The effect of different content of lysine (Lys, 0.1%, 0.2%, 0.3%, 0.4%, 0.5%, m/m) on the texture characteristics and water holding capacity (WHC) of transglutaminase (0.4%)-induced mixed surimi gels was explored. The results showed that 0.2% Lys obviously improved the gel strength, textural properties, and WHC of the mixed surimi gels (P < 0.05). However, superfluous Lys (0.4%–0.5%) played a significant negative impact. That’s because 0.2% Lys facilitated the non-covalent interactions and non-disulfide covalent interactions between surimi proteins, promoted the formation of a fine and dense gel microstructure. While high content of Lys induced the formation of excess ε-(γ-Glu)-Lys isopeptide bonds but weakened the non-covalent interactions between surimi proteins, resulting in an irregular and heterogeneous microstructure with large voids. In conclusion, moderate Lys can effectively improve the quality of mixed surimi gels, thereby providing a new and effective strategy to develop phosphorus-free surimi products.
S. Avtar, F. P. Fathur, B. Soottawat, et al., Combined effect of microbial transglutaminase and ethanolic coconut husk extract on the gel properties and in- vitro digestibility of spotted golden goatfish ( Parupeneus heptacanthus) surimi gel, Food Hydrocoll. 109 (2020) 106107. https://doi.org/10.1016/j.foodhyd.2020.106107.
B. W. Yan, X. D. Jiao, H. P. Zhu, et al., Chemical interactions involved in microwave heat-induced surimi gel fortified with fish oil and its formation mechanism, Food Hydrocoll. 105 (2020) 105779. https://doi.org/10.1016/j.foodhyd.2020.105779.
N. Siti, C. Yana, U. G. Lara, et al., Strategies to reduce salt content and its effect on food characteristics and acceptance: a review, Foods 11(19) (2022) 3120. https://doi.org/10.3390/foods11193120.
N. Buamard, M. A. Javith, A. K. Balange, et al., Effects of lysine and arginine on the properties of low-salt mince gel from striped catfish ( Pangasianodon hypophthalmus), J. Food Sci. 85(9) (2020) 2681–2687. https://doi.org/10.1111/1750-3841.15368.
D. Cando, B. Herranz, A. J. Borderías, et al., Different additives to enhance the gelation of surimi gel with reduced sodium content, Food Chem. 196(1) (2016) 791–799. https://doi.org/10.1016/j.foodchem.2015.10.022.
A. A. D. S. Larissa, M. L. José, A. A. G. Carlos, et al., Impact of lysine and liquid smoke as flavor enhancers on the quality of low-fat bologna-type sausages with 50% replacement of NaCl by KCl, Meat Sci. 123 (2017) 50–56. https://doi.org/10.1016/j.meatsci.2016.09.001.
Z. R Li, G. C. Liang, Y. G. Cao, et al., Role of ε-poly-lysine in mixed surimi gel: concentration, underlying mechanism, and application, Food Mater. Res. 4(1) (2024) e010. https://doi.org/10.48130/fmr-0024-0001.
X. P. Dong, Y. X. Pan, W. Y. Zhao, et al., Impact of microbial transglutaminase on 3D printing quality of Scomberomorus niphonius surimi, LWT-Food Sci. Technol. 124(C) (2020) 109123. https://doi.org/10.1016/j.lwt.2020.109123.
Y. Jirawat, P. Penprapha, Effect of microbial transglutaminase on autolysis and gelation of lizardfish surimi, J. Sci. Food Agric. 85(9) (2005) 1453–1460. https://doi.org/10.1002/jsfa.2149.
C. Sochaya, B. Soottawat, Impact of microbial transglutaminase on gelling properties of Indian mackerel fish protein isolates, Food Chem. 136(2) (2013) 929–937. https://doi.org/10.1016/j.foodchem.2012.09.021.
F. Liang, L. Lin, T. H. He, et al., Effect of transglutaminase on gel properties of surimi and precocious Chinese mitten crab ( Eriocheir sinensis) meat, Food Hydrocoll. 98 (2020) 105261. https://doi.org/10.1016/j.foodhyd.2019.105261.
Y. G. Cao, B. L. Li, X. Fan, et al., Synergistic recovery and enhancement of gelling properties of oxidatively damaged myofibrillar protein by L-lysine and transglutaminase, Food Chem. 358 (2021) 129860. https://doi.org/10.1016/j.foodchem.2021.129860.
C. L. Zhou, J. Li, S. J. Tan, Effect of L-lysine on the physicochemical properties of pork sausage, Food Sci. Biotechnol. 23(3) (2014) 775–780. https://doi.org/10.1007/s10068-014-0104-6.
