AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.9 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

Recent advances on applying for liquid nitrogen quick-freezing in aquatic animal products

Bochao Huang1Jiwang Chen1,2( )Jiahui Lu1Liuqing Wang1Chuyi Jiao3Hongyan Lu1,2( )
College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
Hubei He Yuan Gas Co., Ltd., Yichang 443000, China
Show Author Information

Abstract

Aquatic animal products are rich in protein, lipids, and moisture and are often stored at frozen temperature. However, aquatic animal products are prone to deterioration caused by ice crystal formation, lipid oxidation and protein denaturation. Quick freezing is crucial for preserving the quality of aquatic animal products by preventing the formation of large ice crystals. Liquid nitrogen quick-freezing (LNF) provides a fast-freezing rate, minimal ice crystal formation, preservation of product texture and nutritional properties, shelf-life extension, energy efficiency, and quality and safety improving. This review comprehensively illustrates the mechanism of LNF, the impact of LNF on qualities of aquatic animal products including flavor, texture, color, and nutrition. Additionally, LNF devices applied on aquatic animal products are also discussed. Furthermore, future prospects and research directions are suggested, including optimizing freezing processes, understanding the impact on nutritional value and considering sustainability and energy consumption. However, challenges such as freezing damage, cost considerations, and quality control issues for LNF application need to be addressed.

References

[1]

T. Yin, L. Shi, Processing and preservation of aquatic products, Foods 12 (2023) 2061. https://doi.org/10.3390/foods12102061.

[2]

L. T. Zhang, Q. Li, Y. L. Bao, et al., Recent advances on characterization of protein oxidation in aquatic products: a comprehensive review, Food Sci. Nutr. 64 (2022) 1572–1591. https://doi.org/10.1080/10408398.2022.2117788.

[3]

A. G. J. Tacon, M. Metian, Fish matters: importance of aquatic foods in human nutrition and global food supply, Rev. Fish. Sci. Aquacult. 21 (2013) 22–38. https://doi.org/10.1080/10641262.2012.753405.

[4]

J. Sargent, A. Tacon, Development of farmed fish: a nutritionally necessary alternative to meat, Proc. Nutr. Soc. 58 (1999) 377–383. https://doi.org/10.1017/S0029665199001366.

[5]

Z. Lyu, The effects of omega-3 fatty acids on heart diseases, Eng. Technol. 66 (2023) 40–46. https://doi.org/10.54097/hset.v66i.11616.

[6]

N. D. Riediger, R. A. Othman, M. Suh, et al., A systemic review of the roles of n-3 fatty acids in health and disease, J. Am. Diet. Assoc. 109(4) (2009) 668–679. https://doi.org/10.1016/j.jada.2008.12.022.

[7]

D. Swanson, R. Block, S. A. Mousa, Omega-3 fatty acids EPA and DHA: health benefits throughout life, Adv. Nutr. 3 (2012) 1–7. https://doi.org/10.3945/an.111.000893.

[8]

K. Abuelfatah, A. B. Z. Zuki, Y. M. Goh, et al., Effects of enriching goat meat with n-3 polyunsaturated fatty acids on meat quality and stability, Small Ruminant Res. 136 (2016) 36–42. https://doi.org/10.1016/j.smallrumres.2016.01.001.

[9]

Y. Lü, Y. M. Chu, P. C. Zhou, et al., Effects of different freezing methods on water distribution, microstructure and protein properties of cuttlefish during the frozen storage, Appl. Sci. 11 (2021) 6866. https://doi.org/10.3390/app11156866.

[10]

X. M. Zhan, D. W. Sun, Z. W. Zhu, et al., Improving the quality and safety of frozen muscle foods by emerging freezing technologies: a review, Crit. Rev. Food Sci. Nutr. 58 (2018) 2925–2938. https://doi.org/10.1080/10408398.2017.1345854.

