AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (3 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

The application and mechanism of polysaccharides, proteins and their complexes on enhancing yogurt gel stability: a review

Ruiyao HongHuiyi YangYangze GuoQiumei LiuNuo XuYuanfang XieMohan Li( )Xiqing Yue( )
College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
Show Author Information

Graphical Abstract

Abstract

Yogurt is highly sought after by consumers because of its unique flavor, rich nutritional value and health care function. However, during its sale and storage, some undesirable phenomena such as unstable gel structure and whey precipitation are prone to occur, which has affected the further development of yogurt industry to some extent. Polysaccharides and proteins act as typical thickeners and stabilizers in food, enhancing the structural stability of yogurt gel through different mechanisms. Anionic polysaccharides interact with casein electrostatically to form complexes, while neutral polysaccharides rely on their hydration capacity and act as fillers to stabilise the three-dimensional structure of yogurt. Milk proteins and vegetable proteins play a stabilising role mainly through hydrophobic interactions and disulphide bonds. Gelatin, on the other hand, relies on its good hydration capacity and gelation properties. Polysaccharide and protein complexes mainly rely on non-covalent interactions to stabilise the yogurt gel structure. This paper reviewed the mechanisms of yogurt gel formation and the factors that affect yogurt texture. It also summarized the research progress on enhancing the structural stability of yogurt gel using polysaccharides and proteins as well as their complexes as additives, with a view to providing theoretical bases for improvement of the textural properties of yogurt.

References

[1]

P. T. M. Nguyen, O. Kravchuk, B. Bhandari, et al., Effect of different hydrocolloids on texture, rheology, tribology and sensory perception of texture and mouthfeel of low-fat pot-set yoghurt, Food Hydrocoll. 72 (2017) 90–104. https://doi.org/10.1016/j.foodhyd.2017.05.035.

[2]

K. Xu, M. Guo, J. Du, et al., Okra polysaccharide: effect on the texture and microstructure of set yoghurt as a new natural stabilizer, Int. J. Biol. Macromol. 133 (2019) 117–126. https://doi.org/10.1016/j.ijbiomac.2019.04.035.

[3]

X. Yue, M. Li, Y. Liu, et al., Microbial diversity and function of soybean paste in East Asia: what we know and what we don’t, Curr. Opin. Food Sci. 37 (2021) 145–152. https://doi.org/10.1016/j.cofs.2020.10.012.

[4]

D. Li, M. Lai, P. Wang, et al., Effects of different prebiotics on the gel properties of milk protein and the structural features of yogurt, Gels 9(11) (2023) 863. https://doi.org/10.3390/gels9110863.

[5]

M. Arab, M. Yousefi, E. Khanniri, et al., A comprehensive review on yogurt syneresis: effect of processing conditions and added additives, J. Food Sci. Technol. 60 (2022) 1656–1665. https://doi.org/10.1007/s13197-022-05403-6.

[6]

X. Ning, Z. Luo, Z. Chen, et al., Fortification of set yogurt with passion fruit juice: effects on fermentation kinetics, physicochemical properties, and functionality, J. Dairy Sci. 104 (2021) 4084–4093. https://doi.org/10.3168/jds.2020-19261.

[7]

A. Xie, Y. Dong, Z. Liu, et al., A review of plant-based drinks addressing nutrients, flavor, and processing technologies, Foods 12 (2023) 3952. https://doi.org/10.3390/foods12213952.

[8]

X. Shen, A. Xie, Z. Li, et al., Research progress for probiotics regulating intestinal flora to improve functional dyspepsia: a review, Foods 13 (2024) 151. https://doi.org/10.3390/foods13010151.

[9]

A. Mituniewicz-Małek, D. Zielińska, M. Ziarno, Probiotic monocultures in fermented goat milk beverages-sensory quality of final product, Int. J. Dairy Technol. 72 (2019) 240–247. https://doi.org/10.1111/1471-0307.12576.

[10]

C. Grażyna, C. Hanna, A. Adam, et al., Natural antioxidants in milk and dairy products, Int. J. Dairy Technol. 70 (2017) 165–178. https://doi.org/10.1111/1471-0307.12576.

[11]

E. Hadjimbei, G. Botsaris, V. Goulas, et al., Functional stability of goats’ milk yoghurt supplemented with Pistacia atlantica resin extracts and Saccharomyces boulardii, Int. J. Dairy Technol. 73 (2020) 134–143. https://doi.org/10.1111/1471-0307.12629.

[12]

A. Gilbert, S. L. Turgeon, Studying stirred yogurt microstructure and its correlation to physical properties: a review, Food Hydrocoll. 121 (2021) 106970. https://doi.org/10.1016/j.foodhyd.2021.106970.

[13]

R. Ding, M. Li, Y. Zou, et al., Effect of normal and strict anaerobic fermentation on physicochemical quality and metabolomics of yogurt, Food Biosci. 46 (2022) 101368. https://doi.org/10.1016/j.fbio.2021.101368.

[14]

P. Temme, A. Körzendörfer, J. Hinrichs, et al., Vibrations as a cause of texture defects during yogurt manufacturing-formation of vibrations and their propagation in dairy production lines, J. Food Eng. 293 (2021) 110369. https://doi.org/10.1016/j.jfoodeng.2020.110369.

