AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (3.7 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

Gut microbiota and exercise-induced fatigue: unraveling the connections

Qing Li1,2Xin Wen1,2Gang Wang1,2,3,4Zhi Wang5( )Peijun Tian1,2( )
State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
(Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
Wuxi Ninth People’s Hospital Affiliated to Soochow University, Wuxi 214122, China
Show Author Information

Abstract

Exercise-induced fatigue (EF) refers to the physiological processes that impair the body’s ability to maintain desired levels of functioning and sustain predetermined exercise intensity. It encompasses peripheral discomfort (e.g., muscle soreness, weakness) and central exhaustion, characterized by emotional and sleep disturbances. The detrimental effects of EF significantly impact human productivity and lifestyle. Given the crosstalk between the gut microbiota and physiological metabolism in exercise, there is a growing interest in investigating the role of gut microbiota in elucidating the mechanisms underlying EF. Furthermore, exploring dietary interventions as a novel approach to alleviate EF has gained attention. Our work comprehensively synthesizes the underlying mechanisms and the alterations of gut microbiota community structure and function caused by EF, and evaluates existing evidence on the potential function of probiotics in the regulation of EF. This review aims to enhance our understanding of the correlation between gut microbiome and EF and explores the potential use of probiotics in mitigating EF.

References

[1]

V. Knoop, B. Cloots, A. Costenoble, et al., Fatigue and the prediction of negative health outcomes: a systematic review with meta-analysis, Ageing Res. Rev. 67 (2021) 101261. https://doi.org/10.1016/j.arr.2021.101261.

[2]

R. H. Fitts, J. B. Courtright, D. H. Kim, et al., Muscle fatigue with prolonged exercise: contractile and biochemical alterations, Am. J. Physiol.-Cell Physiol. 242(1) (1982) C65–C73. https://doi.org/10.1152/ajpcell.1982.242.1.C65.

[3]
M. Ihsan, G. Watson, C. R. Abbiss, What are the physiological mechanisms for post-exercise cold water immersion in the recovery from prolonged endurance and intermittent exercise?, Sports Med. 46 (2016) 1095–1109. https://doi.org/10.1007/s40279-016-0483-3.
[4]

A. Mhanna, Z. Alshehabi, The microbiota-gut-brain axis and three common neurological disorders: a mini-review, Ann. Med. Surg. 85(5) (2023) 1780–1783. https://doi.org/10.1097/ms9.0000000000000552.

[5]

S. Wang, L. Wang, X. Fan, et al., An insight into diversity and functionalities of gut microbiota in insects, Curr. Microbiol. 77 (2020) 1976–1986. https://doi.org/10.1007/s00284-020-02084-2.

[6]
B. Strasser, M. Wolters, C, Weyh, et al., The effects of lifestyle and diet on gut microbiota composition, inflammation and muscle performance in our aging society, Nutrients 13(6) (2021) 2045. https://doi.org/10.3390/nu13062045.
[7]

L. Mancin, G. D. Wu, A. Paoli, Gut microbiota-bile acid-skeletal muscle axis, Trends Microbiol. 31(3) (2023) 322–322. https://doi.org/10.1016/j.tim.2023.01.003.

[8]

S. Chen, P. Zhang, H. Duan, et al., Gut microbiota in muscular atrophy development, progression, and treatment: new therapeutic targets and opportunities, Innovation 4(5) (2023) 100479. https://doi.org/10.1016/j.xinn.2023.100479.

[9]

M. Giron, M. Thomas. D, Dardevet, et al., Gut microbes and muscle function: can probiotics make our muscles stronger?, J. Cachexia Sarcopen. Muscle 13(3) (2022) 1460–1476. https://doi.org/10.1002/jcsm.12964.

[10]

J. Pethick, J. Tallent, The neuromuscular fatigue-induced loss of muscle force control, Sports 10(11) (2022) 184. https://doi.org/10.3390/sports10110184.

[11]

M. C. Gerald, Effects of (+)-amphetamine on the treadmill endurance performance of rats, Neuropharmacology 17(9) (1978) 703–704. https://doi.org/10.1016/0028-3908(78)90083-7.

