Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
With the deepening research on marine resources, active peptides from marine fish have gradually become a hot spot. This review based on the background of the important value and broad application prospect of active peptides in marine fish. Various preparation methods for active peptides from marine fish, such as enzymolysis, extraction, microbial fermentation, and enzymatic hydrolysis, are described in detail. The antioxidant, antibacterial, anti-blood pressure, immunomodulatory, anti-skin photoaging, and anti-fatigue functions and the corresponding mechanisms of action of the active peptides of marine fishes are discussed in depth. The active peptides of marine fish are further proposed to strengthen the in-depth investigation of the mechanism of action and optimise the preparation process in future research, as well as the application in functional food. It is hoped that more ideas can be provided for the safe, effective and compliant application of marine fish active peptides in promoting human health food.
C. Yang, Application of bioactive peptides in nutritional health care, Food Sci. 24(12) (2003) 153–154.
Y. F. Wang, Q. F. Huang, D. D. Kong, et al., Production and functionality of food-derived bioactive peptides: a review, Mini Rev. Med. Chem. 18(18) (2018) 1524–1535. https://doi.org/10.2174/1389557518666180424110754.
L. J. Xing, Z. X. Wang, Y. J. Hao, et al., Marine products as a promising resource of bioactive peptides: update of extraction strategies and their physiological regulatory effects, J. Agric. Food Chem. 70(10) (2022) 3081–3095. https://doi.org/10.1021/acs.jafc.1c07868.
A. C. Sara, E. P. Manuela, Bioactive peptides derived from marine sources: biological and functional properties, Trends Food Sci. Tech. 119 (2022) 348–370. https://doi.org/10.1016/j.jpgs.2021. 08.017.
Y. H. Wong, S. R. Wong, S. H. Lee, The therapeutic anticancer potential of marine-derived bioactive peptides: a highlight on pardaxin, Int. J. Pept. Res. Ther. 29 (2023) 1–16.
R. C. Gao, W. H. Shu, Y. Shen, et al., Sturgeon protein-derived peptides exert anti-inflammatory effects in LPS-stimulated RAW264.7 macrophages via the MAPK pathway, J. Funct. Foods 72 (2020) 104044. https://doi.org/10.1016/j.jff.2020.104044.
C. F. Chi, F. Y. Hu, B. Wang, et al., Purification and characterization of three antioxidant peptides from protein hydrolyzate of croceine croaker ( Pseudosciaena crocea) muscle, Food Chem. 168 (2015) 662–667. https://doi.org/10.1016/j.foodchem.2014.07.117.
W. Y. Zhu, Y. M. Wang, S. K. Suo, et al., Isolation, identification, molecular docking analysis, and cytoprotection of seven novel angiotensin I-converting enzyme inhibitory peptides from miiuy croaker byproducts-swim bladders, Front. Mar. Sci. 9 (2022) 977234. https://doi.org/10.3389/fmars.2022.977234.
P. Unnikrishnan, B. P. Kizhakkethil, J. C. George, et al., Antioxidant peptides from dark meat of yellowfin tuna ( Thunnus albacares): process optimization and characterization, Waste Biomass Valori. 12 (2021) 1845–1860. https://doi.org/10.1007/s12649-020-01129-8.
H. Y. Zhang, S. Z. Qi, W. H. Yu, et al., Optimisation and identification of anchovy antimicrobial peptides by enzymolysis and untargeted proteomic profiling, Int. J. Food Sci. Technol. 58 (2023) 2550–2559. https://doi.org/10.1111/ijfs.16401.
Y. Sheng, W. Y. Wang, M. F. Wu, et al., Eighteen novel bioactive peptides from monkfish ( Lophius litulon) swim bladders: production, identification, antioxidant activity, and stability, Mar. Drugs 21 (2023) 169. https://doi.org/10.3390/md21030169.
Q. Q. Qiao, Q. B. Luo, S. K. Suo, et al., Preparation, characterization, and cytoprotective effects on HUVECs of fourteen novel angiotensin-I-converting enzyme inhibitory peptides from protein hydrolysate of tuna processing by-products, Front. Nutr. 9 (2022) 868681. https://doi.org/10.3389/fnut.2022.868681.
H. Okella, H. Ikiriza, S. Ochwo, et al., Identification of antimicrobial peptides isolated from the skin mucus of African catfish, Clarias gariepinus, Front. Microbio. 12 (2021) 794631. https://doi.org/10.3389/fmicb.2021.794631.