[11]

Ö. Köprüalan Aydın, H. Yüksel Sarıoğlu, S. N. Dirim, et al., Recent advances for rapid freezing and thawing methods of foods, Food Eng. Rev. 15 (2023) 667–690. https://doi.org/10.1007/s12393-023-09356-0.

[12]

Q. X. Jiang, T. Yin, F. Yang, et al., Effect of freezing methods on quality changes of grass carp during frozen storage, J. Food Process Eng. 43 (2020) e13539. https://doi.org/10.1111/jfpe.13539.

[13]

Q. Q. Jiang, N. Nakazawa, Y. Q. Hu, et al., Microstructural modification and its effect on the quality attributes of frozen-thawed bigeye tuna ( Thunnus obesus) meat during salting, LWT-Food Sci. Technol. 100 (2019) 213–219. https://doi.org/10.1016/j.lwt.2018.10.070.

[14]

Y. S. Xu, M. Song, W. S. Xia, et al., Effects of freezing method on water distribution, microstructure, and taste active compounds of frozen channel catfish ( Ictalurus punctatus), J. Food Process Eng. 42 (2018) e12937. https://doi.org/10.1111/jfpe.12937.

[15]

L. Y. Cai, X. S. Wu, X. X. Li, et al., Effects of different freezing treatments on physicochemical responses and microbial characteristics of japanese sea bass ( Lateolabrax japonicas) fillets during refrigerated storage, LWT-Food Sci. Technol. 59 (2014) 122–129. https://doi.org/10.1016/j.lwt.2014.04.062.

[16]

M. Lin, H. S. Cao, J. M. Li, Control strategies of ice nucleation, growth, and recrystallization for cryopreservation, Acta Biomater. 155 (2023) 35–56. https://doi.org/10.1016/j.actbio.2022.10.056.

[17]

Y. S. You, T. Y. Kang, S. J. Jun, Control of ice nucleation for subzero food preservation, Food Eng. Rev. 13 (2021) 15–35. https://doi.org/10.1007/s12393-020-09211-6.

[18]

S. R. Javadian, M. Rezaei, M. Soltani, et al., Effects of thawing methods on chemical, biochemical, and microbial quality of frozen whole rainbow trout ( Oncorhynchus mykiss), J. Aquat. Food Prod. Technol. 22 (2013) 168–177. https://doi.org/10.1080/10498850.2011.636865.

[19]

L. Otero, M. Martino, N. Zaritzky, et al., Preservation of microstructure in peach and mango during high-pressure-shift freezing, J. Food Sci. 65 (2000) 466–470. https://doi.org/10.1111/j.1365-2621.2000.tb16029.x.

[20]

M. Anese, L. Manzocco, A. Panozzo, et al., Effect of radiofrequency assisted freezing on meat microstructure and quality, Food Res. Int. 46 (2012) 50–54. https://doi.org/10.1016/j.foodres.2011.11.025.

[21]

B. G. Xu, M. Zhang, B. Bhandari, et al., Influence of power ultrasound on ice nucleation of radish cylinders during ultrasound-assisted immersion freezing, Int. J. Refrig. 46 (2014) 1–8. https://doi.org/10.1016/j.ijrefrig.2014.07.009.

[22]

S. N. Zhou, Z. W. Zhu, D. W. Sun, et al., Effects of different cooling methods on the carbon footprint of cooked rice, J. Food Eng. 215 (2017) 44–50. https://doi.org/10.1016/j.jfoodeng.2017. 07.014.

[23]

Z. W. Zhu, Q. Y. Zhou, D. W. Sun, Measuring and controlling ice crystallization in frozen foods: a review of recent developments, Trends Food Sci. Technol. 90 (2019) 13–25. https://doi.org/10.1016/j.jpgs.2019.05.012.

[24]

S. Y. Kuang, L. H. Hu, S. N. Zhang, et al., Comparison of air freezing, liquid immersion freezing and pressure shift freezing on freezing time and quality of snakehead ( Channa argus) fillets, Innov. Food Sci. Emerg. Technol. 88 (2023) 103450. https://doi.org/10.1016/j.ifset.2023.103450.

