PDF (8.6 MB)
Collect
Submit Manuscript
Review Article | Open Access

Effects of enzymolysis on allergenicity and digestibility of food allergens

Jing Yang1,2()Shuling Zhou1Yan Chen1Jiajia Song3Jiawang Jin1Ruiping Gao1,2
School of Food Science and Engineering, Chongqing Technology and Business University, Chongqing 400067, China
Modern Industry Faculty of Food Nutrition and Health (Hot Pot), Chongqing Technology and Business University, Chongqing 400067, China
College of Food Science, Southwest University, Chongqing 400715, China
Show Author Information

Graphical Abstract

View original image Download original image

Abstract

Food allergens are a significant concern for global public health. Enzymolysis, which includes enzymatic hydrolysis and enzymatic cross-linking, is known for its mild conditions, as well as its high efficiency and stability, making it a widely employed method to reduce the allergenicity of food proteins. A small group of eight foods-four of animal origin (milk, eggs, fish, and crustacean shellfish) and four of plant origin (tree nuts, peanuts, wheat, and soybeans) accounts for approximately 90% of all food allergies. However, there has been no comprehensive summary of how enzymolysis impacts the digestibility and allergenicity of these eight key foods, based on both in vitro and in vivo studies. This paper seeks to provide a systematic review of the influence of enzymolysis on food allergenicity, with a focus on molecular characteristics, epitopes, immunoglobulin (Ig) E/IgG binding capacity, and digestive stability during in vitro digestion. The potential immune regulation effects of enzymolysis products in cell and animal allergy models are also highlighted.

References

[1]

C. M. Warren, J. Jiang, R. S. Gupta, Epidemiology and burden of food allergy, Curr. Allergy Asthma Rep. 20 (2020) 1–9. https://doi.org/10.1007/s11882-020-0898-7.

[2]
L. Pang, M. Liu, X. Li, et al., Effect of enzymatic hydrolysis combined with processing on allergenicity of food allergens, Trends Food Sci. Tech. (2023) 104248. https://doi.org/10.1016/j.jpgs.2023.104248.
[3]

Y. Lu, C. Dong, Major allergens in 8 types of allergenic foods and allergen detection techniques, Food Health 5(3) (2023) 15. https://doi.org/10.53388/FH2023015.

[4]

J. H. Cheng, H. Wang, D. W. Sun, An overview of tropomyosin as an important seafood allergen: structure, cross-reactivity, epitopes, allergenicity, and processing modifications, Compr. Rev. Food Sci. Food Saf. 21(1) (2022) 127–147. https://doi.org/10.1111/1541-4337.12889.

[5]

J. Yang, H. Kuang, X. Xiong, et al., Alteration of the allergenicity of cow’s milk proteins using different food processing modifications, Crit. Rev. Food Sci. Nutr. 64(14) (2024) 4622–4642. https://doi.org/10.1080/10408398.2022.2144792.

[6]

J. Huang, C. Liu, Y. Wang, et al., Application of in vitro and in vivo models in the study of food allergy, Food Sci. Hum. Well. 7(4) (2018) 235–243. https://doi.org/10.1016/j.fshw.2018.10.002.

[7]

X. Dong, J. Wang, V. Raghavan, Critical reviews and recent advances of novel non-thermal processing techniques on the modification of food allergens, Crit. Rev. Food Sci. 61(2) (2021) 196–210. https://doi.org/10.1080/10408398.2020.1722942.

[8]

A. Martorell-Aragonés, L. Echeverría-Zudaire, E. Alonso-Lebrero, et al., Position document: IgE-mediated cow’s milk allergy, Allergol. Immunopath. 43(5) (2015) 507–526. https://doi.org/10.1016/j.aller.2015.01.003.

[9]

M. P. L. V. H. J. van der Velden, M. R. M. Baert, R. de Waal Malefyt, et al., Selective development of a strong Th2 cytokine profile in high-risk children who develop atopy_ risk factors and regulatory role of IFN-γ, IL-4 and IL-10, Clin. Exp. Allergy 31 (2001) 997–1006. https://doi.org/10.1046/j.1365-2222.2001.01176.x.

[10]
J. Yang, S. Zhou, H. Kuang, et al., Edible insects as ingredients in food products: nutrition, functional properties, allergenicity of insect proteins, and processing modifications, Crit. Rev. Food Sci. Nutr. (2023) 1–23. https://doi.org/10.1080/10408398.2023.2223644.
[11]

J. Yang, F. Ren, H. Zhang, et al., Induction of regulatory dendritic cells by Lactobacillus paracasei L9 prevents allergic sensitization to bovine β-lactoglobulin in mice, J. Microbiol. Biotechn. 25(10) (2015) 1687–1696. https://doi.org/10.4014/jmb.1503.03022.

[12]
T. Boonpiyathad, P. Satitsuksanoa, M. Akdis, et al., IL-10 producing T and B cells in allergy, Semin. Immunol. 44 (2019) 101326. https://doi.org/10.1016/j.smim.2019.101326.
[13]

M. M. Tiemessen, A. G. van Ieperen-van Dijk, C. A. Bruijnzeel-Koomen, et al., Cow’s milk-specific T-cell reactivity of children with and without persistent cow’s milk allergy: key role for IL-10, J. Allergy Clin. Immun. 113(5) (2004) 932–939. https://doi.org/10.1016/j.jaci.2003.12.016.