[12]

L. Dohnalová, P. Lundgren, J. R. E. Carty, et al., A microbiome-dependent gut-brain pathway regulates motivation for exercise, Nature 612 (2022) 739–747. https://doi.org/10.1038/s41586-022-05525-z.

[13]

T. McMorris, M. Barwood, J. Corbett, Central fatigue theory and endurance exercise: toward an interoceptive model, Neurosci. Biobehav. Rev. 93 (2018) 93–107. https://doi.org/10.1016/j.neubiorev.2018.03.024.

[14]

L. F. Freire Royes, P. Gabbi, L, R. Ribeiro, et al., A neuronal disruption in redox homeostasis elicited by ammonia alters the glycine/glutamate (GABA) cycle and contributes to MMA-induced excitability, Amino Acids 48 (2016) 1373–1389. https://doi.org/10.1007/s00726-015-2164-1.

[15]
R. Julian, T Meyer, H. H. K. Fullagar, et al., Individual patterns in blood-borne indicators of fatigue-trait or chance, J. Strength Cond. Res. 31(3) (2017) 608–619. https://doi.org/10.1519/JSC.0000000000001390.
[16]

E. Collado-Boira, P. Balino, A. Boldo-Roda, et al., Influence of female sex hormones on ultra-running performance and post-race recovery: role of testosterone, Int. J. Environ. Res. Public Health 18(19) (2021) 10403. https://doi.org/10.3390/ijerph181910403.

[17]

M. Springham, S. Williams, M. Waldron, et al., Salivary immunoendocrine and self-report monitoring profiles across an elite-level professional football season, Med. Sci. Sports Exerc. 53(5) (2021) 918–927. https://doi.org/10.1249/mss.0000000000002553.

[18]

T. Venckunas, R. Krusnauskas, A. Snieckus, et al., Acute effects of very low-volume high-intensity interval training on muscular fatigue and serum testosterone level vary according to age and training status, Eur. J. Appl. Physiol. 119 (2019) 1725–1733. https://doi.org/10.1007/s00421-019-04162-1.

[19]

K. Guo, J. Zhu, X. Quan, et al., Comparison of the effects of pretreatment with repeated electroacupuncture at GV20 and ST36 on fatigue in rats, Acupunct. Med. 33(5) (2015) 406–412. https://doi.org/10.1136/acupmed-2014-010686.

[20]

M. To, P. H. Strutton, C. M. Alexander, Central fatigue is greater than peripheral fatigue in people with joint hypermobility syndrome, J. Electromyogr. Kinesiol. 48 (2019) 197–204. https://doi.org/10.1016/j.jelekin.2019.07.011.

[21]

E. Ce, S. Longo, E. Limonta, et al., Peripheral fatigue: new mechanistic insights from recent technologies, Eur. J. Appl. Physiol. 120(1) (2020) 17–39. https://doi.org/10.1007/s00421-019-04264-w.

[22]

M. A. Hearris, K. M. Hammond, J. M. Fell, et al., Regulation of muscle glycogen metabolism during exercise: implications for endurance performance and training adaptations, Nutrients 10(3) (2018) 298. https://doi.org/10.3390/nu10030298.

[23]

N. Ortenblad, H. Westerblad, J. Nielsen, Muscle glycogen stores and fatigue, J. Physiol. 591(18) (2013) 4405–4413. https://doi.org/10.1113/jphysiol.2013.251629.

[24]

R. Twomey, S. J. Aboodarda, R. Kruger, et al., Neuromuscular fatigue during exercise: methodological considerations, etiology and potential role in chronic fatigue, Neurophysiol. Clin. 47(2) (2017) 95–110. https://doi.org/10.1016/j.neucli.2017.03.002.

[25]

M. Amann, S. K. Sidhu, C. J. McNeil, et al., Critical considerations of the contribution of the corticomotoneuronal pathway to central fatigue, J. Physiol. 600(24) (2022) 5203–5214. https://doi.org/10.1113/jp282564.

[26]

E. Kummer, N. Ban, Mechanisms and regulation of protein synthesis in mitochondria, Nat. Rev. Mol. Cell. Biol. 22(5) (2021) 307–325. https://doi.org/10.1038/s41580-021-00332-2.