[25]

H. Q. Yang, H. Y. Lu, X. L. He, et al., Insight into quality, microstructure, and protein physicochemical properties of Monopterus albus frozen with liquid nitrogen, Int. J. Refrig. 165 (2024) 188–198. https://doi.org/10.1016/j.ijrefrig.2024.05.033.

[26]

J. Y. Huang, Z. H. Hu, G. S. Li, et al., Preservation mechanism of liquid nitrogen freezing on crayfish ( Procambarus clarkia): study on the modification effects in biochemical and structural properties, J. Food Process Preserv. 46 (2022) e17116. https://doi.org/10.1111/jfpp.17116.

[27]

F. Yang, D. T. Jing, Y. D. Diao, et al., Effect of immersion freezing with edible solution on freezing efficiency and physical properties of obscure pufferfish ( Takifugu obscurus) fillets, LWT-Food Sci. Technol. 118 (2020) 108762. https://doi.org/10.1016/j.lwt.2019.108762.

[28]

Z. H. Qiao, M. Y. Yin, X. J. Qi, et al., Freezing and storage on aquatic food: underlying mechanisms and implications on quality deterioration, LWT-Food Sci. Technol. 42 (2022) e91322. https://doi.org/10.1590/fst.91322.

[29]

Y. D. Diao, X. Y. Cheng, L. S. Wang, et al., Effects of immersion freezing methods on water holding capacity, ice crystals and water migration in grass carp during frozen storage, Int. J. Refrig. 131 (2021) 581–591. https://doi.org/10.1016/j.ijrefrig.2021.07.037.

[30]

X. Zhao, L. Wang, J. X. Wang, et al., Effects of different freezing methods on muscle qualities and myofibrillar protein properties of red drum ( Sciaenops ocellatus) during storage, Int. J. Refrig. 165 (2024) 199–208. https://doi.org/10.1016/j.ijrefrig.2024.05.021.

[31]

X. Y. Teng, Y. Liu, L. P. Chen, et al., Effects of liquid nitrogen freezing at different temperatures on the quality and flavor of Pacific oyster ( Crassostrea gigas), Food Chem. 422 (2023) 136162. https://doi.org/10.1016/j.foodchem.2023.136162.

[32]

P. S. Vasafi, N. Hamdami, J. Keramat, Quality and microbial stability of part-baked ‘barbari bread’ during freezing storage, LWT-Food Sci. Technol. 104 (2019) 173–179. https://doi.org/10.1016/j.lwt.2019.01.033.

[33]

M. C. A. Silva, J. S. A. F. Leite, B. G. Barreto, et al., The impact of innovative gluten-free coatings on the physicochemical, microbiological, and sensory characteristics of fish nuggets, LWT-Food Sci. Technol. 137 (2021) 110409. https://doi.org/10.1016/j.lwt.2020.110409.

[34]

G. Petzold, J. Aguilera, Ice morphology: fundamentals and technological applications in foods, Food Biophys. 4 (2009) 378–396. https://doi.org/10.1007/s11483-009-9136-5.

[35]

Z. M. Yang, S. C. Liu, Q. X. Sun, et al., Insight into muscle quality of golden pompano ( Trachinotus ovatus) frozen with liquid nitrogen at different temperatures, Food Chem. 374 (2022) 131737. https://doi.org/10.1016/j.foodchem.2021.131737.

[36]

N. Hafezparast-Moadab, N. Hamdami, M. Dalvi-Isfahan, et al., Effects of radiofrequency-assisted freezing on microstructure and quality of rainbow trout ( Oncorhynchus mykiss) fillet, Innov. Food Sci. Emerg. Technol. 47 (2018) 81–87. https://doi.org/10.1016/j.ifset.2017.12.012.