[14]

J. Sg, Probiotic Bifidobacterium breve induces IL-10-producing Trl cells in the colon, PLoS Pathog 8 (2012) e1002714. https://doi.org/10.1371/journal.ppat.1002714.

[15]
F. T. Xie, J. S. Cao, J. Zhao, et al., IDO expressing dendritic cells suppress allograft rejection of small bowel transplantation in mice by expansion of Foxp3+ regulatory T cells, Transpl. Immunol. 33(2) (2015) 69–77. https://doi.org/10.1016/j.trim.2015.05.003.
[16]
J. Yang, H. Zhang, L. Jiang, et al., Bifidobacterium longum BBMN68-specific modulated dendritic cells alleviate allergic responses to bovine β-lactoglobulin in mice, J. Appl. Microbiol. 119(4) (2015) 1127–1137. https://doi.org/10.1111/jam.12923.
[17]

E. C. Abebe, T. A. Dejenie, T. M. Ayele, et al., The role of regulatory B cells in health and diseases: a systemic review, J. Inflamm. Res. 14 (2021) 75. https://doi.org/10.2147/JIR.S286426.

[18]

J. Jo, J. Garssen, L. Knippels, et al., Role of cellular immunity in cow’s milk allergy: pathogenesis, tolerance induction, and beyond, Mediat. Inflamm. 2014(1) (2014) 249784. https://doi.org/10.1155/2014/249784.

[19]

J. Yang, H. Kuang, N. Li, et al., The modulation and mechanism of probiotic-derived polysaccharide capsules on the immune response in allergic diseases, Crit. Rev. Food Sci. Nutr. 63(27) (2023) 8768–8780. https://doi.org/10.1080/10408398.2022.2062294.

[20]

A. R. Kim, H. S. Kim, D. K. Kim, et al., Mesenteric IL-10-producing CD5+ regulatory B cells suppress cow’s milk casein-induced allergic responses in mice, Sci. Rep. 6(1) (2016) 19685. https://doi.org/10.1038/srep19685.

[21]

J. Noh, J. H. Lee, G. Noh, et al., Characterisation of allergen-specific responses of IL-10-producing regulatory B cells (Br1) in cow milk allergy, Cell. Immunol. 264(2) (2010) 143–149. https://doi.org/10.1016/j.cellimm.2010.05.013.

[22]

M. Hong, Y. Liao, J. Liang, et al., Immunomodulation of human CD19+ CD25high regulatory B cells via Th17/Foxp3 regulatory T cells and Th1/Th2 cytokines, Hum. Immunol. 80(10) (2019) 863–870. https://doi.org/10.1016/j.humimm.2019.05.011.

[23]

N. Sun, Y. Liu, K. Liu, et al., Gastrointestinal fate of food allergens and its relationship with allergenicity, Compr. Rev. Food Sci. Food Saf. 21(4) (2022) 3376–3404. https://doi.org/10.1111/1541-4337.12989.

[24]
A. Brodkorb, L. Egger, M. Alminger, et al., INFOGEST static in vitro simulation of gastrointestinal food digestion, Nat. Protoc. 14(4) (2019) 991–1014. https://doi.org/10.1038/s41596-018-0119-1.
[25]

Y. Wang, K. Liu, M. Lu, et al., Comparative evaluation of static and dynamic simulated digestion models, J. Sci. Food Agr. 103(12) (2023) 5893–5903. https://doi.org/10.1002/jsfa.12692.

[26]

H. Rao, I. Baricevic, H. Bernard, et al., The effect of the food matrix on the in vitro bio-accessibility and IgE reactivity of peanut allergens, Mol. Nutr. Food Res. 64(14) (2020) 1901093. https://doi.org/10.1002/mnfr.201901093.

[27]

U. Khulal, M. Stojadinovic, I. Prodic, et al., Comparative digestion of thermally treated vertebrates and invertebrates allergen pairs in real food matrix, Food Chem. 405 (2023) 134981. https://doi.org/10.1016/j.foodchem.2022.134981.

[28]

K. Takagi, R. Teshima, H. Okunuki, et al., Comparative study of in vitro digestibility of food proteins and effect of preheating on the digestion, Biol. Pharm. Bull. 26(7) (2003) 969–973. https://doi.org/10.1248/bpb.26.969.

[29]

B. Gazme, K. Rezaei, C. C. Udenigwe, Effect of enzyme immobilization and in vitro digestion on the immune-reactivity and sequence of IgE epitopes in egg white proteins, Food Funct. 11(7) (2020) 6632–6642. https://doi.org/10.1039/D0FO00938E.

[30]

H. Rostamabadi, V. Chaudhary, N. Chhikara, et al., Ovalbumin, an outstanding food hydrocolloid: applications, technofunctional attributes, and nutritional facts, a systematic review, Food Hydrocolloids 139 (2023) 108514. https://doi.org/10.1016/j.foodhyd.2023.108514.

