PDF (7.9 MB)
Collect
Submit Manuscript
Show Outline
Figures (7)

Tables (3)
Table 1
Table 2
Table 3
Research Article | Open Access

Genome sequence and metabolic analysis of Pseudomonas fragi unveil the meat spoilage and CO2-antibacterial mechanism under high-oxygen modified atmosphere packaging

Jun Yang1,2Yikun Xu1Yimin Zhang1,2Rongrong Liang1,2Lixian Zhu1,2Yanwei Mao1,2Xin Luo1,2Xiaoyin Yang1,2 ()
Laboratory of Meat Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University,Tai’an 271018, China
National R&D Center for Beef Processing Technology, Tai’an 271018, China
Show Author Information

Graphical Abstract

View original image Download original image

Abstract

Pseudomonas fragi is a predominant meat-borne spoilage bacterium that is sensitive to CO2 under high-oxygen modified atmosphere packaging (HiOx-MAP). This study was designed to reveal the spoilage potential of a popular wild-type P. fragi T1 in HiOx-MAP beef by whole genome sequencing, and explore the bacterial metabolic response to CO2 utilizing combined metabolomic and volatile organic compounds (VOCs) analysis, under treatment (CO2-enriched) HiOx-MAP (TMAP, 50% O2/40% CO2/10% N2) or control (non-CO2) HiOx-MAP (CMAP, 50% O2/50% N2) during chilled storage. Results showed that the strain P. fragi T1 was endued with spoilage-related genes associated with protease, lipase and esterase production, amino acid metabolism, carbon metabolism, sulfur metabolism, and putrescine metabolism, which was responsible for the hydrolysis of meat protein and lipid, as well as off-odor formation. The growth of P. fragi under CMAP resulted in the production of VOCs, such as diacetyl, 1-undecene, 2-undecanone, nonanal, (Z)-5-decen-1-ol, and (E)-2-octenal, etc. The TMAP declined above VOCs concentrations significantly (P < 0.05) by inhibiting P. fragi growth and regulating its metabolic activities. The metabolomic analysis further manifested that CO2 inhibited the P. fragi growth by decreasing cell membrane fluidity, disturbing energy metabolism, and inhibiting amino acid metabolism and nucleotide biosynthesis. This work provides valuable information for understanding the P. fragi-induced meat spoilage phenomena, and the antibacterial mechanism of CO2 against P. fragi.

References

[1]

X. Y. Yang, L. X. Zhu, Y. M. Zhang, et al., Microbial community dynamics analysis by high-throughput sequencing in chilled beef longissimus steaks packaged under modified atmospheres, Meat Sci. 141 (2018) 94–102. https://doi.org/10.1016/j.meatsci.2018.03.010.

[2]

J. Yang, X. Y. Yang, R. R. Liang, et al., The response of bacterial communities to carbon dioxide in high-oxygen modified atmosphere packaged beef steaks during chilled storage, Food Res. Int. 151 (2022) 110872. https://doi.org/10.1016/j.foodres.2021.110872.

[3]

X. Y. Yang, X. Luo, Y. M. Zhang, et al., Effects of microbiota dynamics on the color stability of chilled beef steaks stored in high oxygen and carbon monoxide packaging, Food Res. Int. 134 (2020) 109215. https://doi.org/10.1016/j.foodres.2020.109215.

[4]

J. Yang, X. Y. Yang, H. Lin, et al., Investigation of the relationship between microbiota dynamics and volatile changes in chilled beef steaks held under high-oxygen packaging enriched in carbon dioxide, Meat Sci. 191 (2022) 108861. https://doi.org/10.1016/j.meatsci.2022.108861.

[5]

D. Ercolini, A. Casaburi, A. Nasi, et al., Different molecular types of Pseudomonas fragi have the same overall behaviour as meat spoilers, Int. J. Food Microbiol. 142 (2010) 120–131. https://doi.org/10.1016/j.ijfoodmicro.2010.06.012.

[6]

N. N. Wickramasinghe, J. Ravensdale, R. Coorey, et al., The predominance of psychrotrophic pseudomonads on aerobically stored chilled red meat, Compr. Rev. Food Sci. Food Saf. 18 (2019) 1622–1635. https://doi.org/10.1111/1541-4337.12483.

[7]

O. S. Papadopoulou, V. Iliopoulos, A. Mallouchos, et al., Spoilage potential of Pseudomonas ( P. fragi, P. putida) and LAB ( Leuconostoc mesenteroides, Lactobacillus sakei) strains and their volatilome profile during storage of sterile pork meat using GC/MS and data analytics, Foods 9(5) (2020) 633. https://doi.org/10.3390/foods9050633.

