Basic Clin. Physiol. Pharmacol. 103 (2008) 267–272. https://doi.org/10.1111/j.1742-7843.2008.00278.x.
R. Duan, H. Zhang, L. Wu, et al., Effects of earthworm protein extract on intestinal mucosal immune function in immunosuppressed mice, J. Yunnan Agric. Univ. 37 (2022) 597–603.
J. D. Wang, L. Wang, S. Yu, et al., Condensed Fuzheng extract increases immune function in mice with cyclophosphamide-induced immunosuppression, Food Sci. Nutr. 10 (2022) 3865–3875. https://doi.org/10.1002/fsn3.2982.
E. J. Kooistra, S. Brinkman, P. H. J. van der Voort, et al., Body mass index and mortality in coronavirus disease 2019 and other diseases: a cohort study in 35 506 ICU Patients, Crit. Care Med. 50 (2022) E1–E10. https://doi.org/10.1097/ccm.0000000000005216.
L. Q. Zang, L. A. Maddison, W. B. Chen, Zebra fish as a model for obesity and diabetes, Front. Cell Dev. Biol. 6 (2018) 91. https://doi.org/10.3389/fcell.2018.00091.
F. Q. Pan, H. T. Du, W. G. Tian, et al., Effect of GnRH immunocastration on immune function in male rats, Front. Immunol. 13 (2023) 1023104. https://doi.org/10.3389/fimmu.2022.1023104.
Q. Li, G. Y. Chen, H. Chen, et al., Se-enriched G-frondosa polysaccharide protects against immunosuppression in cyclophosphamide-induced mice via MAPKs signal transduction pathway, Carbohydr. Polym. 196 (2018) 445–456. https://doi.org/10.1016/j.carbpol.2018.05.046.
Y. Ding, Y. M. Yan, D. Chen, et al., Modulating effects of polysaccharides from the fruits of Lycium barbarum on the immune response and gut microbiota in cyclophosphamide-treated mice, Food Funct. 10 (2019) 3671–3683. https://doi.org/10.1039/c9fo00638a.
W. Liu, Y. Ji, B. Pi, et al., Effect of Dregea sinensis extract on delayed type hypersensitivity of mouse, J. Gansu Agric. Univ. 55 (2020) 13–19.
S. Abid, A. Khajuria, Q. Parvaiz, et al., Immunomodulatory studies of a bioactive fraction from the fruit of Prunus cerasus in BALB/c mice, Int. Immunopharmacol. 12 (2012) 626–634. https://doi.org/10.1016/j.intimp.2012.02.001.
W. Ma, W. Li, Q. Ma, et al., Effects of Bifidobacterium lactis XLTG11 on immune function in mice, Food Ferment. Ind. 48 (2022) 103–107.
H. Kumar, N. Vasudeva, Immunomodulatory potential of Nyctanthes abrortristis stem bark, J. Ayurveda Integr. Med. 13 (2022) 100556. https://doi.org/10.1016/j.jaim.2022.100556.
L. P. Nudo, E. S. Catap, Immunostimulatory effects of Uncaria perrottetii (A. Rich. ) Merr. (Rubiaceae) vinebark aqueous extract in Balb/C mice, J. Ethnopharmacol. 133 (2011) 613–620. https://doi.org/10.1016/j.jep.2010.10.044.
T. Sidiq, A. Khajuria, P. Suden, et al., Possible role of macrophages induced by an irridoid glycoside (RLJ-NE-299A) in host defense mechanism, Int. Immunopharmacol. 11 (2011) 128–135. https://doi.org/10.1016/j.intimp.2010.10.017.
Z. Chen, W. Wei, D. Chen, et al., Effect of vancoglycosamine on vancomycin-induced phagocytosis in mouse macrophages RAW264.7, Chin. J. New Drugs. 29 (2020) 1040–1044.
J. Shi, Q. Zhang, X. H. Zhao, et al., The impact of caseinate oligochitosan-glycation by transglutaminase on amino acid compositions and immune-promoting activity in BALB/c mice of the tryptic caseinate hydrolysate, Food Chem. 350 (2021) 129302. https://doi.org/10.1016/j.foodchem.2021.129302.
H. Wei, J. Y. Wang, Role of polymeric immunoglobulin receptor in IgA and IgM transcytosis, Int. J. Mol. Sci. 22 (2021) 2284. https://doi.org/10.3390/ijms22052284.
Food Science of Animal Products published by Tsinghua University Press. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).