[27]
A. Meiliana, N. M. Dewi, A. Wijaya. Mitochondria in health and disease, Indones. Biomed. J. 11(1) (2019) 1–15. https://doi.org/10.18585/inabj.v11i1.779.
[28]

N. Denker, R. Dringen, Modulation of pyruvate export and extracellular pyruvate concentration in primary astrocyte cultures, Neurochem. Res. 49 (2024) 1331–1346. https://doi.org/10.1007/s11064-024-04120-0.

[29]
X. P. Zhu, T. Yao, R. Wang, et al., IRF4 in skeletal muscle regulates exercise capacity via PTG/Glycogen pathway, Adv. Sci. 7(19) (2020) 2001502. https://doi.org/10.1002/advs.202001502.
[30]

C. C. Wang, S. D. Stovitz, J. S. Kaufman, et al., Principles of musculoskeletal sport injuries for epidemiologists: a review, Inj. Epidemiol. 11 (2024) 21. https://doi.org/10.1186/s40621-024-00507-3.

[31]

H. H. Kao, H. S. Hsu, T. H. Wu, et al., Effects of a single bout of short-duration high-intensity and long-duration low-intensity exercise on insulin resistance and adiponectin/leptin ratio, Obes. Res. Clin. Pract. 15(1) (2021) 58–63. https://doi.org/10.1016/j.orcp.2020.09.007.

[32]

D. König, J. Kohl, S. Jerger, et al., Potential relevance of bioactive peptides in sports nutrition, Nutrients 13(11) (2021) 3997. https://doi.org/10.3390/nu13113997.

[33]

S. Wiecha, P. Posadzki, R. Prill, et al., Physical therapies for delayed onset muscle soreness: a protocol for an umbrella and mapping systematic review with meta-meta-analysis, J. Clin. Med. 13(7) (2024) 2006. https://doi.org/10.3390/jcm13072006.

[34]
U. Proske. Exercise, fatigue and proprioception: a retrospective, Exp. Brain Res. 237(10) (2019) 2447-2459. https://doi.org/10.1007/ s00221-019-05634-8.
[35]

N. J. Kapsal, T. Dicke, A. J. S. Morin, et al., Effects of physical activity on the physical and psychosocial health of youth with intellectual disabilities: a systematic review and meta-analysis, J. Phys. Act. Health 16(12) (2019) 1187–1195. https://doi.org/10.1123/jpah.2018-0675.

[36]
M. A. Valentim, A. N. Brahmbhatt, A. R. Tupling. Skeletal and cardiac muscle calcium transport regulation in health and disease, Biosci. Rep. 42(12) (2022) BSR20211997. https://doi.org/10.1042/bsr20211997.
[37]

E. J. Lim, C. G. Son, Review of case definitions for myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), J. Transl. Med. 18(1) (2020) 289. https://doi.org/10.1186/s12967-020-02455-0.

[38]

R. S. Konig, W. C. Albrich, C. R. Kahlert, et al., The gut microbiome in myalgic encephalomyelitis (ME)/chronic fatigue syndrome (CFS), Front. Immunol. 12 (2022) 628741. https://doi.org/10.3389/fimmu.2021.628741.

[39]

R. K. Straub, C. M. Powers, Chronic fatigue syndrome: a case report highlighting diagnosing and treatment challenges and the possibility of Jarisch-Herxheimer reactions if high infectious loads are present, Healthcare 9(11) (2021) 1537. https://doi.org/10.3390/healthcare9111537.

[40]

J. J. Rozich, A. Holmer, S. Singh, Effect of lifestyle factors on outcomes in patients with inflammatory bowel diseases, Am. J. Gastroenterol. 115(6) (2020) 832–840. https://doi.org/10.14309/ajg.0000000000000608.

[41]

A. Varesi, U. S. Deumer, S. Ananth, et al., The emerging role of gut microbiota in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS): current evidence and potential therapeutic applications, J. Clin. Med. 10(21) (2021) 832–840. https://doi.org/10.3390/jcm10215077.

[42]

A. E. Wegierska, I. A. Charitos, S. Topi, et al., The connection between physical exercise and gut microbiota: implications for competitive sports athletes, Sports Med. 52 (2022) 2355–2369. https://doi.org/10.1007/s40279-022-01696-x.

