Egg yolk peptides were prepared by enzymatic hydrolysis of defatted egg yolk powder. The cryoprotective effects of these peptides were assessed by examining the functional, structural and physicochemical properties of egg yolk. Results indicated that egg yolk peptides could reduce viscosity and prevent the accumulation of egg yolk proteins during freezing, thereby mitigating the deterioration of its functional characteristics. The peptide hydrolyzed for 3 h demonstrated the lowest fluidity in thawed egg yolk. Additionally, Fourier transform infrared (FTIR) spectra and intrinsic fluorescence spectra revealed that egg yolk peptides could reduce damage to the secondary and tertiary structures of proteins, enhancing the stability of the protein network. Changes in the content of secondary structures showed that egg yolk peptides increased β-turns, decreased β-sheets, and maintained overall structural stability and strength. This study provides new insights for egg yolk peptides to inhibit frozen egg yolk gelation.
R. Q. Zhang, F. S. Yao, Z. H. Ning, Characterization of four thermogelled egg yolk varieties based on moisture and protein content, Poult. Sci. 102(4) (2023) 102499. https://doi.org/10.1016/j.psj.2023.102499.
C. Y. Wang, F. Xu, D. P. Li, et al., Physico-chemical and structural properties of four rice bran protein fractions based on the multiple solvent extraction method, Czech J. Food Sci. 33(3) (2015) 283–291. https://doi.org/10.17221/462%2F2014-CJFS.
R. H. Wang, Y. Q. Ma, Z. H. Ma, et al., Changes in gelation, aggregation and intermolecular forces in frozen-thawed egg yolks during freezing, Food Hydrocolloid. 108 (2020) 105947. https://doi.org/10.1016/j.foodhyd.2020.105947.
Z. H. Ma, Y. Q. Ma, R. H. Wang, et al., Influence of antigelation agents on frozen egg yolk gelation, J. Food Eng. 302 (2021) 110585. https://doi.org/10.1016/j.jfoodeng.2021.110585.
T. Moran, The effect of low temperature on hen’ eggs, Proc. Roy. Soc. B: Biol. Sci. 98(691) (1925) 436–456. https://doi.org/10.1098/rspb.1925.0046.
J. J. Zhang, Y. Q. Ma, Formation mechanism and inhibition methods of frozen egg yolk gelation: a review, Trends Food Sci. Technol. 148 (2024) 104491. https://doi.org/10.1016/j.jpgs.2024.104491.
F. J. Yang, X. Chen, M. C. Huang, et al., Molecular characteristics and structure-activity relationships of food-derived bioactive peptides, J. Integ. Agr. 20(9) (2021) 2313–2332. https://doi.org/10.1016/S2095-3119(20)63463-3.
X. Chen, J. H. Wu, X. X. Cai, et al., Production, structure-function relationships, mechanisms, and applications of antifreeze peptides, Compr. Rev. Food Sci. Food Saf. 20(1) (2021) 542–562. https://doi.org/10.1111/1541-4337.12655.
H. Jiao, J. Chen, L. P. Gu, et al., Industrial production and decolorization of egg yolk polypeptides, Food Ferment. Ind. 47(11) (2021) 139–145. https://doi.org/10.13995/j.cnki.11-1802/ts.025984.
X. Huang, D. U. Ahn, How can the value and use of egg yolk be increased?, J. Food Sci. 84(2) (2019) 205–212. https://doi.org/10.1111/1750-3841.14430.
N. H. Xiao, X. Huang, W. He, et al., A review on recent advances of egg byproducts: preparation, functional properties, biological activities and food applications, Food Res. Int. 147 (2021) 110563. https://doi.org/10.1016/j.foodres.2021.110563.
M. Primacella, T. Fei, N. Acevedo, et al., Effect of food additives on egg yolk gelation induced by freezing, Food Chem. 263 (2018) 142–150. https://doi.org/10.1016/j.foodchem.2018.04.071.
J. Y. Li, Y. Q. Zhao, Z. J. Wu, et al., Study on enzymic hydrolysis of skim egg yolk protein powder, Food Res. Dev. 33(12) (2012) 153–156.
