AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (10.8 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Isolation and identification, biological characterization of Staphylococcus aureus phage and its application in milk

Jinli WangYun QuHongmei YinAnjian LiangYu FuChenglin Zhu( )Junni Tang( )
College of Pharmacy and Food, Southwest Minzu University, Chengdu 610041, China
Show Author Information

Graphical Abstract

Abstract

Staphylococcus aureus is one of the important pathogens that cause food contamination worldwide, and poses a great danger to people. The common treatment is antibiotic therapy; however, the misuse of antibiotics has led to the continuous emergence of drug-resistant strains. Therefore, new antibacterial methods need to be explored. In this study, a lytic S. aureus phage (named SP-CmSa-11) was isolated from dairy farms which belongs to the Myoviridae phage family. The optimal multiple of infection of SP-CmSa-11 is 0.1, and the host range included 7 strains of mastitis cow-derived S. aureus, 12 strains of animal-origin methicillin-resistant S. aureus, 1 strain of S. xylosus, 1 strain of S. epidermidis and 1 strain of Enterococcus faecalis. SP-CmSa-11’s burst period was 40 min, and the burst size was about 130 PFU/cell. SP-CmSa-11 was inactivated after 10 min in a water bath at 70 °C, and the pH tolerance of SP-CmSa-11 ranges from 4 to 10 in 2 h. It’s insensitive to chloroform and ultraviolet radiation. The total genome length of SP-CmSa-11 is 45 816 bp. The G + C content is 27.23%, and has 59 putative open reading frames. SP-CmSa-11 showed good antibacterial effects in vitro and milk. These results suggest that SP-CmSa-11 may be a promising alternative therapy for food contamination caused by S. aureus.

References

[1]

H. M. Son, H. M. Duc, Prevalence and phage-based biocontrol of methicillin-resistant Staphylococcus aureus isolated from raw milk of cows with subclinical mastitis in Vietnam, Antibiotics 13(7) (2024) 638. https://doi.org/10.3390/antibiotics13070638.

[2]

M. Shalaby, J. Reboud, T. Forde, et al., Distribution and prevalence of enterotoxigenic Staphylococcus aureus and Staphylococcal enterotoxins in raw ruminants’ milk: a systematic review, Food Microbiol. 118 (2024) 104405. https://doi.org/10.1016/j.fm.2023.104405.

[3]

M. C. Roy, T. Chowdhury, M. T. Hossain, et al., Zoonotic linkage and environmental contamination of methicillin-resistant Staphylococcus aureus (MRSA) in dairy farms: a one health perspective, One Health 18 (2024) 100680. https://doi.org/10.1016/j.onehlt.2024.100680.

[4]

S. S. Atshan, R. A. Hamat, M. A. Aljaberi, et al., Phage therapy as an alternative treatment modality for resistant Staphylococcus aureus infections, Antibiotics 12(2) (2023) 286. https://doi.org/10.3390/antibiotics12020286.

[5]

C. Kolenda, M. Medina, M. Bonhomme, et al., Phage therapy against Staphylococcus aureus: selection and optimization of production protocols of novel broad-spectrum silviavirus phages, Pharmaceutics 14(9) (2022) 1885. https://doi.org/10.3390/pharmaceutics14091885.

[6]

J. Deen, L. von Seidlein, F. Andersen, et al., Community-acquired bacterial bloodstream infections in developing countries in south and southeast asia: a systematic review, Lancet. Infect. Dis. 12(6) (2012) 480–487. https://doi.org/10.1016/S1473-3099(12)70028-2.

[7]

G. Y. C. Cheung, J. S. Bae, M. Otto, Pathogenicity and virulence of Staphylococcus aureus, Virulence 12(1) (2021) 547–569. https://doi.org/10.1080/21505594.2021.1878688.

[8]
Q. Luo, P. Lu, Y. Chen, et al., ESKAPE in China: epidemiology and characteristics of antibiotic resistance, Emerg. Microbes. Infec. 13(1) (2024) 2317915. https://doi.org/10.1080/22221751.2024.2317915.
[9]

N. G. Khasapane, M. Koos, S. J. Nkhebenyane, et al., Detection of Staphylococcus isolates and their antimicrobial resistance profiles and virulence genes from subclinical mastitis cattle milk using MALDI-TOF MS, PCR and sequencing in free state province, South Africa Animals 14(1) (2024) 154. https://doi.org/10.3390/ani14010154.