[43]

A. Clark, N. Mach, Exercise-induced stress behavior, gut-microbiota-brain axis and diet: a systematic review for athletes, J. Int. Soc. Sport Nutr. 13 (2016) 43. https://doi.org/10.1186/s12970-016-0155-6.

[44]

W. M. C. Brown, G. W. Davison, C. M. McClean, et al., A systematic review of the acute effects of exercise on immune and inflammatory indices in untrained adults, Sports Med. 1 (2015) 35. https://doi.org/10.1186/s40798-015-0032-x.

[45]

H. R. Baer, S. P. Thomas, Z. Pan, et al., Self-reported physical function is associated with walking speed in adults with cerebral palsy, J. Pediatr. Rehabil. Med. 12(2) (2019) 181–188. https://doi.org/10.3233/prm-180585.

[46]

M. Loef, J. W. Schoones, M. Kloppenburg, et al., Fatty acids and osteoarthritis: different types, different effects, Joint Bone Spine. 86(4) (2019) 451–458. https://doi.org/10.1016/j.jbspin.2018.07.005.

[47]

E. A. Mayer, T. Savidge, R. J. Shulman, Brain-gut microbiome interactions and functional bowel disorders, Gastroenterology 146 (2014) 1500–1512. https://doi.org/10.1053/j.gastro.2014.02.037.

[48]

J. F. Cryan, K. J. O’Riordan, C. S. M. Cowan, et al., The microbiota-gut-brain axis, Physiol. Rev. 99(4) (2019) 1877–2013. https://doi.org/10.1152/physrev.00018.2018.

[49]

A. V. Oleskin, B. A. Shenderov, Neuromodulatory effects and targets of the SCFAs and gasotransmitters produced by the human symbiotic microbiota, Microb. Ecol. Health Dis. 27 (2016) 30971. https://doi.org/10.3402/mehd.v27.30971.

[50]

E. M. M. Quigley, Microbiota-brain-gut axis and neurodegenerative diseases, Curr. Neurol. Neurosci. Rep. 17(12) (2017) 187–200. https://doi.org/10.1007/s11910-017-0802-6.

[51]

J. A. Bravo, P. Forsythe, M. V. Chew, et al., Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve, Proc. Natl. Acad. Sci. 108(38) (2011) 16050–16055. https://doi.org/10.1073/pnas.1102999108.

[52]

K. G. Margolis, J. F. Cryan, E. A. Mayer, The microbiota-gut-brain axis: from motility to mood, Gastroenterology 160(5) (2021) 1486–1501. https://doi.org/10.1053/j.gastro.2020.10.066.

[53]

E. Imai, K. Shibata, Oral glucose tolerance and tryptophan metabolism in non-obese and non-insulin-dependent diabetic Goto-Kakizaki rats fed high-tryptophan diets, J. Nutr. Sci. Vitaminol. 64(1) (2018) 48–55. https://doi.org/10.3177/jnsv.64.48.

[54]

M. Ala, The footprint of kynurenine pathway in every cancer: a new target for chemotherapy, Eur. J. Pharmacol. 896 (2021) 173921. https://doi.org/10.1016/j.ejphar.2021.173921.

[55]

L. Z. Agudelo, T. Femenia, F. Orhan, et al., Skeletal muscle PGC-1α1 modulates kynurenine metabolism and mediates resilience to stress-induced depression, Cell 159(1) (2014) 33–45. https://doi.org/10.1016/j.cell.2014.07.051.

[56]
A. Agus, J. Planchais, H. Sokol. Gut microbiota regulation of tryptophan metabolism in health and disease, Cell Host Microbe 23(6) (2018) 716–724. https://doi.org/10.1016/j.chom.2018.05.003.
[57]
F. Orhan, L. Schwieler, G. Engberg, et al., Kynurenine metabolites in CSF and plasma in healthy males, Int. J. Tryptophan Res. 17 (2024) 11786469241245323. https://doi.org/10.1177/11786469241245323.
[58]

A. Federico, E. Cardaioli, P. da Pozzo, et al., Mitochondria, oxidative stress and neurodegeneration, J. Neurol. Sci. 322(1/2) (2012) 254–262. https://doi.org/10.1016/j.jns.2012.05.030.