[8]

J. Yang, R. R. Liang, Y. W. Mao, et al., Potential inhibitory effect of carbon dioxide on the spoilage behaviors of Pseudomonas fragi in high-oxygen packaged beef during refrigerated storage, Food Microbiol. 112 (2023) 104229. https://doi.org/10.1016/j.fm.2023.104229.

[9]

X. Y. Yang, L. B. Niu, L. X. Zhu, et al., Shelf-life extension of chill-stored beef longissimus steaks packaged under modified atmospheres with 50% O2 and 40% CO2, J. Food Sci. 81 (2016) C1692–C1698. https://doi.org/10.1111/1750-3841.13345.

[10]

J. A. Daniels, R. Krishnamurthi, S. S. H. Rizvi, A review of effects of carbon dioxide on microbial growth and food quality, J. Food Prot. 48 (1985) 532–537. https://doi.org/10.4315/0362-028X-48.6.532.

[11]

J. M. Farber, Microbiological aspects of modified atmosphere packaging technology: a review, J. Food Prot. 54 (1991) 58–70. https://doi.org/10.4315/0362-028X-54.1.58.

[12]

W. H. Oliver, The effect of carbon dioxide pressure on a bacterial decarboxylase system, Microbiology 8 (1953) 38–44. https://doi.org/10.1099/00221287-8-1-38.

[13]

A. D. King Jr., C. W. Nagel, Influence of carbon dioxide upon the metabolism of Pseudomonas aeruginosa, J. Food Sci. 40 (1975) 362–366. https://doi.org/10.1111/j.1365-2621.1975.tb02202.x.

[14]

K. H. Tan, C. O. Gill, Physiological basis of CO2 inhibition of a meat spoilage bacterium, Pseudomonas fluorescens, Meat Sci. 7 (1982) 9–17. https://doi.org/10.1016/0309-1740(82)90093-6.

[15]

Z. L. Tang, H. M. Chen, W. J. Chen, et al., Unraveling the antibacterial mechanism of 3-carene against Pseudomonas fragi by integrated proteomics and metabolomics analyses and its application in pork, Int. J. Food Microbiol. 379 (2022) 109846. https://doi.org/10.1016/j.ijfoodmicro.2022.109846.

[16]

Y. S. Li, R. R. He, H. M. Chen, et al., Respiratory depression as antibacterial mechanism of linalool against Pseudomonas fragi based on metabolomics, Int. J. Mol. Sci. 23 (2022) 11586. https://doi.org/10.3390/ijms231911586.

[17]

N. Illikoud, R. Gohier, D. Werner, et al., Transcriptome and volatilome analysis during growth of Brochothrix thermosphacta in food: role of food substrate and strain specificity for the expression of spoilage functions, Front. Microbiol. 10 (2019) 2527. https://doi.org/10.3389/fmicb.2019.02527.

[18]

A. Casaburi, P. Piombino, G. J. Nychas, et al., Bacterial populations and the volatilome associated to meat spoilage, Food Microbiol. 45 (2015) 83–102. https://doi.org/10.1016/j.fm.2014.02.002.

[19]

R. Colin, B. Ni, L. Laganenka, et al., Multiple functions of flagellar motility and chemotaxis in bacterial physiology, FEMS Microbiol. Rev. 45 (2021) fuab038. https://doi.org/10.1093/femsre/fuab038.

[20]

G. J. Nychas, C. C. Tassou, Spoilage processes and proteolysis in chicken as detected by HPLC, J. Sci. Food Agric. 74 (1997) 199–208. 3.0.CO;2-4">https://doi.org/10.1002/(SICI)1097-0010(199706)74:2<199::AIDJSFA790>3.0.CO;2-4.

[21]

N. Izuchukwu, Production of extracellular proteases by Aeromonas, Serratia and Shewanella species and characterization of extracellular proteases using zymogram analysis, J. Pharm. Biol. Sci. 12 (2017) 42–49. https://doi.org/10.9790/3008-1205074249.

[22]

L. Kulakova, A. Galkin, T. Kurihara, et al., Cold-active serine alkaline protease from the psychrotrophic bacterium Shewanella strain Ac10: gene cloning and enzyme purification and characterization, Appl. Environ. Microbiol. 65 (1999) 611–617. https://doi.org/10.1128/AEM.65.2.611-617.1999.

[23]

M. Andreevskaya, P. Johansson, P. Laine, et al., Genome sequence and transcriptome analysis of meat-spoilage-associated lactic acid bacterium Lactococcus piscium MKFS47, Appl. Environ. Microbiol. 81 (2015) 3800–3811. https://doi.org/10.1080/09583157.2019.1657067.