B. Giridharan, A. Chinnaiah, K. Saravanan, et al., Characterization of novel antimicrobial peptides from the epidermis of Clarias batrachus catfish, Int. J. Pept. Res. Ther. 30 (2024) 11. https://doi.org/10.1007/s10989-024-10589-8.
S. Abachi, C. Offret, I. Fliss, et al., Isolation of immunomodulatory biopeptides from Atlantic mackerel ( Scomber scombrus) protein hydrolysate based on molecular weight, charge, and hydrophobicity, Food Bioprocess Technol. 15 (2022) 852–874. https://doi.org/10.1007/s11947-022-02786-4.
Y. G. Wang, F. R. Zhu, F. S. Han, et al., Purification and characterization of antioxidative peptides from salmon protamine hydrolysate, J. Food Biochem. 32(5) (2008) 654–671. https://doi.org/10.1111/j.1745-4514.2008.00190.x.
X. Y. Pan, Y. M. Wang, L. Li, et al., Four antioxidant peptides from protein hydrolysate of red stingray ( Dasyatis akajei) cartilages: isolation, identification, and in vitro activity evaluation, Mar. Drugs 17(5) (2019) 263. https://doi.org/10.3390/md17050263.
Q. Y. Han, T. Koyama, S. Watabe, et al., Isolation and characterization of collagen and collagen peptides with hyaluronidase inhibition activity derived from the skin of marlin (Istiophoridae), Molecules 28(2) (2023) 889. https://doi.org/10.3390/molecules28020889.
L. Zhang, G. X. Zhao, Y. Q. Zhao, et al., Identification and active evaluation of antioxidant peptides from protein hydrolysates of skipjack tuna ( Katsuwonus pelamis) head, Antioxidants 8(8) (2019) 318. https://doi.org/10.3390/antiox8080318.
T. T. Li, Q. W. Liu, D. F. Wang, et al., Characterization and antimicrobial mechanism of CF-14, a new antimicrobial peptide from the epidermal mucus of catfish, Fish Shellfish Immun. 92 (2019) 881–888. https://doi.org/10.1016/j.fsi.2019.07.015.
J. Bo, Y. Yang, R. H. Zheng, et al., Antimicrobial activity and mechanisms of multiple antimicrobial peptides isolated from rockfish Sebastiscus marmoratus, Fish Shellfish Immun. 93 (2019) 1007–1017. https://doi.org/10.1016/j.fsi.2019.08.054.
S. R. Brunner, J. F. A. Varga, B. Dixon, Antimicrobial peptides of salmonid fish: from form to function, Biology 9(8) (2020) 233. https://doi.org/10.3390/biology9080233.
A. Bridle, E. Nosworthy, M. Polinski, et al., Evidence of an antimicrobial-immunomodulatory role of Atlantic salmon cathelicidins during infection with Yersinia ruckeri, PLoS ONE 6(8) (2011) 23417. https://doi.org/10.1371/journal.pone.0023417.
F. D’Este, M. Benincasa, G. Cannone, et al., Antimicrobial and host cell-directed activities of Gly/Ser-rich peptides from salmonid cathelicidins, Fish Shellfish Immunol. 59 (2016) 456–468. https://doi.org/10.1016/j.fsi.2016.11.004.
G. Parati, A. Goncalves, D. Soergel, et al., New perspectives for hypertension management: progress in methodological and technological developments, Eur. J. Prev. Cardio. 30 (2023) 48–60. https://doi.org/10.1093/eurjpc/zwac203.
K. T. Mills, A. Stefanescu, J. He, The global epidemiology of hypertension, Nat. Rev. Nephrol. 16 (2020) 223–237. https://doi.org/10.1038/s41581-019-0244-2.
D. Aboukhater, B. Morad, N. Nasrallah, et al., Inflammation and hypertension: underlying mechanisms and emerging understandings, J. Cell. Physiol. 238(6) (2023) 1148–1159. https://doi.org/10.1002/jcp.31019.
W. Liao, J. P. Wu, The ACE2/Ang (1–7)/MasR axis as an emerging target for antihypertensive peptides, Crit. Rev. Food Sci. Nutr. 61(15) (2020) 2572–2586. https://doi.org/10.1080/10408398.2020.1781049.
M. S. Vieira-Rocha, J. B. Sousa, P. Rodríguez-Rodríguez, et al., Vascular angiotensin AT1 receptor neuromodulation in fetal programming of hypertension, Vasc. Pharmacol. 117 (2019) 27–34. https://doi.org/10.1016/j.vph.2018.10.003.