X. L. Xu, Z. Li, Q. Y. Tang, et al., Exploring xylitol as a low-salt alternative for effective inhibition of gelation in frozen egg yolks, Food Chem. 436 (2024) 137681. https://doi.org/10.1016/j.foodchem.2023.137681.
F. Lu, Y. J. Chi, Y. Chi., High-temperature glycosylation of saccharides to modify molecular conformation of egg white protein and its effect on the stability of high internal phase emulsions, Food Res. Int. 176 (2024) 113825. https://doi.org/10.1016/j.foodres.2023.113825.
T. Ulrichs, A. M. Drotleff, W. Ternes, Determination of heat-induced changes in the protein secondary structure of reconstituted livetins (water-soluble proteins from hen’s egg yolk) by FTIR, Food Chem. 172 (2015) 909–920. https://doi.org/10.1016/j.foodchem.2014.09.128.
Y. M. Shen, C. H. Chang, M. C. Shi, et al., Interactions between lecithin and yolk granule and their influence on the emulsifying properties, Food Hydrocolloid. 101 (2020) 105510. https://doi.org/10.1016/j.foodhyd.2019.105510.
Z. H. Ma, Y. J. Chi, Y. Chi, Cryoprotective role of saccharides in frozen egg yolks: water/ice tailoring effect and improved freeze-thaw stability, Food Hydrocolloid. 145 (2023) 109161. https://doi.org/10.1016/j.foodhyd.2023.109161.
Q. Li, S. T. Tang, F. K. Mourad, et al., Emulsifying stability of enzymatically hydrolyzed egg yolk granules and structural analysis, Food Hydrocolloid. 101 (2020) 105521. https://doi.org/10.1016/j.foodhyd.2019.105521.
K. Burki, I. Jeon, C. Arpagaus, et al., New insights into respirable protein powder preparation using a nano spray dryer, Int. J. Pharm. 408(1/2) (2011) 248–256. https://doi.org/10.1016/j.ijpharm.2011.02.012.
Y. X. Chen, L. Sheng, M. M. Gouda, et al., Impact of ultrasound treatment on the foaming and physicochemical properties of egg white during cold storage, LWT-Food Sci. Technol. 113 (2019) 108303. https://doi.org/10.1016/j.lwt.2019.108303.
Z. R, Yan, Y. Zhao, Y. J. Chi, Phenomenon and cause of freeze-induced gelation of yolk, Food Sci. 39(19) (2018) 29–35. https://doi.org/10.7506/spkx1002-6630-201819006.
P. Gelebart, A. Riaublanc, M. H. Famelart, et al., Protein aggregates modulate the texture of emulsified and acidified acid milk gels, Food Hydrocolloid. 93 (2019) 176–188. https://doi.org/10.1016/j.foodhyd.2019.02.007.
T. Hong, K. Iwashita, K. Shiraki, Viscosity control of protein solution by small solutes: a review, Curr. Protein Pept. Sci. 19(8) (2018) 746–758. https://doi.org/10.2174/1389203719666171213114919.
W. H. Li, Q. L. Chen, X. W. Wang, et al., Effect of freezing on soybean protein solution, Foods 12(14) (2023) 2650. https://doi.org/10.3390/foods12142650.
S. Venketesh, C. Dayananda, Properties, potentials, and prospects of antifreeze proteins, Crit. Rev. Biotechnol. 28(1) (2008) 57–82. https://doi.org/10.1080/07388550801891152.
T. K. Eto, B. Rubinsky, Antifreeze glycoproteins increase solution viscosity, Biochem. Biophys. Res. Commun. 197(2) (1993) 927–931. https://doi.org/10.1006/bbrc.1993.2568.
L. Grossmann, D. J. Mcclements, Current insights into protein solubility: a review of its importance for alternative proteins, Food Hydrocolloid. 137 (2023) 108416. https://doi.org/10.1016/j.foodhyd.2022.108416.