[15]

D. Najgebauer-Lejko, M. Witek, D. Żmudziński, et al., Changes in the viscosity, textural properties, and water status in yogurt gel upon supplementation with green and Pu-erh teas, J. Dairy Sci. 103 (2020) 11039–11049. https://doi.org/10.3168/jds.2020-19032.

[16]

E. Lam, D. Otter, T. Huppertz, et al., Effect of transglutaminase and acidification temperature on the gelation of reconstituted skim milk, Int. Dairy J. 92 (2019) 59–68. https://doi.org/10.1016/j.idairyj.2019.01.006.

[17]

H. T. H. Nguyen, L. Ong, S. E. Kentish, et al., Homogenisation improves the microstructure, syneresis and rheological properties of buffalo yoghurt, Int. Dairy J. 46 (2015) 78–87. https://doi.org/10.1016/j.idairyj.2014.08.003.

[18]

C. E. Jørgensen, R. K. Abrahamsen, E. O. Rukke, et al., Improving the structure and rheology of high protein, low fat yoghurt with undenatured whey proteins, Int. Dairy J. 47 (2015) 6–18. https://doi.org/10.1016/j.idairyj.2015.02.002.

[19]

C. I. E. Ciron, V. L. Gee, A. L. Kelly, et al., Effect of microfluidization of heat-treated milk on rheology and sensory properties of reduced fat yoghurt, Food Hydrocoll. 25 (2011) 1470–1476. https://doi.org/10.1016/j.foodhyd.2011.02.012.

[20]

P. Mudgil, B. Jumah, M. Ahmad, et al., Rheological, micro-structural and sensorial properties of camel milk yogurt as influenced by gelatin, LWT-Food Sci. Technol. 98 (2018) 646–653. https://doi.org/10.1016/j.lwt.2018.09.008.

[21]

R. P. Lopes, M. J. Mota, C. A. Pinto, et al., Physicochemical and microbial changes in yogurts produced under different pressure and temperature conditions, LWT-Food Sci. Technol. 99 (2019) 423–430. https://doi.org/10.1016/j.lwt.2018.09.074.

[22]

X. Meng, Y. Huang, J. Xiong, et al., Lactiplantibacillus plantarum ZFM55 improves texture and flavor of yogurt, increases beneficial metabolites, and the co-fermented yogurt promotes human gut microbiota health, LWT-Food Sci. Technol. 198 (2024) 115929. https://doi.org/10.1016/j.lwt.2024.115929.

[23]

Z. Ge, X. Bao, X. Feng, et al., In situ exopolysaccharides from Lactobacillus helveticus MB2-1 in Sayram Ketteki yoghurt: set yoghurts properties and interactions with sodium caseinate, Int. J. Biol. Macromol. 216 (2022) 871–881. https://doi.org/10.1016/j.ijbiomac.2022.07.147.

[24]

Y. Zhang, J. Zhang, J. Shao, et al., The influence of the interaction between whey protein and erythritol on protein conformation, interfacial properties and stability, Int. J. Dairy Technol. 77(3) (2014) 735–749. https://doi.org/10.1111/1471-0307.13092.

[25]

Y. Zhang, Y. Guo, C. Jiang, et al., A review of casein phosphopeptides: from enrichment identification to biological properties, Food Biosci. 59 (2024) 104217. https://doi.org/10.1016/j.fbio.2024.104217.

[26]

R. Andoyo, F. Guyomarc’h, A. Burel, et al., Spatial arrangement of casein micelles and whey protein aggregate in acid gels: insight on mechanisms, Food Hydrocoll. 51 (2015) 118–128. https://doi.org/10.1016/j.foodhyd.2015.04.031.

[27]

N. X. Sun, Y. Liang, B. Yu, et al., Interaction of starch and casein, Food Hydrocoll. 60 (2016) 572–579. https://doi.org/10.1016/j.foodhyd.2016.04.029.

[28]

M. Brüls, S. Foroutanparsa, T. Merland, et al., Quantitative image analysis of influence of polysaccharides on protein network formation in GDL-acidified milk gels, Food Struct. 38 (2023) 100352. https://doi.org/10.1016/j.foostr.2023.100352.

[29]

A. Gilbert, L. E. Rioux, D. St-Gelais, et al., Studying stirred yogurt microstructure using optical microscopy: how smoothing temperature and storage time affect microgel size related to syneresis, J. Dairy Sci. 103 (2020) 2139–2152. https://doi.org/10.3168/jds.2019-16787.

[30]

S. Tiwari, D. Kavitake, P. B. Devi, et al., Bacterial exopolysaccharides for improvement of technological, functional and rheological properties of yoghurt, Int. J. Biol. Macromol. 183 (2021) 1585–1595. https://doi.org/10.1016/j.ijbiomac.2021.05.140.

[31]

J. Zang, H. You, S. Li, et al., Interpreting the “twice gelation” mechanism of a novel egg-based yoghurt through the dynamics of rheology, microstructure, and intermolecular forces, Food Biosci. 56 (2023) 103318. https://doi.org/10.1016/j.fbio.2023.103318.