[31]

D. Lozano-Ojalvo, E. Molina, R. López-Fandiño, Regulation of exacerbated immune responses in human peripheral blood cells by hydrolysed egg white proteins, PLoS ONE 11(3) (2016) e0151813. https://doi.org/10.1371/journal.pone.0151813.

[32]

K. Liu, S. Chen, H. Chen, et al., Cross-linked ovalbumin catalyzed by polyphenol oxidase: preparation, structure and potential allergenicity, Int. J. Biol. Macromol. 107 (2018) 2057–2064. https://doi.org/10.1016/j.ijbiomac.2017.10.072.

[33]

M. Li, S. Karboune, L. Liu, et al., Combining phenolic grafting and laccase-catalyzed cross-linking: effects on structures, technofunctional properties and human immunoglobulin E binding capacity of egg white proteins, Food Chem. 355 (2021) 129587. https://doi.org/10.1016/j.foodchem.2021.129587.

[34]

T. Lafarga, M. Hayes, Bioactive protein hydrolysates in the functional food ingredient industry: overcoming current challenges, Food Rev. Int. 33(3) (2017) 217–246. https://doi.org/10.1080/87559129.2016.1175013.

[35]

P. Alvira, E. Tomás-Pejó, M. Ballesteros, et al., Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review, Bioresource Technol. 101(13) (2010) 4851–4861. https://doi.org/10.1016/j.biortech.2009.11.093.

[36]

C. C. Chen, M. C. Kao, C. J. Chen, et al., Improvement of enzymatic cross-linking of ovalbumin and ovotransferrin induced by transglutaminase with heat and reducing agent pretreatment, Food Chem. 409 (2023) 135281. https://doi.org/10.1016/j.foodchem.2022.135281.

[37]

P. Tong, X. Xu, K. Liu, et al., Denatured pre-treatment assisted polyphenol oxidase-catalyzed cross-linking: effects on the cross-linking potential, structure, allergenicity and functional properties of OVA, Food Funct. 12(20) (2021) 10083–10096. https://doi.org/10.1039/D1FO01809D.

[38]

J. Yuan, Y. Zheng, Y. Wu, et al., Double enzyme hydrolysis for producing antioxidant peptide from egg white: optimization, evaluation, and potential allergenicity, J. Food Biochem. 44(2) (2020) e13113. https://doi.org/10.1111/jfbc.13113.

[39]

A. Yang, C. Long, J. Xia, et al., Enzymatic characterisation of the immobilised alcalase to hydrolyse egg white protein for potential allergenicity reduction, J. Sci. Food Agr. 97(1) (2017) 199–206. https://doi.org/10.1002/jsfa.7712.

[40]

P. Tong, S. Chen, J. Gao, et al., Caffeic acid-assisted cross-linking catalyzed by polyphenol oxidase decreases the allergenicity of ovalbumin in a Balb/c mouse model, Food Chem. Toxicol. 111 (2018) 275–283. https://doi.org/10.1016/j.fct.2017.11.026.

[41]

X. Sun, C. Acquah, B. Gazme, et al., Mechanisms of plastein formation influence the IgE-binding activity of egg white protein hydrolysates after simulated static digestion, Food Chem. 345 (2021) 128783. https://doi.org/10.1016/j.foodchem.2020.128783.

[42]

H. Y. Park, T. J. Yoon, H. H. Kim, et al., Changes in the antigenicity and allergenicity of ovalbumin in chicken egg white by N-acetylglucosaminidase, Food Chem. 217 (2017) 342–345. https://doi.org/10.1016/j.foodchem.2016.08.112.

[43]

D. Lozano-Ojalvo, E. Molina, R. López-Fandiño, Hypoallergenic hydrolysates of egg white proteins modulate allergen responses induced ex vivo on spleen cells from sensitized mice, Food Res. Int. 89 (2016) 661–669. https://doi.org/10.1016/j.foodres.2016.09.021.

[44]

M. Yang, C. Yang, F. Nau, et al., Immunomodulatory effects of egg white enzymatic hydrolysates containing immunodominant epitopes in a BALB/c mouse model of egg allergy, J. Agric. Food Chem. 57(6) (2009) 2241–2248. https://doi.org/10.1021/jf803372b.

[45]

D. Lozano-Ojalvo, L. Pérez-Rodríguez, A. Pablos-Tanarro, et al., Hydrolysed ovalbumin offers more effective preventive and therapeutic protection against egg allergy than the intact protein, Clin. Exp. Allergy 47(10) (2017) 1342–1354. https://doi.org/10.1111/cea.12989.

[46]

A. Maeta, R. Katahira, M. Marin, et al., Diet supplementation with commercial enzymatically-hydrolyzed egg white peptides ameliorates the severity of allergy in a mouse model of egg white allergy, Asian Pac. J. Allergy Immunol. 40(4) (2022) 359–367. https://doi.org/10.12932/ap-080219-0489.

[47]

Y. B. Wang, S. Q. Ni, C. Wang, et al., Cross-linking of shrimp tropomyosin catalyzed by transglutaminase and tyrosinase produces hypoallergens for potential immunotherapy, Food Funct. 10(3) (2019) 1069–1618. https://doi.org/10.1039/c9fo00046a.