[10]

Z. D. Moye, J. Woolston, A. Sulakvelidze, Bacteriophage applications for food production and processing, Viruses 10(4) (2018) 205. https://doi.org/10.3390/v10040205.

[11]

M. Cocorullo, G. Stelitano, L. R. Chiarelli, Phage therapy: an alternative approach to combating multidrug-resistant bacterial infections in cystic fibrosis, Int. J. Mol. Sci. 25(15) (2024) 8321. https://doi.org/10.3390/ijms25158321.

[12]

A. A. Cisek, I. Dąbrowska, K. P. Gregorczyk, et al., Phage therapy in bacterial infections treatment: one hundred years after the discovery of bacteriophages, Curr. Microbiol. 74(2) (2017) 277–283. https://doi.org/10.1007/s00284-016-1166-x.

[13]

Y. Xu, Phage and phage lysins: new era of bio-preservatives and food safety agents, J. Food Sci. 86(8) (2021) 3349–3373. https://doi.org/10.1111/1750-3841.15843.

[14]

S. Wang, X. Huang, J. Yang, et al., Biocontrol of methicillin-resistant Staphylococcus aureus using a virulent bacteriophage derived from a temperate one, Microbiol. Res. 267 (2023) 127258. https://doi.org/10.1016/j.micres.2022.127258.

[15]

A. Wahida, F. Tang, J. J. Barr, Rethinking phage-bacteria-eukaryotic relationships and their influence on human health, Cell Host Microbe. 29(5) (2021) 681–688. https://doi.org/10.1016/j.chom.2021.02.007.

[16]

S. Rehman, Z. Ali, M. Khan, et al., The dawn of phage therapy, Rev. Med. Virol. 29(4) (2019) e2041. https://doi.org/10.1002/rmv.2041.

[17]

F. Ma, Y. Ning, Q. Wan, et al., Bacteriophages LSA2308 and LSA2366 infecting drug-resistant Staphylococcus aureus: isolation, characterization and potential application for milk safety, LWT-Food Sci. Technol. 152 (2021) 112298. https://doi.org/10.1016/j.lwt.2021.112298.

[18]

H. Kwak, J. Kim, S. Ryu, et al., Characterization of KMSP1, a newly isolated virulent bacteriophage infecting Staphylococcus aureus, and its application to dairy products, Int. J. Food Microbiol. 390 (2023) 110119. https://doi.org/10.1016/j.ijfoodmicro.2023.110119.

[19]

A. H. Azam, Y. Tanji, Peculiarities of Staphylococcus aureus phages and their possible application in phage therapy, Appl. Microbiol. Biot. 103(11) (2019) 4279–4289. https://doi.org/10.1007/s00253-019-09810-2.

[20]

X. Li, B. Zhang, X. Tong, et al., Biological and genomic characterization of 4 novel bacteriophages isolated from sewage or the environment using non-aureus Staphylococci strains, Vet. Microbiol. 294 (2024) 110133. https://doi.org/10.1016/j.vetmic.2024.110133.

[21]

L. Li, Y. Wu, D. Ma, et al., Isolation and characterization of a novel Escherichia coli phage Kayfunavirus ZH4, Virus Genes 58(5) (2022) 448–457. https://doi.org/10.1007/s11262-022-01916-6.

[22]

Y. T. Liao, K. J. Ho, Y. Zhang, et al., A new Rogue-like Escherichia phage UDF157lw to control Escherichia coli O157: H7, Front. Microbiol. 14 (2024) 1302032. https://doi.org/10.3389/fmicb.2023.1302032.

[23]

B. Huang, L. Ge, D. Xiang, et al., Isolation, characterization, and genomic analysis of a lytic bacteriophage, PQ43W, with the potential of controlling bacterial wilt, Front. Microbiol. 15 (2024) 1396213. https://doi.org/10.3389/fmicb.2024.1396213.

[24]

Y. Xiang, W. Li, F. Song, et al., Biological characteristics and whole-genome analysis of the Enterococcus faecalis phage PEf771, Can. J. Microbiol. 66(9) (2020) 505–520. https://doi.org/10.1139/cjm-2019-0336.

[25]

S. Tan, H. Chen, S. Huang, et al., Characterization of the novel phage vB_BceP_LY3 and its potential role in controlling Bacillus cereus in milk and rice, Int. J. Food Microbiol. 421 (2024) 110778. https://doi.org/10.1016/j.ijfoodmicro.2024.110778.