[32]

M. Morand, F. Guyomarc’h, D. Legland, et al., Changing the isoelectric point of the heat-induced whey protein complexes affects the acid gelation of skim milk, Int. Dairy J. 23 (2012) 9–17. https://doi.org/10.1016/j.idairyj.2011.10.006.

[33]

M. C. Karam, C. Gaiani, C. Hosri, et al., Effect of dairy powders fortification on yogurt textural and sensorial properties: a review, J. Dairy Res. 80 (2013) 400–409. https://doi.org/10.1017/s0022029913000514.

[34]

A. P. Espírito-Santo, A. Lagazzo, A. L. O. P. Sousa, et al., Rheology, spontaneous whey separation, microstructure and sensorial characteristics of probiotic yoghurts enriched with passion fruit fiber, Food Res. Int. 50 (2013) 224–231. https://doi.org/10.1016/j.foodres.2012.09.012.

[35]

Y. Zhao, R. Fu, J. Li, Effects of the β-glucan, curdlan, on the fermentation performance, microstructure, rheological and textural properties of set yogurt, LWT-Food Sci. Technol. 128 (2020) 109449. https://doi.org/10.1016/j.lwt.2020.109449.

[36]

A. Mokoonlall, S. Nöbel, J. Hinrichs, Post-processing of fermented milk to stirred products: reviewing the effects on gel structure, Trends Food Sci. Technol. 54 (2016) 26–36. https://doi.org/10.1016/j.jpgs.2016.05.012.

[37]

A. Körzendörfer, P. Temme, E. Schlücker, et al., Vibration-induced particle formation during yogurt ferment-effect of frequency and amplitude, J. Dairy Sci. 101 (2018) 3866–3877. https://doi.org/10.3168/jds.2017-13905.

[38]
D. Sert, E. Mercan, M. Tanrıkulu, Impact of high-pressure homogenisation of milk on physicochemical, microbiological, and textural characteristics of sheep milk yoghurt, Int. Dairy J. 144 (2023) 105704. https://doi.org/10.1016/j.idairyj.2023.105704.
[39]

V. Akdeniz, A. S. Akalın, New approach for yoghurt and ice cream production: high-intensity ultrasound, Trends Food Sci. Technol. 86 (2019) 392–398. https://doi.org/10.1016/j.jpgs.2019.02.046.

[40]

L. Wiking, S. B. Gregersen, S. F. Hansen, et al., Heat-induced changes in milk fat and milk fat globules and its derived effects on acid dairy gelation: a review, Int. Dairy J. 127 (2022) 105213. https://doi.org/10.1016/j.idairyj.2021.105213.

[41]

H. S. Ramaswamy, C. R. Chen, N. S. Rattan, Comparison of viscoelastic properties of set and stirred yogurts made from high pressure and thermally treated milks, Int. J. Food Prop. 18 (2015) 1513–1523. https://doi.org/10.1080/10942912.2014.903414.

[42]

F. Ergin, A. Küçükçetin, Effects of changes in homogenization sequence and temperature for milk on physicochemical properties of stirred yoghurt, Food Sci. Technol. Int. 30 (2024) 73–84. https://doi.org/10.1177/10820132221138827.

[43]

H. Li, W. Song, T. Liu, et al., Developing novel synbiotic yoghurt with Lacticaseibacillus paracasei and lactitol: investigation of the microbiology, textural and rheological properties, Int. Dairy J. 135 (2022) 105475. https://doi.org/10.1016/j.idairyj.2022.105475.

[44]

M. R. I. Shishir, M. Saifullah, S. B. H. Hashim, et al., Micro and nano-encapsulated natural products in yogurt: an emerging trend to achieve multifunctional benefits in product quality and human health, Food Hydrocoll. 154 (2024) 110124. https://doi.org/10.1016/j.foodhyd.2024.110124.

[45]

M. Glantz, T. G. Devold, G. E. Vegarud, et al., Importance of casein micelle size and milk composition for milk gelation, J. Dairy Sci. 93 (2010) 1444–1451. https://doi.org/10.3168/jds.2009-2856.

[46]

Y. Luo, Y. Li, X. Qin, et al., Effects of oxidized konjac glucomannan on physicochemical and sensory properties of set-style yoghurt, Int. Dairy J. 154 (2024) 105909. https://doi.org/10.1016/j.idairyj.2024.105909.

[47]

H. Y. Yu, L. Wang, K. L. McCarthy, Characterization of yogurts made with milk solids nonfat by rheological behavior and nuclear magnetic resonance spectroscopy, J. Food Drug Anal. 24 (2016) 804–812. https://doi.org/10.1016/j.jfda.2016.04.002.

[48]

H. Yu, H. Liu, L. Wang, et al., Effect of poly- γ-glutamic acid on the stability of set yoghurts, J. Food Sci. Technol. 55 (2018) 4634–4641. https://doi.org/10.1007/s13197-018-3404-7.

[49]

P. Mitra, K. Nepal, P. Tavade, Effect of whey and soy proteins fortification on the textural and rheological properties of value-added yogurts, Appl. Food Res. 2 (2022) 100195. https://doi.org/10.1016/j.afres.2022.100195.