[59]
G. Pamart, P. Gosset, O. le Rouzic, et al., Kynurenine pathway in respiratory diseases, Int. J. Tryptophan Res. 17 (2024) 11786469241232871. https://doi.org/10.1177/11786469241232871.
[60]

B. Xu, P. Zhang, X. Tang, et al., Metabolic rewiring of kynurenine pathway during hepatic ischemia-reperfusion injury exacerbates liver damage by impairing nad homeostasis, Adv. Sci. 9(35) (2022) e2204697. https://doi.org/10.1002/advs.202204697.

[61]
A. Pataskar, J. Champagne, R. Nagel, et al., Tryptophan depletion results in tryptophan-to-phenylalanine substitutants, Nature 603 (2022) 721–727. https://doi.org/10.1038/s41586-022-04499-2.
[62]
L. Mancin, G. D. Wu, A. Paoli. Gut microbiota-bile acid-skeletal muscle axis, Trends Microbiol. 31(3) (2023) 254-269. https://doi.org/10.1016/j.tim.2022.10.003.
[63]

C. Liu, W. H. Cheung, J. Li, et al., Understanding the gut microbiota and sarcopenia: a systematic review, J. Cachexia Sarcopen. Muscle 12 (2021) 1393–1407. https://doi.org/10.1002/jcsm.12784.

[64]

D. J. Morrison, T. Preston, Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism, Gut Microbes 7(3) (2016) 189–200. https://doi.org/10.1080/19490976.2015.1134082.

[65]
J. Frampton, K. G. Murphy, G. Frost, et al., Short-chain fatty acids as potential regulators of skeletal muscle metabolism and function. Nat. Metab. 2(9) (2020) 840-848. https://doi.org/10.1038/s42255-020-0188-7.
[66]

E. Ragonnaud, A. Biragyn, Gut microbiota as the key controllers of “healthy” aging of elderly people, Immun. Ageing 18(1) (2021) 338. https://doi.org/10.1186/s12979-020-00213-w.

[67]

Y. Qiu, J. Yu, Y. Li, et al., Depletion of gut microbiota induces skeletal muscle atrophy by FXR-FGF15/19 signalling, Ann. Med. 53(1) (2021) 508–522. https://doi.org/10.1080/07853890.2021.1900593.

[68]

C. Guo, X. Che, T. Briese, et al., Deficient butyrate-producing capacity in the gut microbiome is associated with bacterial network disturbances and fatigue symptoms in ME/CFS, Cell Host Microbe 31(2) (2023) 288–304. https://doi.org/10.1016/j.chom.2023.01.004.

[69]

W. Ratajczak, A. Ryl, A. Mizerski, et al., Immunomodulatory potential of gut microbiome-derived short-chain fatty acids (SCFAs), Acta Biochim. Pol. 66(1) (2019) 1–12. https://doi.org/10.18388/abp.2018_2648.

[70]

P. Portincasa, L. Bonfrate, M. Vacca, et al., Gut microbiota and short chain fatty acids: implications in glucose homeostasis, Int. J. Mol. Sci. 23(3) (2022) 1105. https://doi.org/10.3390/ijms23031105.

[71]

K. D. Corbin, E. A. Carnero, B. Dirks, et al., Host-diet-gut microbiome interactions influence human energy balance: a randomized clinical trial, Nat. Commun. 14(1) (2023) 3161. https://doi.org/10.1038/s41467-023-38778-x.

[72]

W. C. Huang, C. C. Wei, C. C. Huang, et al., The beneficial effects of Lactobacillus plantarum ps128 on high-intensity, exercise-induced oxidative stress, inflammation, and performance in triathletes, Nutrients 11(2) (2019) 353. https://doi.org/10.3390/nu11020353.

[73]

J. Ralf, P. Martin, S. Jason, et al., Probiotic Streptococcus thermophilus FP4 and Bifidobacterium breve BR03 supplementation attenuates performance and range-of-motion decrements following muscle damaging exercise, Nutrients 8(10) (2016) 642. https://doi.org/10.3390/nu8100642.

[74]

A. F. Carbuhn, S. M. Reynolds, C. W. Campbell, et al., Effects of probiotic ( Bifidobacterium longum 35624) supplementation on exercise performance, immune modulation, and cognitive outlook in division I female swimmers, Sports 6(4) (2018) 116. https://doi.org/10.3390/sports6040116.