[48]

L. Fu, S. Ni, C. Wang, et al., Transglutaminase-catalysed cross-linking eliminates Penaeus chinensis tropomyosin allergenicity by altering protein structure, Food Agr. Immunol. 30(1) (2019) 296–308. https://doi.org/10.1080/09540105.2019.1580250.

[49]
A. Silke, Effect of enzymatic hydrolysis on the allergenic capacity of shrimp tropomyosin, The University of Maine, Orono, 2017.
[50]

S. J. Laly, T. V. Sankar, K. P. Satyen, Effect of pressure cooking alone and in combination with other treatments on shrimp allergic protein, tropomyosin, J. Food Sci. Technol. 59(3) (2022) 1193–1201. https://doi.org/10.1007/s13197-021-05124-2.

[51]

G. Liu, M. Hu, L. C. Sun, et al., Allergenicity and oral tolerance of enzymatic cross-linked tropomyosin evaluated using cell and mouse models, J. Agric. Food Chem. 65(10) (2017) 2205–2213. https://doi.org/10.1021/acs.jafc.6b05816.

[52]

I. Ahmed, H. Lin, L. Xu, et al., Immunomodulatory effect of laccase/caffeic acid and transglutaminase in alleviating shrimp tropomyosin (Met e 1) allergenicity, J. Agric. Food Chem. 68(29) (2020) 7765–7778. https://doi.org/10.1021/acs.jafc.0c02366.

[53]

I. Ahmed, J. Ma, Z. Li, et al., Effect of tyrosinase and caffeic acid crosslinking of turbot parvalbumin on the digestibility, and release of mediators and cytokines from activated RBL-2H3 cells, Food Chem. 300 (2019) 125209. https://doi.org/10.1016/j.foodchem.2019.125209.

[54]

I. Ahmed, H. Lin, Z. Li, et al., Tyrosinase/caffeic acid cross-linking alleviated shrimp ( Metapenaeus ensis) tropomyosin-induced allergic responses by modulating the Th1/Th2 immunobalance, Food Chem. 340 (2021) 127948. https://doi.org/10.1016/j.foodchem.2020.127948.

[55]

D. X. Fei, Q. M. Liu, F. Chen, et al., Assessment of the sensitizing capacity and allergenicity of enzymatic cross-linked arginine kinase, the crab allergen, Mol. Nutr. Food Res. 60(7) (2016) 1707–1718. https://doi.org/10.1002/mnfr.201500936.

[56]

B. Buyuktiryaki, M. Masini, F. Mori, et al., IgE-mediated fish allergy in children, Medicina 57(1) (2021) 76. https://doi.org/10.3390/medicina57010076.

[57]

A. Kuehn, T. Scheuermann, C. Hilger, et al., Important variations in parvalbumin content in common fish species: a factor possibly contributing to variable allergenicity, Int. Arch. Allergy Immunol. 153(4) (2010) 359–366. https://doi.org/10.1159/000316346.

[58]

S. Ketnawa, A. M. Liceaga, Effect of microwave treatments on antioxidant activity and antigenicity of fish frame protein hydrolysates, Food Bioprocess Tech. 10 (2017) 582–591. https://doi.org/10.1007/s11947-016-1841-8.

[59]

B. Keshavarz, Q. Rao, X. Jiang, et al., Immunochemical analysis of pepsin-digested fish tropomyosin, Food Control 118 (2020) 107427. https://doi.org/10.1016/j.foodcont.2020.107427.

[60]

N. Mejrhit, O. Azdad, L. Aarab, Evaluation of the IgE reactivity of common pandora parvalbumin in a Moroccan population and action of heating and enzymatic treatments, Food Agr. Immunol. 29(1) (2018) 109–120. https://doi.org/10.1080/09540105.2017.1360256.

[61]

N. Mejrhit, O. Azdad, M. El Kabbaoui, et al., Sensitivity of Moroccans to sardine parvalbumin and effect of heating and enzymatic treatments, Food Agr. Immunol. 28(6) (2017) 1362–1373. https://doi.org/10.1080/09540105.2017.1343804.

[62]

S. Tian, J. Ma, I. Ahmed, et al., Effect of tyrosinase-catalyzed crosslinking on the structure and allergenicity of turbot parvalbumin mediated by caffeic acid, J. Sci. Food Agr. 99(7) (2019) 3501–3508. https://doi.org/10.1002/jsfa.9569.

[63]

L. Lü, S. Tian, I. Ahmed, et al., Effect of laccase-catalyzed cross-linking on the structure and allergenicity of Paralichthys olivaceus parvalbumin mediated by propyl gallate, Food Chem. 297 (2019) 124972. https://doi.org/10.1016/j.foodchem.2019.124972.