[26]

P. García, B. Martínez, J. M. Obeso, et al., Functional genomic analysis of two Staphylococcus aureus phages isolated from the dairy environment, Appl. Environ. Microb. 75(24) (2009) 7663–7673. https://doi.org/10.1128/AEM.01864-09.

[27]

M. A. Salam, M. Y. Al-Amin, M. T. Salam, et al., Antimicrobial resistance: a growing serious threat for global public health, Healthcare 11(13) (2023) 1946. https://doi.org/10.3390/healthcare11131946.

[28]

M. Kornienko, D. Bespiatykh, R. Gorodnichev, et al., Transcriptional landscapes of Herelleviridae bacteriophages and Staphylococcus aureus during phage infection: an overview, Viruses 15(7) (2023) 1427. https://doi.org/10.3390/v15071427.

[29]

M. Guo, Y. Zhang, L. Wu, et al., Development and mouse model evaluation of a new phage cocktail intended as an alternative to antibiotics for treatment of Staphylococcus aureus-induced bovine mastitis, J. Dairy Sci. 107(8) (2024) 5974–5987. https://doi.org/10.3168/jds.2024-24540.

[30]

L. Zhang, K. Shahin, A. Soleimani-Delfan, et al., Phage JS02, a putative temperate phage, a novel biofilm-degrading agent for Staphylococcus aureus, Lett. Appl. Microbiol. 75(3) (2022) 643–654. https://doi.org/10.1111/lam.13663.

[31]

M. Y. Ganaie, S. Qureshi, Z. Kashoo, et al., Isolation and characterization of two lytic bacteriophages against Staphylococcus aureus from India: newer therapeutic agents against bovine mastitis, Vet. Res. Commun. 42(4) (2018) 289–295. https://doi.org/10.1007/s11259-018-9736-y.

[32]

S. Fister, C. Robben, A. K. Witte, et al., Influence of environmental factors on phage-bacteria interaction and on the efficacy and infectivity of phage P100, Front. Microbiol. 7 (2016) 1152. https://doi.org/10.3389/fmicb.2016.01152.

[33]

C. Loc-Carrillo, S. T. Abedon, Pros and cons of phage therapy, Bacteriophage 1(2) (2011) 111–114. https://doi.org/10.4161/bact.1.2.14590.

[34]

P. Zhao, W. Zhao, X. Zhai, et al., Biological characterization and genomic analysis of a novel methicillin-resistant Staphylococcus aureus phage, SauPS-28, Microbiol. Spectr. 12(2) (2024) e0029523. https://doi.org/10.1128/spectrum.00295-23.

[35]

M. B. Calahorrano-Moreno, J. J. Ordoñez-Bailon, R. J. Baquerizo-Crespo, et al., Contaminants in the cow’s milk we consume? Pasteurization and other technologies in the elimination of contaminants, F1000Research 11 (2022) 91. https://doi.org/10.12688/f1000research.108779.1.

[36]

M. F. Kaplan, E. Kaplan, A. Raza, et al., Evaluation of raw milk samples and vendor-derived Staphylococcus aureus and Coxiella burnetii prevalence in dairy delicatessens in eastern Turkey, Food Sci. Nutr. 12(8) (2024) 5942–5950. https://doi.org/10.1002/fsn3.4236.

[37]

N. S. Somda, A. M. E. Traoré, D. F. S. Hien, et al., Molecular characterization of Methicillin-resistant Staphylococcus aureus isolated in ready-to-eat food sold in supermarkets in Bobo-Dioulasso: case of charcuterie products, BMC Infect. Dis. 24(1) (2024) 722. https://doi.org/10.1186/s12879-024-09603-7.

[38]

M. A. Nasr-Eldin, E. Gamal, M. Hazza, et al., Isolation, characterization, and application of lytic bacteriophages for controlling Enterobacter cloacae complex (ECC) in pasteurized milk and yogurt, Folia Microbiol. 68(6) (2023) 911–924. https://doi.org/10.1007/s12223-023-01059-7.

Food Science of Animal Products
Article number: 9240076
Cite this article:
Wang J, Qu Y, Yin H, et al. Isolation and identification, biological characterization of Staphylococcus aureus phage and its application in milk. Food Science of Animal Products, 2024, 2(3): 9240076. https://doi.org/10.26599/FSAP.2024.9240076

217

Views

50

Downloads

0

Crossref

Altmetrics

Received: 06 July 2024
Revised: 25 July 2024
Accepted: 30 August 2024
Published: 13 November 2024
© Beijing Academy of Food Sciences 2024.

Food Science of Animal Products published by Tsinghua University Press. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return