[50]

A. Puvanenthiran, R. P. W. Williams, M. A. Augustin, Structure and visco-elastic properties of set yoghurt with altered casein to whey protein ratios, Int. Dairy J. 12 (2002) 383–391. https://doi.org/10.1016/S0958-6946(02)00033-X.

[51]

S. Bulca, F. Umut, A. Koç, The influence of microbial transglutaminase on camel milk yogurt, LWT-Food Sci. Technol. 160 (2022) 113339. https://doi.org/10.1016/j.lwt.2022.113339.

[52]

Y. Lin, K. Maloney, M. Drake, et al., Synergistic functionality of transglutaminase and protease on modulating texture of pea protein based yogurt alternative: from rheological and tribological characterizations to sensory perception, Food Hydrocoll. 150 (2024) 109652. https://doi.org/10.1016/j.foodhyd.2023.109652.

[53]

K. J. Aryana, D. W. Olson, A 100-year review: yogurt and other cultured dairy products, J. Dairy Sci. 100 (2017) 9987–10013. https://doi.org/10.3168/jds.2017-12981.

[54]

S. Ribes, N. Peña, A. Fuentes, et al., Chia ( Salvia hispanica L.) seed mucilage as a fat replacer in yogurts: effect on their nutritional, technological, and sensory properties, J. Dairy Sci. 104 (2021) 2822–2833. https://doi.org/10.3168/jds.2020-19240.

[55]

J. Zang, P. Xiao, Y. Chen, et al., Hydrocolloid application in yogurt: progress, challenges and future trends, Food Hydrocoll. 153 (2024) 110069. https://doi.org/10.1016/j.foodhyd.2024.110069.

[56]

J. Cheng, S. Xie, Y. Yin, et al., Physiochemical, texture properties, and the microstructure of set yogurt using whey protein-sodium tripolyphosphate aggregates as thickening agents, J. Sci. Food Agric. 97 (2017) 2819–2825. https://doi.org/10.1002/jsfa.8110.

[57]

A. M. Ortiz-Deleón, A. Román-Guerrero, O. Sandoval-Castilla, et al., Effect of the addition of an emulgel based on whey protein isolate-alginate-inulin complex on the physicochemical and textural properties of reduced-fat set yoghurt, Int. J. Food Sci. Technol. 58 (2023) 6844–6854. https://doi.org/10.1111/ijfs.16678.

[58]

A. Xie, S. Zhao, Z. Liu, et al., Polysaccharides, proteins, and their complex as microencapsulation carriers for delivery of probiotics: a review on carrier types and encapsulation techniques, Int. J. Biol. Macromol. 242 (2023) 124784. https://doi.org/10.1016/j.ijbiomac.2023.124784.

[59]

S. Jia, H. Zhao, H. Tao, et al., Influence of corn resistant starches type III on the rheology, structure, and viable counts of set yogurt, Int. J. Biol. Macromol. 203 (2022) 10–18. https://doi.org/10.1016/j.ijbiomac.2022.01.027.

[60]

B. Cui, Y. M. Lu, C. P. Tan, et al., Effect of cross-linked acetylated starch content on the structure and stability of set yoghurt, Food Hydrocoll. 35 (2014) 576–582. https://doi.org/10.1016/j.foodhyd.2013.07.018.

[61]

X. Wang, E. Kristo, G. LaPointe, The effect of apple pomace on the texture, rheology and microstructure of set type yogurt, Food Hydrocoll. 91 (2019) 83–91. https://doi.org/10.1016/j.foodhyd.2019.01.004.

[62]

H. Zhang, X. Bian, S. Luo, et al., Effect of sodium alginate on the yogurt stability was dependent on the thickening effect and interaction between casein micelles and sodium alginate, Int. J. Biol. Macromol. 235 (2023) 123887. https://doi.org/10.1016/j.ijbiomac.2023.123887.

[63]

Wusigale, L. Liang, Y. Luo, Casein and pectin: structures, interactions, and applications, Trends Food Sci. Technol. 97 (2020) 391–403. https://doi.org/10.1016/j.jpgs.2020.01.027.

[64]

K. Kieserling, T. M. Vu, S. Drusch, et al., Impact of pectin-rich orange fibre on gel characteristics and sensory properties in lactic acid fermented yoghurt, Food Hydrocoll. 94 (2019) 152–163. https://doi.org/10.1016/j.foodhyd.2019.02.051.

[65]

A. Puvanenthiran, C. Stevovitch-Rykner, T. H. McCann, et al., Synergistic effect of milk solids and carrot cell wall particles on the rheology and texture of yoghurt gels, Food Res. Int. 62 (2014) 701–708. https://doi.org/10.1016/j.foodres.2014.04.023.

[66]

X. Wang, E. Kristo, G. LaPointe, Adding apple pomace as a functional ingredient in stirred-type yogurt and yogurt drinks, Food Hydrocoll. 100 (2020) 105453. https://doi.org/10.1016/j.foodhyd.2019.105453.

[67]

Y. Tian, Y. Sheng, T. Wu, et al., Effect of modified okara insoluble dietary fibre on the quality of yoghurt, Food Chem.: X 21 (2024) 101064. https://doi.org/10.1016/j.fochx.2023.101064.

