Staphylococcus aureus is one of the important pathogens that cause food contamination worldwide, and poses a great danger to people. The common treatment is antibiotic therapy; however, the misuse of antibiotics has led to the continuous emergence of drug-resistant strains. Therefore, new antibacterial methods need to be explored. In this study, a lytic S. aureus phage (named SP-CmSa-11) was isolated from dairy farms which belongs to the Myoviridae phage family. The optimal multiple of infection of SP-CmSa-11 is 0.1, and the host range included 7 strains of mastitis cow-derived S. aureus, 12 strains of animal-origin methicillin-resistant S. aureus, 1 strain of S. xylosus, 1 strain of S. epidermidis and 1 strain of Enterococcus faecalis. SP-CmSa-11’s burst period was 40 min, and the burst size was about 130 PFU/cell. SP-CmSa-11 was inactivated after 10 min in a water bath at 70 °C, and the pH tolerance of SP-CmSa-11 ranges from 4 to 10 in 2 h. It’s insensitive to chloroform and ultraviolet radiation. The total genome length of SP-CmSa-11 is 45 816 bp. The G + C content is 27.23%, and has 59 putative open reading frames. SP-CmSa-11 showed good antibacterial effects in vitro and milk. These results suggest that SP-CmSa-11 may be a promising alternative therapy for food contamination caused by S. aureus.
H. M. Son, H. M. Duc, Prevalence and phage-based biocontrol of methicillin-resistant Staphylococcus aureus isolated from raw milk of cows with subclinical mastitis in Vietnam, Antibiotics 13(7) (2024) 638. https://doi.org/10.3390/antibiotics13070638.
M. Shalaby, J. Reboud, T. Forde, et al., Distribution and prevalence of enterotoxigenic Staphylococcus aureus and Staphylococcal enterotoxins in raw ruminants’ milk: a systematic review, Food Microbiol. 118 (2024) 104405. https://doi.org/10.1016/j.fm.2023.104405.
M. C. Roy, T. Chowdhury, M. T. Hossain, et al., Zoonotic linkage and environmental contamination of methicillin-resistant Staphylococcus aureus (MRSA) in dairy farms: a one health perspective, One Health 18 (2024) 100680. https://doi.org/10.1016/j.onehlt.2024.100680.
S. S. Atshan, R. A. Hamat, M. A. Aljaberi, et al., Phage therapy as an alternative treatment modality for resistant Staphylococcus aureus infections, Antibiotics 12(2) (2023) 286. https://doi.org/10.3390/antibiotics12020286.
C. Kolenda, M. Medina, M. Bonhomme, et al., Phage therapy against Staphylococcus aureus: selection and optimization of production protocols of novel broad-spectrum silviavirus phages, Pharmaceutics 14(9) (2022) 1885. https://doi.org/10.3390/pharmaceutics14091885.
J. Deen, L. von Seidlein, F. Andersen, et al., Community-acquired bacterial bloodstream infections in developing countries in south and southeast asia: a systematic review, Lancet. Infect. Dis. 12(6) (2012) 480–487. https://doi.org/10.1016/S1473-3099(12)70028-2.
G. Y. C. Cheung, J. S. Bae, M. Otto, Pathogenicity and virulence of Staphylococcus aureus, Virulence 12(1) (2021) 547–569. https://doi.org/10.1080/21505594.2021.1878688.
N. G. Khasapane, M. Koos, S. J. Nkhebenyane, et al., Detection of Staphylococcus isolates and their antimicrobial resistance profiles and virulence genes from subclinical mastitis cattle milk using MALDI-TOF MS, PCR and sequencing in free state province, South Africa Animals 14(1) (2024) 154. https://doi.org/10.3390/ani14010154.
Z. D. Moye, J. Woolston, A. Sulakvelidze, Bacteriophage applications for food production and processing, Viruses 10(4) (2018) 205. https://doi.org/10.3390/v10040205.