L. Chen, P. Q. Bao, Y. Wang, et al., Improving quality attributes of refrigerated prepared pork chops by injecting L-arginine and L-lysine solution, LWT-Food Sci. Technol. 153 (2022) 112413. https://doi.org/10.1016/j.lwt.2021.112423.
P. Q. Bao, L. Chen, Y. Wang, et al., Quality of frozen porcine longissimus lumborum muscles injected with L-arginine and L-lysine solution, Meat Sci. 179 (2021) 108530. https://doi.org/10.1016/j.meatsci.2021.108530.
Y. Fu, Y. D. Zheng, Z. Lei, et al., Gelling properties of myosin as affected by L-lysine and L-arginine by changing the main molecular forces and microstructure, Int. J. Food Prop. 20(Suppl 1) (2017) S884–S898. https://doi.org/10.1080/10942912.2017.1315593.
M. Hao, P. Z. Sun, J. X. Lin, et al., Based on hydrogen and disulfide-mediated bonds, L-lysine and L-arginine enhanced the gel properties of low-salt mixed shrimp surimi (Antarctic krill and Pacific white shrimp), Food Chem. 445 (2024) 138735. https://doi.org/10.1016/j.foodchem.2024.138735.
H. Q. Ning, Z. S. Wang, Y. Q. Li, et al., Effects of glycinin basic polypeptide on the textural and physicochemical properties of Scomberomorus niphonius surimi, LWT-Food Sci. Technol. 114 (2019) 108328. https://doi.org/10.1016/j.lwt.2019.108328.
Y. G. Cao, X. R. Han, F. Yuan, et al., Effect of combined treatment of L-arginine and transglutaminase on the gelation behavior of freeze-damaged myofibrillar protein, Food Funct. 13(3) (2022) 1495–1505. https://doi.org/10.1039/d1fo03691b.
Q. Fang, L. Shi, Z. Ren, et al., Effects of emulsified lard and TGase on gel properties of threadfin bream ( Nemipterus virgatus) surimi, LWT-Food Sci. Technol. 146 (2021) 111513. https://doi.org/10.1016/j.lwt.2021.111513.
B. Amjad, B. Soottawat, Enhancement of gel strength of bigeye snapper ( Priacanthus tayenus) surimi using oxidised phenolic compounds, Food Chem. 113(1) (2008) 61–70. https://doi.org/10.1016/j.foodchem.2008.07.039.
Y. S. Wang, J. Zhao, C. Q. Liu, et al., Influence of γ-aminobutyric acid on gelling properties of heat-induced whey protein gels, Food Hydrocoll. 94 (2019) 287–293. https://doi.org/10.1016/j.foodhyd.2019.03.031.
X. D. Jiao, R. H. Su, H. P. Zhu, et al., Effect of lipase incorporation on gelling properties of catfish ( Clarias lazera) surimi and its mechanism, J. Sci. Food Agric. 101(11) (2021) 4498–4505. https://doi.org/10.1002/jsfa.11090.
Y. G. Cao, W. H. Ma, J. K. Wang, et al., Influence of sodium pyrophosphate on the physicochemical and gelling properties of myofibrillar proteins under hydroxyl radical-induced oxidative stress, Food Funct. 11(3) (2020) 1996–2004. https://doi.org/10.1039/c9fo02412c.
J. J. Huang, S. W. Zeng, S. B. Xiong, et al., Steady, dynamic, and creep-recovery rheological properties of myofibrillar protein from grass carp muscle, Food Hydrocoll. 61 (2016) 48–56. https://doi.org/10.1016/j.foodhyd.2016.04.043.
Y. J. Xu, Y. Q. Zhao, Z. X. Wei, et al., Modification of myofibrillar protein via glycation: physicochemical characterization, rheological behavior and solubility property, Food Hydrocolloid. 105 (2020) 105852. https://doi.org/10.1016/j.foodhyd.2020.105852.
R. Liu, S. M. Zhao, S. B. Xiong, et al., Rheological properties of fish actomyosin and pork actomyosin solutions, J. Food Eng. 85(2) (2007) 173179. https://doi.org/10.1016/j.jfoodeng.2007.06.031.
Y. G. Zhou, J. J. H. Liu, Y. Kang, et al., Effects of acid and alkaline treatments on physicochemical and rheological properties of tilapia surimi prepared by pH shift method during cold storage, Food Res. Int. 145 (2021) 110424. https://doi.org/10.1016/j.foodres.2021.110424.
H. Z. Chen, M. Zhang, C. H. Yang, Comparative analysis of 3D printability and rheological properties of surimi gels via LF-NMR and dielectric characteristics, J. Food Eng. 292 (2021) 110278. https://doi.org/10.1016/j.jfoodeng.2020.110278.