[68]

B. Chen, Y. Cai, X. Zhao, et al., A novel set-type yogurt with improved rheological and sensory properties by the sole addition of insoluble soybean fiber, Food Biosci. 58 (2024) 103739. https://doi.org/10.1016/j.fbio.2024.103739.

[69]

B. Chen, X. Zhao, Y. Cai, et al., Incorporation of modified okara-derived insoluble soybean fiber into set-type yogurt: structural architecture, rheological properties and moisture stability, Food Hydrocoll. 137 (2023) 108413. https://doi.org/10.1016/j.foodhyd.2022.108413.

[70]

R. Fu, J. Li, T. Zhang, et al., Salecan stabilizes the microstructure and improves the rheological performance of yogurt, Food Hydrocoll. 81 (2018) 474–480. https://doi.org/10.1016/j.foodhyd.2018.03.034.

[71]

M. Yousefi, S. M. Jafari, Recent advances in application of different hydrocolloids in dairy products to improve their techno-functional properties, Trends Food Sci. Technol. 88 (2019) 468–483. https://doi.org/10.1016/j.jpgs.2019.04.015.

[72]
Y. Guo, Y. Wei, Z. Cai, et al., Stability of acidified milk drinks induced by various polysaccharide stabilizers: a review, Food Hydrocoll. 118 (2021) 106814. https://doi.org/10.1016/j.foodhyd.2021.106814.
[73]

W. M. El-Kholy, R. A. Aamer, A. N. A. Ali, Utilization of inulin extracted from chicory ( Cichorium intybus L.) roots to improve the properties of low-fat synbiotic yoghurt, Ann. Agric. Sci. 65 (2020) 59–67. https://doi.org/10.1016/j.aoas.2020.02.002.

[74]

M. Xu, L. Pan, Z. Zhou, et al., Structural characterization of levan synthesized by a recombinant levansucrase and its application as yogurt stabilizers, Carbohydr. Polym. 291 (2022) 119519. https://doi.org/10.1016/j.carbpol.2022.119519.

[75]

M. C. Gentès, S. L. Turgeon, D. St-Gelais, Impact of starch and exopolysaccharide-producing lactic acid bacteria on the properties of set and stirred yoghurts, Int. Dairy J. 55 (2016) 79–86. https://doi.org/10.1016/j.idairyj.2015.12.006.

[76]

T. Yang, K. Wu, F. Wang, et al., Effect of exopolysaccharides from lactic acid bacteria on the texture and microstructure of buffalo yoghurt, Int. Dairy J. 34 (2014) 252–256. https://doi.org/10.1016/j.idairyj.2013.08.007.

[77]

M. Brüls, S. Foroutanparsa, C. E. P. Maljaars, et al., Investigating the impact of exopolysaccharides on yogurt network mechanics and syneresis through quantitative microstructural analysis, Food Hydrocoll. 150 (2024) 109629. https://doi.org/10.1016/j.foodhyd.2023.109629.

[78]

Z. Ge, X. Bao, Z. Li, et al., In situ exopolysaccharides produced by Lactobacillus helveticus MB2-1 and its effect on gel properties of Sayram Ketteki yoghurt, Int. J. Biol. Macromol. 208 (2022) 314–323. https://doi.org/10.1016/j.ijbiomac.2022.03.027.

[79]

G. Wei, X. Dai, B. Zhao, et al., Structure-activity relationship of exopolysaccharides produced by Limosilactobacillus fermentum A51 and the mechanism contributing to the textural properties of yogurt, Food Hydrocoll. 144 (2023) 108993. https://doi.org/10.1016/j.foodhyd.2023.108993.

[80]

D. Chua, H. C. Deeth, H. E. Oh, et al., Altering the casein to whey protein ratio to enhance structural characteristics and release of major yoghurt volatile aroma compounds of non-fat stirred yoghurts, Int. Dairy J. 74 (2017) 63–73. https://doi.org/10.1016/j.idairyj.2017.05.002.

[81]

Y. Li, K. I. Shabani, X. Qin, et al., Effects of cross-linked inulin with different polymerisation degrees on physicochemical and sensory properties of set-style yoghurt, Int. Dairy J. 94 (2019) 46–52. https://doi.org/10.1016/j.idairyj.2019.02.009.

[82]

G. Crispín-Isidro, C. Lobato-Calleros, H. Espinosa-Andrews, et al., Effect of inulin and agave fructans addition on the rheological, microstructural and sensory properties of reduced-fat stirred yogurt, LWT-Food Sci. Technol. 62 (2015) 438–444. https://doi.org/10.1016/j.lwt.2014.06.042.

[83]

A. Helal, N. N. Rashid, E. Noha, et al., Enhanced functional, sensory, microbial and texture properties of low-fat set yogurt supplemented with high-density inulin, J. Food Process. Beverages. 6(1) (2018) 11. https://doi.org/10.13188/2332-4104.1000020.

[84]

F. R. Eris, V. Y. Pamela, S. Kusumasari, et al., Extraction of inulin from Beneng tuber ( Xanthosoma undipes) and its application to yogurt, Future Foods 9 (2024) 100339. https://doi.org/10.1016/j.fufo.2024.100339.