M. L. Denmat, M. Anton, V. Beaumal, Characterisation of emulsion properties and of interface composition in O/W emulsions prepared with hen egg yolk, plasma and granules, Food Hydrocolloid. 14(6) (2000) 539–549. https://doi.org/10.1016/S0268-005X(00)00034-5.
J. R. Wagner, M. C. Anon, Influence of denaturation, hydrophobicity and sulfhydryl content on solubility and water absorbing capacity of soy protein isolates, J. Food Sci. 55(3) (1990) 765–770. https://doi.org/10.1111/j.1365-2621.1990.tb05225.x.
H. Y. Feng, H. Jin, Y. Gao, et al., Effects of freeze-thaw cycles on the structure and emulsifying properties of peanut protein isolates, Food Chem. 330 (2020) 127215. https://doi.org/10.1016/j.foodchem.2020.127215.
T. Tsutsui, T. Obara, Hydrophobic components in delipidated granule of egg yolk, Agr. Biol. Chem. 46(10) (1982) 2587–2589. https://doi.org/10.1080/00021369.1982.10865476.
M. Q. Xu, L. X. Wei, Y. C. Xiao, et al., Molecular structural properties of extracted gelatin from yak skin as analysed based on molecular weight, Int. J. Food Prop. 20(Suppl 1) (2017) S543–S555. https://doi.org/10.1080/10942912.2017.1300813.
J. M. Chobert, C. Bertrand-Harb, M. G. Nicolas, Solubility and emulsifying properties of caseins and whey proteins modified enzymically by trypsin, J. Agr. Food Chem. 36(5) (1988) 883–892. https://doi.org/10.1021/jf00083a002.
H. S. Zhu, J. H. Li, Y. J. Su, et al., Sugar alcohols as cryoprotectants of egg yolk: inhibiting crystals and interactions, J. Food Eng. 342 (2023) 111360. https://doi.org/10.1016/j.jfoodeng.2022.111360.
Z. Li, Y. Sun, H. B. Jin, et al., Improvement and mechanism of emulsifying properties of liquid egg yolk by ozonation technology, LWT-Food Sci. Technol. 156 (2022) 113038. https://doi.org/10.1016/j.lwt.2021.113038.
F. Fernández-Martín, M. Pérez-Mateos, S. Dadashi, et al., Impact of magnetic assisted freezing in the physicochemical and functional properties of egg components. Part 2: egg yolk, Innov. Food Sci. Emerg. Technol. 49 (2018) 176–183. https://doi.org/10.1016/j.ifset.2017.07.004.
M. Zhang, L. P. Fan, Y. F. Liu, et al., Effects of proteins on emulsion stability: the role of proteins at the oil-water interface, Food Chem. 397 (2022) 133726. https://doi.org/10.1016/j.foodchem.2022.133726.
M. Alrosan, T. C. Tan, A. M. Easa, et al., Molecular forces governing protein-protein interaction: structure-function relationship of complexes protein in the food industry, Crit. Rev. Food Sci. Nutr. Res. 62(15) (2022) 4036–4052. https://doi.org/10.1080/10408398.2021.1871589.
Y. Guan, J. Bian, F. Peng, et al., High strength of hemicelluloses based hydrogels by freeze/thaw technique, Carbohydr. Polym. 101 (2014) 272–280. https://doi.org/10.1016/j.carbpol.2013.08.085.
G. P. Zhang, C. Y. Zhu, N. Walayat, et al., Effect of cryoprotectants on physicochemical and structural changes in repeated freeze-thawed egg white protein, Food Biosci. 55 (2023) 102913. https://doi.org/10.1016/j.fbio.2023.102913.
T. Pimchan, F. Tian, K. Thumanu, et al., Isolation, identification, and mode of action of antibacterial peptides derived from egg yolk hydrolysate, Poult. Sci. 102(7) (2023) 102695. https://doi.org/10.1016/j.psj.2023.102695.
B. Shivu, S. Seshadri, J. Li, et al., Distinct β-sheet structure in protein aggregates determined by ATR-FTIR spectroscopy, Biochemistry 52(31) (2013) 5176–5183. https://doi.org/10.1021/bi400625v.