[64]
D. Li, X. R. He, F. J. Li, et al., Effect of transglutaminase-catalyzed glycosylation on the allergenicity of tropomyosin in Perna viridis food matrix, Food Funct. (2024). https://doi.org/10.1039/d4fo02305f.
[65]

H. Hochwallner, U. Schulmeister, I. Swoboda, et al., Cow’s milk allergy: from allergens to new forms of diagnosis, therapy and prevention, Methods 66(1) (2014) 22–33. https://doi.org/10.1016/j.ymeth.2013.08.005.

[66]

X. Liang, J. Cheng, J. Sun, et al., Reduction of immunoreactivity and improvement of the nutritional qualities in cow milk products by enzymatic hydrolysis, LWT-Food Sci. Technol. 150 (2021) 111994. https://doi.org/10.1016/j.lwt.2021.111994.

[67]

X. Liang, Z. Wang, H. Yang, et al., Evaluation of allergenicity of cow milk treated with enzymatic hydrolysis through a mouse model of allergy, J. Dairy Sci. 105(2) (2022) 1039–1050. https://doi.org/10.3168/jds.2021-20686.

[68]

L. Quintieri, L. Monaci, F. Baruzzi, et al., Reduction of whey protein concentrate antigenicity by using a combined enzymatic digestion and ultrafiltration approach, J. Food Sci. Technol. 54 (2017) 1910–1916. https://doi.org/10.1007/s13197-017-2625-5.

[69]

A. Dąbrowska, J. Bajzert, K. Babij, et al., Reduced IgE and IgG antigenic response to milk proteins hydrolysates obtained with the use of non-commercial serine protease from Yarrowia lipolytica, Food Chem. 302 (2020) 125350. https://doi.org/10.1016/j.foodchem.2019.125350.

[70]

F. Yuan, I. Ahmed, L. Lü, et al., Impacts of glycation and transglutaminase-catalyzed glycosylation with glucosamine on the conformational structure and allergenicity of bovine β-lactoglobulin, Food Funct. 9(7) (2018) 3944–3955. https://doi.org/10.1039/c8fo00909k.

[71]

L. Xu, Y. Gong, J. E. Gern, et al., Influence of whey protein hydrolysis in combination with dextran glycation on immunoglobulin E binding capacity with blood sera obtained from patients with a cow milk protein allergy, J. Dairy Sci. 103(2) (2020) 1141–1150. https://doi.org/10.3168/jds.2019-17187.

[72]

Y. H. Zhang, J. Q. Liu, D. Xu, et al., Impacts of glucosamine/oligochitosan glycation and cross-linking by transglutaminase on the structure and in vitro antigenicity of whey proteins, Int. J. Dairy Technol. 69(2) (2016) 169–176. https://doi.org/10.1111/1471-0307.12246.

[73]

K. E. El Mecherfi, S. Curet, R. Lupi, et al., Combined microwave processing and enzymatic proteolysis of bovine whey proteins: the impact on bovine β-lactoglobulin allergenicity, J. Food Sci. Technol. 56(1) (2019) 177–186. https://doi.org/10.1007/s13197-018-3471-9.

[74]

V. Ambrosi, G. Polenta, C. Gonzalez, et al., High hydrostatic pressure assisted enzymatic hydrolysis of whey proteins, Innov. Food Sci. Emerg. 38 (2016) 294–301. https://doi.org/10.1016/j.ifset.2016.05.009.

[75]

D. Lozano-Ojalvo, L. Pérez-Rodríguez, A. Pablos-Tanarro, et al., Pepsin treatment of whey proteins under high pressure produces hypoallergenic hydrolysates, Innov. Food Sci. Emerg. 43 (2017) 154–162. https://doi.org/10.1016/j.ifset.2017.07.032.

[76]

P. Maresca, G. Ferrari, Modelling of the kinetics of bovine serum albumin enzymatic hydrolysis assisted by high hydrostatic pressure, Food Bioprod. Process. 105 (2017) 1–11. https://doi.org/10.1016/j.fbp.2017.03.006.

[77]

Q. Zhang, Q. H. Chen, G. Q. He, Effect of ultrasonic-ionic liquid pretreatment on the hydrolysis degree and antigenicity of enzymatic hydrolysates from whey protein, Ultrason. Sonochem. 63 (2020) 104926. https://doi.org/10.1016/j.ultsonch.2019.104926.

[78]

X. Liang, J. Sun, H. Yang, et al., Effects of enzymatic hydrolysis on the allergenicity of natural cow milk based on a BALB/c mouse model, J. Dairy Sci. 104(12) (2021) 12353–12364. https://doi.org/10.3168/jds.2021-20260.

[79]

I. Ahmed, L. Lü, H. Lin, et al., Effect of tyrosinase-aided crosslinking on the IgE binding potential and conformational structure of shrimp ( Metapenaeus ensis) tropomyosin, Food Chem. 248 (2018) 287–295. https://doi.org/10.1016/j.foodchem.2017.12.071.

[80]

J. Wang, Z. He, V. Raghavan, Soybean allergy: characteristics, mechanisms, detection and its reduction through novel food processing techniques, Crit. Rev. Food Sci. Nutr. 63(23) (2023) 6182–6195. https://doi.org/10.1080/10408398.2022.2029345.