[85]

O. Arango, A. J. Trujillo, M. Castillo, Influence of fat substitution by inulin on fermentation process and physical properties of set yoghurt evaluated by an optical sensor, Food Bioprod. Process. 124 (2020) 24–32. https://doi.org/10.1016/j.fbp.2020.07.020.

[86]

H. Lesme, C. Rannou, M. H. Famelart, et al., Yogurts enriched with milk proteins: texture properties, aroma release and sensory perception, Trends Food Sci. Technol. 98 (2020) 140–149. https://doi.org/10.1016/j.jpgs.2020.02.006.

[87]

C. E. Jørgensen, R. K. Abrahamsen, E. O. Rukke, et al., Processing of high-protein yoghurt-a review, Int. Dairy J. 88 (2019) 42–59. https://doi.org/10.1016/j.idairyj.2018.08.002.

[88]

M. Li, Q. Li, H. Yu, et al., Differentially expressed whey proteins of donkey and bovine colostrum revealed with a label-free proteomics approach, Food Sci. Hum. Wellness 12 (2023) 1224–1231. https://doi.org/10.1016/j.fshw.2022.10.004.

[89]

M. R. Damin, M. R. Alcântara, A. P. Nunes, et al., Effects of milk supplementation with skim milk powder, whey protein concentrate and sodium caseinate on acidification kinetics, rheological properties and structure of nonfat stirred yogurt, LWT-Food Sci. Technol. 42 (2009) 1744–1750. https://doi.org/10.1016/j.lwt.2009.03.019.

[90]

A. S. Akalın, G. Unal, N. Dinkci, et al., Microstructural, textural, and sensory characteristics of probiotic yogurts fortified with sodium calcium caseinate or whey protein concentrate, J. Dairy Sci. 95 (2012) 3617–3628. https://doi.org/10.3168/jds.2011-5297.

[91]

P. Onsekizoglu Bagci, S. Gunasekaran, Iron-encapsulated cold-set whey protein isolate gel powder-part 2: effect of iron fortification on sensory and storage qualities of yoghurt, Int. J. Dairy Technol. 69 (2016) 601–608. https://doi.org/10.1111/1471-0307.12316.

[92]

M. Li, Y. Dong, W. Li, et al., Characterization and comparison of whey proteomes from bovine and donkey colostrum and mature milk, LWT-Food Sci. Technol. 158 (2022) 113113. https://doi.org/ 10.1016/j.lwt.2022.113113.

[93]

Y. Nami, A. Kiani, D. Elieh-Ali-Komi, et al., Impacts of alginate-basil seed mucilage-prebiotic microencapsulation on the survival rate of the potential probiotic Leuconostoc mesenteroides ABRIINW. N18 in yogurt, Int. J. Dairy Technol. 76 (2023) 138–148. https://doi.org/10.1111/1471-0307.12909.

[94]

M. S. Mahomud, N. Katsuno, T. Nishizu, Formation of soluble protein complexes and yoghurt properties influenced by the addition of whey protein concentrate, Innov. Food Sci. Emerg. Technol. 44 (2017) 173–180. https://doi.org/10.1016/j.ifset.2017.05.010.

[95]

H. Lesme, C. Rannou, C. Loisel, et al., Controlled whey protein aggregates to modulate the texture of fat-free set-type yoghurts, Int. Dairy J. 92 (2019) 28–36. https://doi.org/10.1016/j.idairyj.2019.01.004.

[96]

H. Barakat, A. Mohamed, D. G. Gemiel, et al., Microstructural, volatile compounds, microbiological and organoleptical characteristics of low-fat buffalo milk yogurt enriched with whey protein concentrate and Ca-caseinate during cold storage, Fermentation 7 (2021) 250. https://doi.org/10.3390/fermentation7040250.

[97]

T. Fang, X. Shen, J. Hou, et al., Effects of polymerized whey protein prepared directly from cheese whey as fat replacer on physiochemical, texture, microstructure and sensory properties of low-fat set yogurt, LWT-Food Sci. Technol. 115 (2019) 108268. https://doi.org/10.1016/j.lwt.2019.108268.

[98]

A. Krzeminski, K. Großhable, J. Hinrichs, Structural properties of stirred yoghurt as influenced by whey proteins, LWT-Food Sci. Technol. 44 (2011) 2134–2140. https://doi.org/10.1016/j.lwt.2011.05.018.

[99]

M. Hovjecki, M. Radovanovic, Z. Miloradovic, et al., Fortification of goat milk yogurt with goat whey protein concentrate-effect on rheological, textural, sensory and microstructural properties, Food Biosci. 56 (2023) 103393. https://doi.org/10.1016/j.fbio.2023.103393.

[100]

L. L. Zhao, X. L. Wang, Q. Tian, et al., Effect of casein to whey protein ratios on the protein interactions and coagulation properties of low-fat yogurt, J. Dairy Sci. 99 (2016) 7768–7775. https://doi.org/10.3168/jds.2015-10794.

[101]

I. C. Torres, T. Janhøj, B. Ø. Mikkelsen, et al., Effect of microparticulated whey protein with varying content of denatured protein on the rheological and sensory characteristics of low-fat yoghurt, Int. Dairy J. 21 (2011) 645–655. https://doi.org/10.1016/j.idairyj.2010.12.013.