M. Cocorullo, G. Stelitano, L. R. Chiarelli, Phage therapy: an alternative approach to combating multidrug-resistant bacterial infections in cystic fibrosis, Int. J. Mol. Sci. 25(15) (2024) 8321. https://doi.org/10.3390/ijms25158321.
A. A. Cisek, I. Dąbrowska, K. P. Gregorczyk, et al., Phage therapy in bacterial infections treatment: one hundred years after the discovery of bacteriophages, Curr. Microbiol. 74(2) (2017) 277–283. https://doi.org/10.1007/s00284-016-1166-x.
Y. Xu, Phage and phage lysins: new era of bio-preservatives and food safety agents, J. Food Sci. 86(8) (2021) 3349–3373. https://doi.org/10.1111/1750-3841.15843.
S. Wang, X. Huang, J. Yang, et al., Biocontrol of methicillin-resistant Staphylococcus aureus using a virulent bacteriophage derived from a temperate one, Microbiol. Res. 267 (2023) 127258. https://doi.org/10.1016/j.micres.2022.127258.
A. Wahida, F. Tang, J. J. Barr, Rethinking phage-bacteria-eukaryotic relationships and their influence on human health, Cell Host Microbe. 29(5) (2021) 681–688. https://doi.org/10.1016/j.chom.2021.02.007.
S. Rehman, Z. Ali, M. Khan, et al., The dawn of phage therapy, Rev. Med. Virol. 29(4) (2019) e2041. https://doi.org/10.1002/rmv.2041.
F. Ma, Y. Ning, Q. Wan, et al., Bacteriophages LSA2308 and LSA2366 infecting drug-resistant Staphylococcus aureus: isolation, characterization and potential application for milk safety, LWT-Food Sci. Technol. 152 (2021) 112298. https://doi.org/10.1016/j.lwt.2021.112298.
H. Kwak, J. Kim, S. Ryu, et al., Characterization of KMSP1, a newly isolated virulent bacteriophage infecting Staphylococcus aureus, and its application to dairy products, Int. J. Food Microbiol. 390 (2023) 110119. https://doi.org/10.1016/j.ijfoodmicro.2023.110119.
A. H. Azam, Y. Tanji, Peculiarities of Staphylococcus aureus phages and their possible application in phage therapy, Appl. Microbiol. Biot. 103(11) (2019) 4279–4289. https://doi.org/10.1007/s00253-019-09810-2.
X. Li, B. Zhang, X. Tong, et al., Biological and genomic characterization of 4 novel bacteriophages isolated from sewage or the environment using non-aureus Staphylococci strains, Vet. Microbiol. 294 (2024) 110133. https://doi.org/10.1016/j.vetmic.2024.110133.
L. Li, Y. Wu, D. Ma, et al., Isolation and characterization of a novel Escherichia coli phage Kayfunavirus ZH4, Virus Genes 58(5) (2022) 448–457. https://doi.org/10.1007/s11262-022-01916-6.
Y. T. Liao, K. J. Ho, Y. Zhang, et al., A new Rogue-like Escherichia phage UDF157lw to control Escherichia coli O157: H7, Front. Microbiol. 14 (2024) 1302032. https://doi.org/10.3389/fmicb.2023.1302032.
B. Huang, L. Ge, D. Xiang, et al., Isolation, characterization, and genomic analysis of a lytic bacteriophage, PQ43W, with the potential of controlling bacterial wilt, Front. Microbiol. 15 (2024) 1396213. https://doi.org/10.3389/fmicb.2024.1396213.
Y. Xiang, W. Li, F. Song, et al., Biological characteristics and whole-genome analysis of the Enterococcus faecalis phage PEf771, Can. J. Microbiol. 66(9) (2020) 505–520. https://doi.org/10.1139/cjm-2019-0336.
S. Tan, H. Chen, S. Huang, et al., Characterization of the novel phage vB_BceP_LY3 and its potential role in controlling Bacillus cereus in milk and rice, Int. J. Food Microbiol. 421 (2024) 110778. https://doi.org/10.1016/j.ijfoodmicro.2024.110778.