[81]

P. Meinlschmidt, D. Sussmann, U. Schweiggert-Weisz, et al., Enzymatic treatment of soy protein isolates: effects on the potential allergenicity, technofunctionality, and sensory properties, Food Sci. Nutr. 4(1) (2016) 11–23. https://doi.org/10.1002/fsn3.253.

[82]

T. Huang, G. Bu, F. Chen, The influence of composite enzymatic hydrolysis on the antigenicity of β-conglycinin in soy protein hydrolysates, J. Food Biochem. 42(5) (2018) 12544. https://doi.org/10.1111/jfbc.12544.

[83]

P. Meinlschmidt, U. Schweiggert-Weisz, V. Brode, et al., Enzyme assisted degradation of potential soy protein allergens with special emphasis on the technofunctionality and the avoidance of a bitter taste formation, LWT-Food Sci. Technol. 68 (2016) 707–716. https://doi.org/10.1016/j.lwt.2016.01.023.

[84]

Q. Zhang, Z. Cheng, Y. Wang, et al., Combining alcalase hydrolysis and transglutaminase-cross-linking improved bitterness and techno-functional properties of hypoallergenic soybean protein hydrolysates through structural modifications, LWT-Food Sci. Technol. 151 (2021) 112096. https://doi.org/10.1016/j.lwt.2021.112096.

[85]

P. Meinlschmidt, V. Brode, R. Sevenich, et al., High pressure processing assisted enzymatic hydrolysis-an innovative approach for the reduction of soy immunoreactivity, Innov. Food Sci. Emerg. Technol. 40 (2017) 58–67. https://doi.org/10.1016/j.ifset.2016.06.022.

[86]

H. Yang, Y. Qu, J. Li, et al., Improvement of the protein quality and degradation of allergens in soybean meal by combination fermentation and enzymatic hydrolysis, LWT-Food Sci. Technol. 128 (2020) 109442. https://doi.org/10.1016/j.lwt.2020.109442.

[87]

H. Yin, X. Zhang, J. Huang, Study on enzymatic hydrolysis of soybean β-conglycinin using alkaline protease from Bacillus subtilis ACCC 01746 and antigenicity of its hydrolysates, Grain and Oil Sci. Technol. 4(1) (2021) 18–25. https://doi.org/10.1016/j.gaost.2020.12.001.

[88]

J. Zhu, H. Deng, A. Yang, et al., Effect of microbial transglutaminase cross-linking on the quality characteristics and potential allergenicity of tofu, Food Funct. 10(9) (2019) 5485–5497. https://doi.org/10.1039/c9fo01118h.

[89]

E. de Angelis, R. Pilolli, S. L. Bavaro, et al., Insight into the gastro-duodenal digestion resistance of soybean proteins and potential implications for residual immunogenicity, Food Funct. 8(4) (2017) 1599–1610. https://doi.org/10.1039/c6fo01788f.

[90]

J. Bai, J. Hui, Q. Lu, et al., Effect of transglutaminase cross-linking on the allergenicity of tofu based on a BALB/c mouse model, Food Funct. 11(1) (2020) 404–413. https://doi.org/10.1039/c9fo02376c.

[91]

J. Ding, L. Huang, J. Yang, et al., Dual action of reduced allergenicity and improved memory of instant soybean powder hydrolysates, J. Agric. Food Chem. 71(48) (2023) 18815–18828. https://doi.org/10.1021/acs.jafc.3c06490.

[92]

E. Shu, S. Wang, B. Niu, et al., Effect of peanut protein treated with alkaline protease and flavorzyme on BALB/c Mice, Foods 12(13) (2023) 2634. https://doi.org/10.3390/foods12132634.

[93]

X. Shi, R. Guo, B. L. White, et al., Allergenic properties of enzymatically hydrolyzed peanut flour extracts, Int. Arch. Allergy Immunol. 162(2) (2013) 123–130. https://doi.org/10.1159/000351920.

[94]

B. Cabanillas, M. M. Pedrosa, J. Rodríguez, et al., Influence of enzymatic hydrolysis on the allergenicity of roasted peanut protein extract, Int. Arch. Allergy Immunol. 157(1) (2011) 41–50. https://doi.org/10.1159/000324681.

[95]

J. Yu, N. Mikiashvili, Effectiveness of different proteases in reducing allergen content and IgE-binding of raw peanuts, Food Chem. 307 (2020) 125565. https://doi.org/10.1016/j.foodchem.2019.125565.

[96]

J. Yu, M. Ahmedna, I. Goktepe, et al., Enzymatic treatment of peanut kernels to reduce allergen levels, Food Chem. 127(3) (2011) 1014–1022. https://doi.org/10.1016/j.foodchem.2011.01.074.

[97]

J. Yu, I. N. Smith, N. Idris, et al., Oxidative stability of protease treated peanut with reduced allergenicity, Foods 9(6) (2020) 762. https://doi.org/10.3390/foods9060762.

[98]

S. Meng, Y. Tan, S. Chang, et al., Peanut allergen reduction and functional property improvement by means of enzymatic hydrolysis and transglutaminase crosslinking, Food Chem. 302 (2020) 125186. https://doi.org/10.1016/j.foodchem.2019.125186.