C. Moore-Kelly, J. Welsh, A. Rodger, et al., Automated high-throughput capillary circular dichroism and intrinsic fluorescence spectroscopy for rapid determination of protein structure, Anal. Chem. 91(21) (2019) 13794–13802. https://doi.org/10.1021/acs.analchem.9b03259.
P. Garidel, Steady-state intrinsic tryptophan protein fluorescence spectroscopy in pharmaceutical biotechnology, Spectr. Eur. 20(4) (2008) 7.
Z. H. Ma, M. M. Qing, J. N. Zang, et al., Effects of freezing on the gelation behaviors of liquid egg yolks affected by saccharides: thermal behaviors and rheological and structural changes, Poult. Sci. 103(6) (2024) 103657. https://doi.org/10.1016/j.psj.2024.103657.
N. Balasco, C. Diaferia, E. Rosa, et al., A comprehensive analysis of the intrinsic visible fluorescence emitted by peptide/protein amyloid-like assemblies, Int. J. Mol. Sci. 24(9) (2023) 8372. https://doi.org/10.3390/ijms24098372.
S. Shukla, S. Mukherjee, S. Sharma, et al., A novel UV laser-induced visible blue radiation from protein crystals and aggregates: scattering artifacts or fluorescence transitions of peptide electrons delocalized through hydrogen bonding?, Arch. Biochem. Biophys. 428(2) (2004) 144–153. https://doi.org/10.1016/j.abb.2004.05.007.
H. Y. Diao, S. Y. Lin, D. M. Li, et al., Control on moisture distribution and protein changes of Antarctic krill meat by antifreeze protein during multiple freeze-thaw cycles, J. Food Sci. 87(10) (2022) 4440–4452. https://doi.org/10.1111/1750-3841.16308.
Y. H. Li, Y. Cheng, Z. L. Zhang, et al., Modification of rapeseed protein by ultrasound-assisted pH shift treatment: ultrasonic mode and frequency screening, changes in protein solubility and structural characteristics, Ultrason. Sonochem. 69 (2020) 105240. https://doi.org/10.1016/j.ultsonch.2020.105240.
W. Visessanguan, M. Ogawa, S. Nakai, et al., Physicochemical changes and mechanism of heat-induced gelation of arrowtooth flounder myosin, J. Agr. Food. Chem. 48(4) (2000) 1016–1023. https://doi.org/10.1021/jf9900332.
Q. P. Du, Y. Zhao, R. H. Wang, et al., Effects of different thawing methods on the functional properties, physicochemical properties and protein structures of frozen egg yolks, Food Sci. 42(11) (2021) 8–16. https://doi.org/10.7506/spkx1002-6630-20200612-172.
S. T. Mathew, S. G. Devi, S. Kv, et al., Formulation and evaluation of ketorolac tromethamine-loaded albumin microspheres for potential intramuscular administration, AAPS PharmSciTech 8 (2007) E100–E108. https://doi.org/10.1208/pt0801014.
J. Ming, L. Chen, H. Hong, et al., Effect of superfine grinding on the physico-chemical, morphological and thermogravimetric properties of Lentinus edodes mushroom powders, J. Sci. Food Agr. 95(12) (2015) 2431–2437. https://doi.org/10.1002/jsfa.6967.
C. van der Ven, H. Gruppen, D. B. de Bont, et al., Emulsion properties of casein and whey protein hydrolysates and the relation with other hydrolysate characteristics, J. Agr. Food Chem. 49(10) (2001) 5005–5012. https://doi.org/10.1021/jf010144c.
W. Messens, J. van Camp, A. Huyghebaert, The use of high pressure to modify the functionality of food proteins, Trends Food Sci. Technol. 8(4) (1997) 107–112. https://doi.org/10.1016/S0924-2244(97)01015-7.
J. Xi, Y. Y. Li, The effects of ultra-high-pressure treatments combined with heat treatments on the antigenicity and structure of soy glycinin, Int. J. Food Sci. Technol. 56(10) (2021) 5211–5219. https://doi.org/10.1111/ijfs.15297.