[37]

P. P. Fernandez, P. D. Sanz, A. D. Molina-Garcia, et al., Conventional freezing plus high pressure-low temperature treatment: physical properties, microbial quality and storage stability of beef meat, Meat. Sci. 77 (2007) 616–625. https://doi.org/10.1016/j.meatsci.2007.05.014.

[38]

R. Meral, A. Alav, C. Y. Karakas, et al., Effect of electrospun nisin and curcumin loaded nanomats on the microbial quality, hardness and sensory characteristics of rainbow trout fillet, LWT-Food Sci. Technol. 113 (2019) 108292. https://doi.org/10.1016/j.lwt.2019.108292.

[39]

M. Dalvi-Isfahan, N. Hamdami, A. Le-Bail, Effect of freezing under electrostatic field on the quality of lamb meat, Innov. Food Sci. Emerg. Technol. 37 (2016) 68–73. https://doi.org/10.1016/j.ifset.2016.07.028.

[40]

W. D. Yan, Q. X. Sun, O. Y. Zheng, et al., Effect of liquid nitrogen freezing temperature on the muscle quality of Litopenaeus vannamei, Foods 12 (2023) 4459. https://doi.org/10.3390/foods12244459.

[41]

C. E. O. Coombs, B. W. B. Holman, D. Collins, et al., Effects of chilled-then-frozen storage (up to 52 weeks) on lamb M. longissimus lumborum quality and safety parameters, Meat Sci. 134 (2017) 86–97. https://doi.org/10.1016/j.meatsci.2017.07.017.

[42]
H. Jia, K. Roy, J. F. Pan, et al., Icy affairs: understanding recent advancements in the freezing and frozen storage of fish, Compr. Rev. Food Sci. Food Saf. 21 (2022) 1383–1408. https://doi.org/10.1111/1541-4337.12883.
[43]

H. T. Truonghuynh, T. G. Li, Quality of aquatic products via cryogenic freezing, J. Food Nutr. Res. 2 (2019) 333–346. https://doi.org/10.26502/jfsnr.2642-11000032.

[44]

R. Guillén-Sans, M. Guzmán-Chozas, The thiobarbituric acid (TBA) reaction in foods: a review, Crit. Rev. Food Sci. Nutr. 38 (1998) 315–350. https://doi.org/10.1080/10408699891274228.

[45]

C. Vieira, M. T. Diaz, B. Martínez, et al., Effect of frozen storage conditions (temperature and length of storage) on microbiological and sensory quality of rustic crossbred beef at different states of ageing, Meat Sci. 83 (2009) 398–404. https://doi.org/10.1016/j.meatsci.2009.06.013.

[46]

M. D. Hernández, M. B. López, A. Álvarez, et al., Sensory, physical, chemical and microbiological changes in aquacultured meagre ( Argyrosomus regius) fillets during ice storage, Food Chem. 114 (2009) 237–245. https://doi.org/10.1016/j.foodchem.2008.09.045.

[47]

S. Emire, M. Gebremariam, Influence of frozen period on the proximate composition and microbiological quality of nile tilapia fish ( Oreochromis niloticus), J. Food Process Preserv. 34 (2010) 743–757. https://doi.org/10.1111/j.1745-4549.2009.00392.x.

[48]

Y. L. Chen, B. S. Pan, Morphological changes in tilapia muscle following freezing by airblast and liquid nitrogen methods, Int. J. Food Sci. Technol. 32 (1997) 159–168. https://doi.org/10.1046/j.1365-2621.1997.00392.x.

[49]

S. Boonsumrej, S. Chaiwanichsiri, S. Tantratian, et al., Effects of freezing and thawing on the quality changes of tiger shrimp ( Penaeus monodon) frozen by air-blast and cryogenic freezing, J. Food Eng. 80 (2007) 292–299. https://doi.org/10.1016/j.jfoodeng.2006.04.059.