[99]

J. Yu, N. Mikiashvili, R. Bonku, et al., Allergenicity, antioxidant activity and ACE-inhibitory activity of protease hydrolyzed peanut flour, Food Chem. 360 (2021) 129992. https://doi.org/10.1016/j.foodchem.2021.129992.

[100]

H. Li, J. Yu, M. Ahmedna, et al., Reduction of major peanut allergens Ara h1 and Ara h2, in roasted peanuts by ultrasound assisted enzymatic treatment, Food Chem. 141(2) (2013) 762–768. https://doi.org/10.1016/j.foodchem.2013.03.049.

[101]

S. Y. Chung, M. Houska, S. Reed, Reducing peanut allergens by high pressure combined with polyphenol oxidase, High Pressure Res. 33(4) (2013) 813–821. https://doi.org/10.1080/08957959.2013.828716.

[102]

S. J. Koppelman, S. L. Hefle, S. L. Taylor, et al., Digestion of peanut allergens Ara h1, Ara h2, Ara h3, and Ara h6: a comparative in vitro study and partial characterization of digestion-resistant peptides, Mol. Nutr. Food Res. 54(12) (2010) 1711–1721. https://doi.org/10.1002/mnfr.201000011.

[103]

L. di Stasio, G. Picariello, M. Mongiello, et al., Peanut digestome: identification of digestion resistant IgE binding peptides, Food Chem. Toxicol. 107 (2017) 88–98. https://doi.org/10.1016/j.fct.2017.06.029.

[104]

L. di Stasio, O. Tranquet, G. Picariello, et al., Comparative analysis of eliciting capacity of raw and roasted peanuts: the role of gastrointestinal digestion, Food Res. Int. 127 (2020) 108758. https://doi.org/10.1016/j.foodres.2019.108758.

[105]
H. Rao, Y. Tian, W. Fu, et al., In vitro digestibility and immunoreactivity of thermally processed peanut, Food Agr. Immunol. 29(1) (2018) 989–1001. https://doi.org/10.1080/09540105.2018.1499710.
[106]

Z. Wu, J. Lian, Y. Han, et al., Crosslinking of peanut allergen Ara h2 by polyphenol oxidase: digestibility and potential allergenicity assessment, J. Sci. Food Agr. 96(10) (2016) 3567–3574. https://doi.org/10.1002/jsfa.7542.

[107]

J. Radosavljevic, E. Nordlund, L. Mihajlovic, et al., Sensitizing potential of enzymatically cross-linked peanut proteins in a mouse model of peanut allergy, Mol. Nutr. Food Res. 58(3) (2014) 635–646. https://doi.org/10.1002/mnfr.201300403.

[108]

C. Cuadrado, C. Arribas, A. Sanchiz, et al., Effects of enzymatic hydrolysis combined with pressured heating on tree nut allergenicity, Food Chem. 451 (2024) 139433. https://doi.org/10.1016/j.foodchem.2024.139433.

[109]

C. B. DeFreece, J. W. Cary, C. C. Grimm, et al., Treatment of cashew extracts with aspergillopepsin reduces IgE binding to cashew allergens, J. Appl. Biol. Biotechnol. 4 (2016) 1–10. https://doi.org/10.5296/jab.v4i2.9079.

[110]

I. Ouahidi, C. Ouaazizi, N. Mejrhit, et al., Molecular characterization of amandin, an allergen from almond ( Prunus dulcis) and the effect of heat and enzymatic treatments on human IgE and rabbit IgG sensitivity to almond allergens, Turk. J. Immunol. 5(1) (2017) 20–30. https://doi.org/10.25002/tji.2017.551.

[111]

C. Cuadrado, H. Cheng, A. Sanchiz, et al., Influence of enzymatic hydrolysis on the allergenic reactivity of processed cashew and pistachio, Food Chem. 241 (2018) 372–379. https://doi.org/10.1016/j.foodchem.2017.08.120.

[112]

F. F. G. Dias, Y. P. Huang, J. Schauer, et al., Effects of protease-assisted aqueous extraction on almond protein profile, digestibility, and antigenicity, Curr. Res. Food Sci. 6 (2023) 100488. https://doi.org/10.1016/j.crfs.2023.100488.

[113]

O. T. Toomer, A. Do, M. Pereira, et al., Effect of simulated gastric and intestinal digestion on temporal stability and immunoreactivity of peanut, almond, and pine nut protein allergens, J. Agric. Food Chem. 61(24) (2013) 5903–5913. https://doi.org/10.1021/jf400953q.

[114]

M. Kulis, I. MacQueen, Y. Li, et al., Pepsinized cashew proteins are hypoallergenic and immunogenic and provide effective immunotherapy in mice with cashew allergy, J. Allergy Clin. Immunol. 130(3) (2012) 716–723. https://doi.org/10.1016/j.jaci.2012.05.044.

[115]

M. Liu, J. Huang, S. Ma, et al., Allergenicity of wheat protein in diet: mechanisms, modifications and challenges, Food Res. Int. 169 (2023) 112913. https://doi.org/10.1016/j.foodres.2023.112913.