P. García, B. Martínez, J. M. Obeso, et al., Functional genomic analysis of two Staphylococcus aureus phages isolated from the dairy environment, Appl. Environ. Microb. 75(24) (2009) 7663–7673. https://doi.org/10.1128/AEM.01864-09.
M. A. Salam, M. Y. Al-Amin, M. T. Salam, et al., Antimicrobial resistance: a growing serious threat for global public health, Healthcare 11(13) (2023) 1946. https://doi.org/10.3390/healthcare11131946.
M. Kornienko, D. Bespiatykh, R. Gorodnichev, et al., Transcriptional landscapes of Herelleviridae bacteriophages and Staphylococcus aureus during phage infection: an overview, Viruses 15(7) (2023) 1427. https://doi.org/10.3390/v15071427.
M. Guo, Y. Zhang, L. Wu, et al., Development and mouse model evaluation of a new phage cocktail intended as an alternative to antibiotics for treatment of Staphylococcus aureus-induced bovine mastitis, J. Dairy Sci. 107(8) (2024) 5974–5987. https://doi.org/10.3168/jds.2024-24540.
L. Zhang, K. Shahin, A. Soleimani-Delfan, et al., Phage JS02, a putative temperate phage, a novel biofilm-degrading agent for Staphylococcus aureus, Lett. Appl. Microbiol. 75(3) (2022) 643–654. https://doi.org/10.1111/lam.13663.
M. Y. Ganaie, S. Qureshi, Z. Kashoo, et al., Isolation and characterization of two lytic bacteriophages against Staphylococcus aureus from India: newer therapeutic agents against bovine mastitis, Vet. Res. Commun. 42(4) (2018) 289–295. https://doi.org/10.1007/s11259-018-9736-y.
S. Fister, C. Robben, A. K. Witte, et al., Influence of environmental factors on phage-bacteria interaction and on the efficacy and infectivity of phage P100, Front. Microbiol. 7 (2016) 1152. https://doi.org/10.3389/fmicb.2016.01152.
C. Loc-Carrillo, S. T. Abedon, Pros and cons of phage therapy, Bacteriophage 1(2) (2011) 111–114. https://doi.org/10.4161/bact.1.2.14590.
P. Zhao, W. Zhao, X. Zhai, et al., Biological characterization and genomic analysis of a novel methicillin-resistant Staphylococcus aureus phage, SauPS-28, Microbiol. Spectr. 12(2) (2024) e0029523. https://doi.org/10.1128/spectrum.00295-23.
M. B. Calahorrano-Moreno, J. J. Ordoñez-Bailon, R. J. Baquerizo-Crespo, et al., Contaminants in the cow’s milk we consume? Pasteurization and other technologies in the elimination of contaminants, F1000Research 11 (2022) 91. https://doi.org/10.12688/f1000research.108779.1.
M. F. Kaplan, E. Kaplan, A. Raza, et al., Evaluation of raw milk samples and vendor-derived Staphylococcus aureus and Coxiella burnetii prevalence in dairy delicatessens in eastern Turkey, Food Sci. Nutr. 12(8) (2024) 5942–5950. https://doi.org/10.1002/fsn3.4236.
N. S. Somda, A. M. E. Traoré, D. F. S. Hien, et al., Molecular characterization of Methicillin-resistant Staphylococcus aureus isolated in ready-to-eat food sold in supermarkets in Bobo-Dioulasso: case of charcuterie products, BMC Infect. Dis. 24(1) (2024) 722. https://doi.org/10.1186/s12879-024-09603-7.
M. A. Nasr-Eldin, E. Gamal, M. Hazza, et al., Isolation, characterization, and application of lytic bacteriophages for controlling Enterobacter cloacae complex (ECC) in pasteurized milk and yogurt, Folia Microbiol. 68(6) (2023) 911–924. https://doi.org/10.1007/s12223-023-01059-7.