[50]

L. A. Espinoza Rodezno, S. Sundararajan, K. M. Solval, et al., Cryogenic and air blast freezing techniques and their effect on the quality of catfish fillets, LWT-Food Sci. Technol. 54 (2013) 377–382. https://doi.org/10.1016/j.lwt.2013.07.005.

[51]

F. A. Oliveira, O. C. Neto, L. M. R. Santos, et al., Effect of high pressure on fish meat quality: a review, Trends Food Sci. Technol. 66 (2017) 1–19. https://doi.org/10.1016/j.jpgs.2017.04.014.

[52]

P. R. Salgado, C. M. Ortiz, Y. S. Musso, et al., Edible films and coatings containing bioactives, Curr. Opin. Food Sci. 5 (2015) 86–92. https://doi.org/10.1016/j.cofs.2015.09.004.

[53]

B. S. Pan, W. T. Yeh, Biochemical and morphological changes in grass shrimp ( Penaeus monodon) muscle following freezing by air blast and liquid nitrogen methods, J. Food Biochem. 17 (1993) 147–160. https://doi.org/10.1111/j.1745-4514.1993.tb00464.x.

[54]

J. B. Calanche, J. A. Beltrán, A. J. Hernández Arias, Aquaculture and sensometrics: the need to evaluate sensory attributes and the consumers’ preferences, Rev. Aquacult. 12 (2020) 805–821. https://doi.org/10.1111/raq.12351.

[55]

S. B. Yang, Y. Q. Hu, K. Takaki, et al., Effect of water ice-glazing on the quality of frozen swimming crab ( Portunus trituberculatus) by liquid nitrogen spray freezing during frozen storage, Int. J. Refrig. 131 (2021) 1010–1015. https://doi.org/10.1016/j.ijrefrig.2021.06.035.

[56]

W. H. Gao, Y. P. Huang, X. A. Zeng, et al., Effect of soluble soybean polysaccharides on freeze-denaturation and structure of myofibrillar protein of bighead carp surimi with liquid nitrogen freezing, Int. J. Biol. Macromol. 135 (2019) 839–844. https://doi.org/10.1016/j.ijbiomac.2019.05.186.

[57]

W. Zhang, J. Ma, D. W. Sun, Raman spectroscopic techniques for detecting structure and quality of frozen foods: principles and applications, Crit. Rev. Food Sci. Nutr. 61 (2021) 2623–2639. https://doi.org/10.1080/10408398.2020.1828814.

[58]

M. C. Anon, A. Calvelo, Freezing rate effects on the drip loss of frozen beef, Meat Sci. 4 (1980) 1–14. https://doi.org/10.1016/0309-1740(80)90018-2.

[59]

Z. A. Bahmani, M. Rezai, S. V. Hosseini, et al., Chilled storage of golden gray mullet ( Liza aurata), LWT-Food Sci. Technol. 44 (2011) 1894–1900. https://doi.org/10.1016/j.lwt.2011.01.009.

[60]

L. Berg, Physicochemical changes in some frozen foods, J. Food Sci. 29 (2006) 540–543. https://doi.org/10.1111/j.1365-2621.1964.tb00408.x.

[61]

T. A. Subramanian, Effect of processing on bacterial population of cuttle fish and crab and determination of bacterial spoilage and rancidity developing on frozen storage, J. Food Process Preserv. 31 (2007) 13–31. https://doi.org/10.1111/j.1745-4549.2007.00101.x.

[62]

J. G. Sebranek, P. N. Sang, R. E. Rust, et al., Influence of liquid nitrogen, liquid carbon dioxide and mechanical freezing on sensory properties of ground beef patties, J. Food Sci. 43 (1978) 842–844. https://doi.org/10.1111/j.1365-2621.1978.tb02435.x.

[63]

L. P. Hu, Y. B. Ying, H. W. Zhang, et al., Advantages of liquid nitrogen freezing in long-term frozen preservation of hairtail ( Trichiurus haumela): enzyme activity, protein structure, and tissue structure, J. Food Process Eng. 44 (2021) e13789. https://doi.org/10.1111/jfpe.13789.