R. M. Carey, Blood pressure and the renal actions of AT2 receptors, Curr. Hypertens. Rep. 19(3) (2017) 21. https://doi.org/10.1007/s11906-017-0720-7.
C. H. Wu, S. Mohammadmoradi, J. Z. Chen, et al., Renin-angiotensin system and cardiovascular functions, Arterioscler. Thromb. Vasc. Biol. 38(7) (2018) e108–e116. https://doi.org/10.1161/ATVBAHA.118.311282.
M. Fujii, N. Matsumura, K. Mito, et al., Antihypertensive effects of peptides in autolysate of bonito bowels on spontaneously hypertensive rats, Biosci. Biotechnol. Biochem. 57(12) (1993) 2186–2188. https://doi.org/10.1271/BBB.57.2186.
J. Y. Oh, J. G. Je, H. G. Lee, et al., Anti-hypertensive activity of novel peptides identified from olive flounder ( Paralichthys olivaceus) surimi, Foods 9(5) (2020) 647. https://doi.org/10.3390/foods9050647.
K. Takemori, E. Yamamoto, H. Ito, et al., Prophylactic effects of elastin peptide derived from the bulbus arteriosus of fish on vascular dysfunction in spontaneously hypertensive rats, Life Sci. 120 (2015) 48–53. https://doi.org/10.1016/j.lfs.2014.10.011.
H. Kong, J. J. Han, D. Gorbachev, et al., Role of the Hippo pathway in autoimmune diseases, Exp. Gerontol. 185 (2024) 112336. https://doi.org/10.1016/j.exger.2023.11233.
J. Nikolich-Žugich, The twilight of immunity: emerging concepts in aging of the immune system, Nat. Immunol. 19(1) (2018) 10–19. https://doi.org/10.1038/s41590-017-0006-x.
K. E. McGovern, S. A. Sonar, M. Watanabe, et al., The aging of the immune system and its implications for transplantation, GeroScience 45(3) (2023) 1383–1400. https://doi.org/10.1007/s11357-022-00720-2.
S. Z. Josefowicz, J. C. Sun, Innate immunity-with an adaptive twist, Immunol. Rev. 323(1) (2024) 13334. https://doi.org/10.1111/imr.13334.
C. P. Shibayama, C. G. Cruz, B. Ludewig, Fibroblastic reticular cells at the nexus of innate and adaptive immune responses, Immunol. Rev. 289(1) (2019) 31–41. https://doi.org/10.1111/imr.12748.
J. I. Gray, D. L. Farber, Tissue-resident immune cells in humans, Annu. Rev. Immunol. 40 (2022) 195–220. https://doi.org/10.1146/annurev-immunol-093019-112809.
Y. Fang, X. Pan, E. Zhao, et al., Isolation and identification of immunomodulatory selenium-containing peptides from selenium-enriched rice protein hydrolysates, Food Chem. 275 (2019) 696–702. https://doi.org/10.1016/j.foodchem.2018.09.115.
H. Raskov, A. Orhan, A. Salanti, et al., Natural killer cells in cancer and cancer immunotherapy, Cancer Lett. 520 (2021) 233–242. https://doi.org/10.1016/j.canlet.2021.07.032.
X. Wang, H. H. Yu, R. Xing, et al., Structural properties, anti-fatigue and immunological effect of low molecular weight peptide from Monkfish, J. Funct. Foods 105 (2023) 105546. https://doi.org/10.1016/j.jff.2023.105546.
Z. X. Ren, F. Yang, S. J. Yao, et al., Effects of low molecular weight peptides from monkfish ( Lophius litulon) roe on immune response in immunosuppressed mice, Front. Nutr. 9 (2022) 929105. https://doi.org/10.3389/fnut.2022.929105.
X. X. Jin, X. D. Zhang, Y. B. Li, et al., Long-acting microneedle patch loaded with adipose collagen fragment for preventing the skin photoaging in mice, Biomater. Adv. 135 (2022) 212744. https://doi.org/10.1016/j.bioadv.2022.212744.
J. H. Auh, J. Madhavan, Protective effect of a mixture of marigold and rosemary extracts on UV-induced photoaging in mice, Biomed. Pharmacother. 135 (2021) 111178. https://doi.org/10.1016/ j.biopha.2020.111178.
B. O. Cho, D. N. Che, J. Y. Shin, et al., Ameliorative effects of diospyros lotus leaf extract against UVB-induced skin damage in BALB/c mice, Biomed. Pharmacother. 95 (2017) 264–274. https://doi.org/10.1016/j.biopha.2017.07.159.