D. Santhi, A. Kalaikannan, P. Malairaj, et al., Application of microbial transglutaminase in meat foods: a review, Crit. Rev. Food Sci. 57(10) (2017) 2071–2076. https://doi.org/10.1080/10408398.2014.945990.
X. X. Zhu, C. Ning, S. Y. Li, et al., Effects of L-lysine/ L-arginine on the emulsion stability, textural, rheological and microstructural characteristics of chicken sausages, Int. J. Food Sci. Technol. 53(1) (2018) 88–96. https://doi.org/10.1111/ijfs.13561.
R. C. Gao, T. Shi, Q. C. Sun, et al., Effects of L-arginine and L-histidine on heat-induced aggregation of fish myosin: bighead carp ( Aristichthys nobilis), Food Chem. 295 (2019) 320–326. https://doi.org/10.1016/j.foodchem.2019.05.095.
B. Chen, K. Hou, Y. Wang, et al., Insight into the mechanism of textural deterioration of myofibrillar protein gels at high temperature conditions, Food Chem. 330 (2020) 127186. https://doi.org/10.1016/j.foodchem.2020.127186.
M. Hamada, Mechanical behavior and cross linkages of heat-induced myosin gel, Nippon Suisan Gakkaishi. 58(1) (1992) 89–93. https://doi.org/10.2331/suisan.58.89.
S. Y. Li, L. X. Li, X. X. Zhu, et al., Conformational and charge changes induced by L-arginine and L-lysine increase the solubility of chicken myosin, Food Hydrocoll. 89 (2019) 330–336. https://doi.org/10.1016/j.foodhyd.2018.10.059.
P. Karayannakidis, A. Zotos, D. Petridis, et al., Physicochemical changes of sardines ( Sardina pilchardus) at –18 °C and functional properties of Kamaboko gels enhanced with Ca2+ ions and MTGase, J. Food Process Eng. 31(3) (2008) 372–397. https://doi.org/10.1111/j.1745-4530.2007.00158.x.
T. Shi, X. Wang, M. Z. Li, et al., Mechanism of low-salt surimi gelation induced by microwave heating combined with L-arginine and transglutaminase: on the basis of molecular docking between L-arginine and myosin heavy chain, Food Chem. 391 (2022) 133184. https://doi.org/10.1016/j.foodchem.2022.133184.
B. Y. Guo, A. M. Zhou, G. Liu, et al., Changes of physicochemical properties of greater lizardfish ( Saurida tumbil) surimi gels treated with high pressure combined with microbial transglutaminase, J. Food Process Preserv. 43(10) (2019) 14150. https://doi.org/10.1111/jfpp.14150.
A. L. C. Gaspar, S. P. de Góes-Favoni, Action of microbial transglutaminase (MTGase) in the modification of food proteins: a review, Food Chem. 171 (2015) 315–322. https://doi.org/10.1016/j.foodchem.2014.09.019.
Y. D. Zheng, P. Xu, S. Y. Li, et al., Effects of L-lysine/ L-arginine on the physicochemical properties and quality of sodium-reduced and phosphate-free pork sausage, Int. J. Food Sci. Nutr. 6(1) (2017) 12. https://doi.org/10.11648/j.ijnfs.20170601.13.
Y. W. Zhang, J. J. Wu, M. A. Jamali, et al., Heat-induced gel properties of porcine myosin in a sodium chloride solution containing L-lysine and L-histidine, LWT-Food Sci. Technol. 85 (2017) 16–21. https://doi.org/10.1016/j.lwt.2017.06.059.
R. H. Wang, R. C. Gao, F. Xiao, et al., Effect of chicken breast on the physicochemical properties of unwashed sturgeon surimi gels, LWT-Food Sci. Technol. 113 (2019) 108306. https://doi.org/10.1016/j.lwt.2019.108306.
J. L. Huang, B. B. Ye, W. Wang, et al., Incorporation effect of inulin and microbial transglutaminase on the gel properties of silver carp ( Hypophthalmichthys molitrix) surimi, J. Food Meas. Charact. 15(1) (2021) 1–11. https://doi.org/10.1007/s11694-020-00604-z.
Y. Y. Zhang, D. J. Zhang, Y. J. Huang, et al., Effects of basic amino acid on the tenderness, water binding capacity and texture of cooked marinated chicken breast, LWT-Food Sci. Technol. 129 (2020) 109524. https://doi.org/10.1016/j.lwt.2020.109524.
Y. Q. An, J. You, S. B. Xiong, Short-term frozen storage enhances cross-linking that was induced by transglutaminase in surimi gels from silver carp ( Hypophthalmichthys molitrix), Food Chem. 257 (2018) 216–222. https://doi.org/10.1016/j.foodchem.2018.02.140.