[116]

J. Małecki, S. Muszyński, B. G. Sołowiej, Proteins in food systems-bionanomaterials, conventional and unconventional sources, functional properties, and development opportunities, Polymers 13(15) (2021) 2506. https://doi.org/10.3390/polym13152506.

[117]

N. Heredia-Sandoval, A. C. de la Barca, E. Carvajal-Millán, et al., Amaranth addition to enzymatically modified wheat flour improves dough functionality, bread immunoreactivity and quality, Food Funct. 9(1) (2018) 534–540. https://doi.org/10.1039/C7FO01332A.

[118]

B. M. Kumar, S. Sarabhai, P. Prabhasankar, Targeted degradation of gluten proteins in wheat flour by prolyl endoprotease and its utilization in low immunogenic pasta for gluten sensitivity population, J. Cereal Sci. 87 (2019) 59–67. https://doi.org/10.1016/j.jcs.2019.03.001.

[119]

K. Beyer, L. Bardina, H. Sampson, Differences in recognition of water-soluble and-insoluble wheat allergens in two varieties of wheat flour between wheat-allergic and wheat-sensitized but clinically tolerant patients, J. Allergy Clin. Immunol. 115(2) (2005) S245. https://doi.org/10.1016/j.jaci.2004.12.990.

[120]

Y. Li, J. Yu, I. Goktepe, et al., The potential of papain and alcalase enzymes and process optimizations to reduce allergenic gliadins in wheat flour, Food Chem. 196 (2016) 1338–1345. https://doi.org/10.1016/j.foodchem.2015.10.089.

[121]

B. Brzozowski, Immunoreactivity of wheat proteins modified by hydrolysis and polymerisation, Eur. Food Res. Technol. 242 (2016) 1025–1040. https://doi.org/10.1007/s00217-015-2608-6.

[122]

L. Xue, Y. Li, T. Li, et al., Phosphorylation and enzymatic hydrolysis with alcalase and papain effectively reduce allergic reactions to gliadins in normal mice, J. Agric. Food Chem. 67(22) (2019) 6313–6323. https://doi.org/10.1021/acs.jafc.9b00569.

[123]

X. Li, T. Miyakawa, T. Takano, et al., Induction of oral tolerance by pepsin-digested gliadin retaining T cell reactivity in a mouse model of wheat allergy, Int. Arch. Allergy Immunol. 181(6) (2020) 446–455. https://doi.org/10.1159/000506945.

[124]

C. Villemin, O. Tranquet, V. Solé-Jamault, et al., Deamidation and enzymatic hydrolysis of gliadins alter their processing by dendritic cells in vitro, J. Agric. Food Chem. 68(5) (2019) 1447–1456. https://doi.org/10.1021/acs.jafc.9b06075.

[125]

Y. Bouferkas, A. Haddi, N. Mehedi, et al., Enzymatic treatment of gliadins triggers anaphylactic reaction in a murine model of wheat allergy: in vivo and ex vivo study, Biosci. Res. 16 (2019) 1377–1390.

[126]

S. G. Tedner, A. Asarnoj, H. Thulin, et al., Food allergy and hypersensitivity reactions in children and adults: a review, J. Intern. Med. 291(3) (2022) 283–302. https://doi.org/10.1111/joim.13422.

[127]

E. D’Auria, S. Salvatore, M. Acunzo, et al., Hydrolysed formulas in the management of cow’s milk allergy: new insights, pitfalls and tips, Nutrients 13(8) (2021) 2762. https://doi.org/10.3390/nu13082762.

[128]

C. R. Martin, P. R. Ling, G. L. Blackburn, Review of infant feeding: key features of breast milk and infant formula, Nutrients 8(5) (2016) 279. https://doi.org/10.3390/nu8050279.

[129]

J. Genuneit, R. J. Boyle, Hydrolysed formula and allergy prevention, Pediat. Allergy Immunol. 32(4) (2021) 13470. https://doi.org/10.1111/pai.13470.

[130]

S. Koletzko, B. Niggemann, A. Arató, et al., Diagnostic approach and management of cow’s-milk protein allergy in infants and children: ESPGHAN GI Committee practical guidelines, J. Pediatr. Gastr. Nutr. 55(2) (2012) 221–229. https://doi.org/10.1097/MPG.0b013e31825c9482.

[131]

A. Stróżyk, A. Horvath, R. Meyer, et al., Efficacy and safety of hydrolyzed formulas for cow’s milk allergy management: a systematic review of randomized controlled trials, Clin. Exp. Allergy 50(7) (2020) 766–779. https://doi.org/10.1111/cea.13669.

[132]

C. Dupont, A. Bocquet, D. Tomé, et al., Hydrolyzed rice protein-based formulas, a vegetal alternative in cow’s milk allergy, Nutrients 12(9) (2020) 2654. https://doi.org/10.3390/nu12092654.

Food Science of Animal Products
Article number: 9240082
Cite this article:
Yang J, Zhou S, Chen Y, et al. Effects of enzymolysis on allergenicity and digestibility of food allergens. Food Science of Animal Products, 2024, 2(3): 9240082. https://doi.org/10.26599/FSAP.2024.9240082
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return