A. Q. He, L. Wang, Q. Wang, et al., Protective effects of micronized fat against ultraviolet B-induced photoaging, Plast. Reconstr. Surg. 145(3) (2020) 712–720. https://doi.org/10.1097/PRS.0000000000006607.
B. Song, D. Liu, T. C. Liu, et al., The combined effect of commercial tilapia collagen peptides and antioxidants against UV-induced skin photoaging in mice, Food Funct. 14(13) (2023) 5936–5948. https://doi.org/10.1039/d3fo01516e.
P. Surowiak, T. Gansukh, P. Donizy, et al., Increase in cyclooxygenase-2 (COX-2) expression in keratinocytes and dermal fibroblasts in photoaged skin, J. Cosmet. Dermatol-US 13(3) (2014) 195–201. https://doi.org/10.1111/jocd.12103.
U. Mirastschijski, B. Lupše, K. Maedler, et al., Matrix metalloproteinase-3 is key effector of TNF-α-induced collagen degradation in skin, Int. J. Mol. Sci. 20 (2019) 5234–5234. https://doi.org/10.3390/ijms20205234.
K. S. Lee, J. Lee, H. K. Kim, et al., Extracellular vesicles from adipose tissue-derived stem cells alleviate osteoporosis through osteoprotegerin and miR-21-5p, J. Extracell. 10(12) (2021) e12152. https://doi.org/10.1002/jev2.12152.
D. Hao, G. G. Liu, D. Feng, et al., Research progress on new functions of animal and plant proteins, Foods 13(8) (2024) 1223. https://doi.org/10.3390/foods13081223.
D. L. Vollmer, V. A. West, E. D. Lephart, Enhancing skin health: by oral administration of natural compounds and minerals with implications to the dermal microbiome, Int. J. Mol. Sci. 19(10) (2018) 3059. https://doi.org/10.3390/ijms19103059.
G. A. Cruz, A. L. López, V. C. Gómez, et al., Collagen hydrolysates for skin protection: oral administration and topical formulation, Antioxidants 9(2) (2020) 181. https://doi.org/10.3390/antiox9020181.
D. Y. Yang, Q. Liu, Q. Y. Xu, et al., Effects of collagen hydrolysates on UV-induced photoaging mice: Gly-Pro-Hyp as a potent anti-photoaging peptide, Food Funct. 15(6) (2024) 3008–3022. https://doi.org/10.1039/d3fo04949c.
X. H. Lin, Y. Y. Chen, H. X. Jin, et al., Collagen extracted from big eye tuna ( Thunnus obesus) skin by isoelectric precipitation: physicochemical properties, proliferation, and migration activities, Mar. Drugs 17(5) (2019) 261. https://doi.org/10.3390/md17050261.
H. Yves, J. Herman, M. Uebelhoe, et al., Oral supplementation with fish cartilage hydrolysate in an adult population suffering from knee pain and function discomfort: results from an innovative approach combining an exploratory clinical study and an ex vivo clinical investigation, BMC Musculoskel Dis. 24(1) (2023) 748. https://doi.org/10.1186/s12891-023-06800-4.
S. S. Zhou, J. G. Jiang, Anti-fatigue effects of active ingredients from traditional Chinese medicine: a review, Curr. Med. Chem. 26(10) (2019) 1833–1848. https://doi.org/10.2174/0929867324666170414164607.
J. Ye, C. H. Shen, Y. Y. Huang, et al., Anti-fatigue activity of sea cucumber peptides prepared from Stichopus japonicus in an endurance swimming rat model, J. Sci. Food Agric. 97(13) (2017) 4548–4556. https://doi.org/10.1002/jsfa.8322.
J. Q. Chen, X. D. Lu, P. X. Chen, et al., Anti-fatigue effect of glycoprotein from hairtail ( Trichiurus lepturus) by-products in a behavioral mouse model, Food Chem.: X 18 (2023) 100645. https://doi.org/10.1016/j.fochx.2023.100645.
Y. Q. Zhao, L. Zeng, Z. S. Yang, et al., Anti-fatigue effect by peptide fraction from protein hydrolysate of croceine croaker ( Pseudosciaena crocea) swim bladder through inhibiting the oxidative reactions including DNA damage, Mar. Drugs 14(12) (2016) 221. https://doi.org/10.3390/md14120221.
Food Science of Animal Products published by Tsinghua University Press. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).