[75]

A. J. Cox, D. B. Pyne, P. U. Saunders, et al., Oral administration of the probiotic Lactobacillus fermentum VRI-003 and mucosal immunity in endurance athletes, Brit. J. Sports Med. 44(4) (2010) 222–226. https://doi.org/10.1136/bjsm.2007.044628.

[76]

B. Strasser, D. Geiger, M. Schauer, et al., Probiotic supplements beneficially affect tryptophan-kynurenine metabolism and reduce the incidence of upper respiratory tract infections in trained athletes: a randomized, double-blinded, placebo-controlled trial, Nutrients 8(11) (2016) 752. https://doi.org/10.3390/nu8110752.

[77]

J. R. Townsend, D. Bender, W. C. Vantrease, et al., Effects of probiotic ( Bacillus subtilis DE111) supplementation on immune function, hormonal status, and physical performance in division I baseball players, Sports 6(3) (2018) 70. https://doi.org/10.3390/sports6030070.

[78]

C. L. Lin, Y. J. Hsu, H. H. Ho, et al., Bifidobacterium longum subsp. longum OLP-01 supplementation during endurance running training improves exercise performance in middle- and long-distance runners: a double-blind controlled trial, Nutrients 12(7) (2020) 1972. https://doi.org/10.3390/nu12071972.

[79]

D. Martarelli, M. C. Verdenelli, S. Scuri, et al., Effect of a probiotic intake on oxidant and antioxidant parameters in plasma of athletes during intense exercise training, Curr. Microbiol. 62 (2011) 1689–1696. https://doi.org/10.1007/s00284-011-9915-3.

[80]

M. Tarik, L. Ramakrishnan, N. Bhatia, et al., The effect of Bacillus coagulans Unique IS-2 supplementation on plasma amino acid levels and muscle strength in resistance trained males consuming whey protein: a double-blind, placebo-controlled study, Eur. J. Clin. Nutr. 61(5) (2022) 2673–2685. https://doi.org/10.1007/s00394-022-02844-9.

[81]

R. Jaeger, K. A. Shields, R. P. Lowery, et al., Probiotic Bacillus coagulans GBI-30, 6086 reduces exercise-induced muscle damage and increases recovery, PeerJ 4 (2016) e2276. https://doi.org/10.7717/peerj.2276.

[82]

J. Zhu, Y. Zhu, G. Song, Effect of probiotic yogurt supplementation Bifidobacterium animalis ssp. lactis BB-12) on gut microbiota of female taekwondo athletes and its relationship with exercise-related psychological fatigue, Microorganisms 11(6) (2023) 1403. https://doi.org/10.3390/microorganisms11061403.

[83]

R. Jager, A. E. Mohr, K. C. Carpenter, et al., International society of sports nutrition position stand: probiotics, J. Int. Soc. Sports Nutr. 16(1) (2019) 62. https://doi.org/10.1186/s12970-019-0329-0.

[84]

G. B. Moller, M. J. Vieira da Cunha Goulart, B. B. Nicoletto, et al., Supplementation of probiotics and its effects on physically active individuals and athletes: systematic review, Int. J. Sport Nutr. 29(5) (2019) 481–492. https://doi.org/10.1123/ijsnem.2018-0227.

[85]

M. Marttinen, R. Ala-Jaakkola, A. Laitila, et al., Gut microbiota, probiotics and physical performance in athletes and physically active individuals, Nutrients 12(10) (2020) 2936. https://doi.org/10.3390/nu12102936.

Food Science of Animal Products
Article number: 9240061
Cite this article:
Li Q, Wen X, Wang G, et al. Gut microbiota and exercise-induced fatigue: unraveling the connections. Food Science of Animal Products, 2024, 2(2): 9240061. https://doi.org/10.26599/FSAP.2024.9240061

324

Views

66

Downloads

0

Crossref

Altmetrics

Received: 07 May 2024
Revised: 14 June 2024
Accepted: 20 June 2024
Published: 19 July 2024
© Beijing Academy of Food Sciences 2024.

Food Science of Animal Products published by Tsinghua University Press. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return