[64]

H. Xu, G. M. Turchini, D. S. Francis, et al., Are fish what they eat? A fatty acid’s perspective, Prog. Lipid. Res. 80 (2020) 101064. https://doi.org/10.1016/j.plipres.2020.101064.

[65]

N. Hematyar, T. Rustad, S. Sampels, et al., Relationship between lipid and protein oxidation in fish, Aquacult. Res. 50 (2019) 1393–1403. https://doi.org/10.1111/are.14012.

[66]

A. Carlez, T. Veciana-Nogues, J. C. Cheftel, Changes in colour and myoglobin of minced beef meat due to high pressure processing, LWT-Food Sci. Technol. 28 (1995) 528–538. https://doi.org/10.1006/fstl.1995.0088.

[67]

Y. X. Mao, L. H. Hu, S. Y. Kuang, et al., Effect of liquid nitrogen spray freezing on the ice crystal size and quality of large yellow croaker, J. Food Eng. 369 (2024) 111937. https://doi.org/10.1016/j.jfoodeng.2024.111937.

[68]

L. X. Yu, Q. X. Jiang, D. W. Yu, et al., Quality of giant freshwater prawn ( Macrobrachium rosenbergii) during the storage at −18 °C as affected by different methods of freezing, Int. J. Food Prop. 21 (2018) 2100–2109. https://doi.org/10.1080/10942912.2018.1484760.

[69]

W. Lopkulkiaert, K. Prapatsornwattana, V. Rungsardthong, Effects of sodium bicarbonate containing traces of citric acid in combination with sodium chloride on yield and some properties of white shrimp ( Penaeus vannamei) frozen by shelf freezing, air-blast and cryogenic freezing, LWT-Food Sci. Technol. 42 (2009) 768–776. https://doi.org/10.1016/j.lwt.2008.09.019.

[70]

M. Dalvi-Isfahan, P. K. Jha, J. Tavakoli, et al., Review on identification, underlying mechanisms and evaluation of freezing damage, J. Food Eng. 255 (2019) 50–60. https://doi.org/10.1016/j.jfoodeng.2019.03.011.

[71]

W. Y. Ren, G. Q. Yuan, X. E. Lin, et al., Comparison of the immersion chilling and freezing and traditional air freezing on the quality of beef during storage, Food Sci. Nutr. 9 (2021) 6653–6661. https://doi.org/10.1002/fsn3.2613.

[72]

N. K. Kim, Y. C. Hung, Freeze-cracking in foods as affected by physical properties, J. Food Sci. 59 (1994) 669–674. https://doi.org/ 10.1111/j.1365-2621.1994.tb05590.x.

[73]

D. M. Li, Z. W. Zhu, D. W. Sun, Effects of freezing on cell structure of fresh cellular food materials: a review, Trends Food Sci. Technol. 75 (2018) 46–55. https://doi.org/10.1016/j.jpgs.2018.02.019.

[74]

P. Qian, Y. Q. Zhang, Q. Shen, et al., Effect of cryogenic immersion freezing on quality changes of vacuum-packed bighead carp ( Aristichthys nobilis) during frozen storage, J. Food Process Preserv. 42 (2018) e13640. https://doi.org/10.1111/jfpp.13640.

Food Science of Animal Products
Article number: 9240067
Cite this article:
Huang B, Chen J, Lu J, et al. Recent advances on applying for liquid nitrogen quick-freezing in aquatic animal products. Food Science of Animal Products, 2024, 2(2): 9240067. https://doi.org/10.26599/FSAP.2024.9240067

598

Views

79

Downloads

0

Crossref

Altmetrics

Received: 01 May 2024
Revised: 27 May 2024
Accepted: 24 July 2024
Published: 29 August 2024
© Beijing Academy of Food Sciences 2024.

Food Science of Animal Products published by Tsinghua University Press. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return