[102]

R. Ipsen, Microparticulated whey proteins for improving dairy product texture, Int. Dairy J. 67 (2017) 73–79. https://doi.org/10.1016/j.idairyj.2016.08.009.

[103]

G. Liu, T. C. Jæger, M. N. Lund, et al., Effects of disulphide bonds between added whey protein aggregates and other milk components on the rheological properties of acidified milk model systems, Int. Dairy J. 59 (2016) 1–9. https://doi.org/10.1016/j.idairyj.2016.03.002.

[104]

I. Bourouis, Z. Pang, X. Liu, Recent advances on uses of protein and/or polysaccharide as fat replacers: textural and tribological perspectives: a review, J. Agric. Food Res. 11 (2023) 100519. https://doi.org/10.1016/j.jafr.2023.100519.

[105]

Y. Luo, X. Liu, Z. Pang, Tribo-rheological properties of acid milk gels with different types of gelatin: effect of concentration, J. Dairy Sci. 102 (2019) 7849–7862. https://doi.org/10.3168/jds.2019-16305.

[106]

Z. Pang, H. Deeth, H. Yang, et al., Evaluation of tilapia skin gelatin as a mammalian gelatin replacer in acid milk gels and low-fat stirred yogurt, J. Dairy Sci. 100 (2017) 3436–3447. https://doi.org/10.3168/jds.2016-11881.

[107]

Z. Pang, H. Deeth, R. Sharma, et al., Effect of addition of gelatin on the rheological and microstructural properties of acid milk protein gels, Food Hydrocoll. 43 (2015) 340–351. https://doi.org/10.1016/j.foodhyd.2014.06.005.

[108]

M. L. Diaz-Bustamante, J. K. Keppler, L. H. Reyes, et al., Trends and prospects in dairy protein replacement in yogurt and cheese, Heliyon 9 (2023) e16974. https://doi.org/10.1016/j.heliyon.2023.e16974.

[109]

T. Nicolai, Gelation of food protein-protein mixtures, Adv. Colloid Interface Sci. 270 (2019) 147–164. https://doi.org/10.1016/j.cis.2019.06.006.

[110]

J. Zang, B. Yan, H. Hu, et al., The current advances, challenges, and future trends of plant-based yogurt, Trends Food Sci. Technol. 149 (2024) 104531. https://doi.org/10.1016/j.jpgs.2024.104531.

[111]

N. Li, M. Yang, Y. Guo, et al., Physicochemical properties of different pea proteins in relation to their gelation ability to form lactic acid bacteria induced yogurt gel, LWT-Food Sci. Technol. 161 (2022) 113381. https://doi.org/10.1016/j.lwt.2022.113381.

[112]

Z. Pang, B. Safdar, Y. Wang, et al., Improvement of tribo-rheological properties of acid soymilk gels by reinforcement of 7S or 11S proteins, Food Hydrocoll. 110 (2021) 106173. https://doi.org/10.1016/j.foodhyd.2020.106173.

[113]

Y. Qin, M. Wang, H. Jiang, et al., Divergence in physicochemical and microstructural properties of set-type yogurt derived from bean proteins and animal milks: an inquiry into substitution viability, LWT-Food Sci. Technol. 193 (2024) 115689. https://doi.org/10.1016/j.lwt.2023.115689.

[114]

M. Yang, N. Li, L. Tong, et al., Comparison of physicochemical properties and volatile flavor compounds of pea protein and mung bean protein-based yogurt, LWT-Food Sci. Technol. 152 (2021) 112390. https://doi.org/10.1016/j.lwt.2021.112390.

[115]

H. Hussein, S. Awad, I. El-Sayed, et al., Impact of chickpea as prebiotic, antioxidant and thickener agent of stirred bio-yoghurt, Ann. Agric. Sci. 65 (2020) 49–58. https://doi.org/10.1016/j.aoas.2020.03.001.

[116]

H. B. Ren, B. L. Feng, H. Y. Liu, et al., A novel approach has been developed to produce pure plant-based gel soy yogurt by combining soy proteins (7S/11S), high pressure homogenization, and glycation reaction, Food Chem.: X 22 (2024) 101259. https://doi.org/10.1016/j.fochx.2024.101259.

[117]

S. Shrestha, L. van't Hag, V. Haritos, et al., Comparative study on molecular and higher-order structures of legume seed protein isolates: lentil, mungbean and yellow pea, Food Chem. 411 (2023) 135464. https://doi.org/10.1016/j.foodchem.2023.135464.

[118]

M. A. O. Torio, T. Itoh, R. N. Garcia, et al., Introduction of sulfhydryl groups and disulfide linkage to mungbean 8Sα globulin and effects on physicochemical and functional properties, Food Res. Int. 45 (2012) 277–282. https://doi.org/10.1016/j.foodres.2011.10.044.

[119]

M. Klost, G. Giménez-Ribes, S. Drusch, Enzymatic hydrolysis of pea protein: interactions and protein fractions involved in fermentation induced gels and their influence on rheological properties, Food Hydrocoll. 105 (2020) 105793. https://doi.org/10.1016/j.foodhyd.2020.105793.

[120]

D. Dhakal, T. Younas, R. P. Bhusal, et al., Design rules of plant-based yoghurt-mimic: formulation, functionality, sensory profile and nutritional value, Food Hydrocoll. 142 (2023) 108786. https://doi.org/10.1016/j.foodhyd.2023.108786.

[121]

D. Schmidt, M. R. Verruma-Bernardi, V. A. Forti, et al., Quinoa and amaranth as functional foods: a review, Food Rev. Int. 39 (2021) 2277–2296. https://doi.org/10.1080/87559129.2021.1950175.

[122]

M. Montemurro, E. Pontonio, R. Coda, et al., Plant-based alternatives to yogurt: state-of-the-art and perspectives of new biotechnological challenges, Foods 10(2) (2021) 316. https://doi.org/10.3390/foods10020316.

[123]

R. Levy, Z. Okun, M. Davidovich-Pinhas, et al., Utilization of high-pressure homogenization of potato protein isolate for the production of dairy-free yogurt-like fermented product, Food Hydrocoll. 113 (2021) 106442. https://doi.org/10.1016/j.foodhyd.2020.106442.

[124]

X. Yang, A. Li, D. Li, et al., Applications of mixed polysaccharide-protein systems in fabricating multi-structures of binary food gels-a review, Trends Food Sci. Technol. 109 (2021) 197–210. https://doi.org/10.1016/j.jpgs.2021.01.002.

[125]

M. Moussier, D. Huc-Mathis, C. Michon, et al., Tailoring cream by modifying the composition of the fat and interfacial proteins to modulate stirred milk gel texture, Int. Dairy J. 96 (2019) 102–113. https://doi.org/10.1016/j.idairyj.2019.04.007.

[126]

A. Logan, A. Leis, L. Day, et al., Rennet gelation properties of milk: influence of natural variation in milk fat globule size and casein micelle size, Int. Dairy J. 46 (2015) 71–77. https://doi.org/10.1016/j.idairyj.2014.08.005.

[127]

H. Li, Y. Zhang, X. Liu, et al., The effect of vegetable oil pre-emulsified with whey protein and pectin on physicochemical properties and microstructure of low-fat yogurt, J. Food Sci. 88 (2023) 2273–2285. https://doi.org/10.1111/1750-3841.16583.

[128]

Z. Pang, H. Deeth, S. Prakash, et al., Development of rheological and sensory properties of combinations of milk proteins and gelling polysaccharides as potential gelatin replacements in the manufacture of stirred acid milk gels and yogurt, J. Food Eng. 169 (2016) 27–37. https://doi.org/10.1016/j.jfoodeng.2015. 08.007.

[129]

X. W. Li, S. LÜ, T. T. Shi, et al., Exopolysaccharides from yoghurt fermented by Lactobacillus paracasei: production, purification and its binding to sodium caseinate, Food Hydrocoll. 102 (2020) 105635. https://doi.org/10.1016/j.foodhyd.2019.105635.

[130]

S. M. Loveday, A. Sarkar, H. Singh, Innovative yoghurts: novel processing technologies for improving acid milk gel texture, Trends Food Sci. Technol. 33 (2013) 5–20. https://doi.org/10.1016/j.jpgs.2013.06.007.

[131]

S. A. Rojas-Torres, S. E. Quintana, L. A. García-Zapateiro, Natural yogurt stabilized with hydrocolloids from butternut squash ( Cucurbita moschata) seeds: effect on physicochemical, rheological properties and sensory perception, Fluids 6 (2021) 251. https://doi.org/10.3390/fluids6070251.

[132]

G. Kaur, S. Ahmadzadeh-Hashemi, S. Amir, et al., Exploring sustainable novel millet protein: a look at the future foods through innovative processing, Future Foods 9 (2024) 100367. https://doi.org/10.1016/j.fufo.2024.100367.

[133]

J. Xu, X. Xu, Z. Yuan, et al., Effect of hemp protein on the physicochemical properties and flavor components of plant-based yogurt, LWT-Food Sci. Technol. 172 (2022) 114145. https://doi.org/10.1016/j.lwt.2022.114145.

[134]

S. Basiri, S. Tajbakhsh, S. S. Shekarforoush, Fortification of stirred yoghurt with mucilage-free flaxseed and its physicochemical, microbial, textural and sensory properties, Int. Dairy J. 131 (2022) 105384. https://doi.org/10.1016/j.idairyj.2022.105384.

[135]

S. Basiri, N. Haidary, S. S. Shekarforoush, et al., Flaxseed mucilage: a natural stabilizer in stirred yogurt, Carbohydr. Polym. 187 (2018) 59–65. https://doi.org/10.1016/j.carbpol.2018.01.049.

Food Science of Animal Products
Article number: 9240066
Cite this article:
Hong R, Yang H, Guo Y, et al. The application and mechanism of polysaccharides, proteins and their complexes on enhancing yogurt gel stability: a review. Food Science of Animal Products, 2024, 2(2): 9240066. https://doi.org/10.26599/FSAP.2024.9240066

1570

Views

180

Downloads

0

Crossref

Altmetrics

Received: 24 May 2024
Revised: 30 June 2024
Accepted: 23 July 2024
Published: 28 August 2024
© Beijing Academy of Food Sciences 2024.

Food Science of Animal Products published by Tsinghua University Press. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return