[24]

L. Wunderlichová, L. Buňková, M. Koutný, et al., Formation, degradation, and detoxification of putrescine by foodborne bacteria: a review, Compr. Rev. Food Sci. Food Saf. 13 (2014) 1012–1030. https://doi.org/10.1111/1541-4337.12099.

[25]

I. Geornaras, G. A. Dykes, A. von Holy, Biogenic amine formation by poultry-associated spoilage and pathogenic bacteria, Lett. Appl. Microbiol. 21 (1995) 164–166. https://doi.org/10.1111/j.1472-765X.1995.tb01032.x.

[26]

Y. Y. Ge, J. L. Zhu, X. F. Ye, et al., Spoilage potential characterization of Shewanella and Pseudomonas isolated from spoiled large yellow croaker ( Pseudosciaena crocea), Lett. Appl. Microbiol. 64 (2017) 86–93. https://doi.org/10.1111/lam.12687.

[27]

C. Franke, L. Höll, H. C. Langowski, et al., Sensory evaluation of chicken breast packed in two different modified atmospheres, Food Packag. Shelf Life 13 (2017) 66–75. https://doi.org/10.1016/j.fpsl.2017.07.005.

[28]

F. F. Parlapani, D. A. Anagnostopoulos, E. Karamani, et al., Growth and volatile organic compound production of Pseudomonas fish spoiler strains on fish juice agar model substrate at different temperatures, Microorganisms 11 (2023) 189. https://doi.org/10.3390/microorganisms11010189.

[29]

J. C. Zhu, F. Chen, L. Y. Wang, et al., Characterization of the key aroma volatile compounds in cranberry ( Vaccinium macrocarpon Ait.) using gas chromatography-olfactometry (GC-O) and odor activity value (OAV), J. Agric. Food Chem. 64 (2016) 4990–4999. https://doi.org/10.1021/acs.jafc.6b01150.

[30]

Q. Y. Guo, J. W. Yu, Y. Y. Zhao, et al., Identification of fishy odor causing compounds produced by Ochromonas sp. and Cryptomonas ovate with gas chromatography-olfactometry and comprehensive two-dimensional gas chromatography, Sci. Total Environ. 671 (2019) 149–156. https://doi.org/10.1016/j.scitotenv.2019.03.370.

[31]

T. Stanborough, N. Fegan, S. M. Powell, et al., Genomic and metabolic characterization of spoilage-associated Pseudomonas species, Int. J. Food Microbiol. 268 (2018) 61–72. https://doi.org/10.1016/j.ijfoodmicro.2018.01.005.

[32]

R. H. Dainty, R. A. Edwards, C. M. Hibbard, Volatile compounds associated with the aerobic growth of some Pseudomonas species on beef, J. Appl. Bacteriol. 57 (1984) 75–81. https://doi.org/10.1111/j.1365-2672.1984.tb02358.x.

[33]
C. A. Dupont, Y. Bourigault, T. Osmond, et al., Pseudomonas fluorescens MFE01 uses 1-undecene as aerial communication molecule, Front. Microbiol. 14 (2023) 1264801. https://doi.org/10.3389/fmicb.2023.1264801.
[34]

Z. Rui, X. Li, X. J. Zhu, et al., Microbial biosynthesis of medium-chain 1-alkenes by a nonheme iron oxidase, Proc. Natl. Acad. Sci. 111 (2014) 18237–18242. https://doi.org/10.1073/pnas.1419701112.

[35]

A. A. Popova, O. A. Koksharova, V. A. Lipasova, et al., Inhibitory and toxic effects of volatiles emitted by strains of Pseudomonas and Serratia on growth and survival of selected microorganisms, Caenorhabditis elegans, and Drosophila melanogaster, Biomed Res. Int. 2014 (2014) 125704. https://doi.org/10.1155/2014/125704.

[36]

M. M. Liu, M. X. Feng, K. Yang, et al., Transcriptomic and metabolomic analyses reveal antibacterial mechanism of astringent persimmon tannin against methicillin-resistant Staphylococcus aureus isolated from pork, Food Chem. 309 (2020) 125692. https://doi.org/10.1016/j.foodchem.2019.125692.

[37]
B. Y. Zeng, M. H. Su, Q. X. Chen, et al., Anoectochilus roxburghii polysaccharide prevents carbon tetrachloride-induced liver injury in mice by metabolomic analysis, J. Chromatogr. B 1152 (2020) 122202. https://doi.org/10.1016/j.jchromb.2020.122202.
[38]

P. Schönfeld, L. Wojtczak, Short- and medium-chain fatty acids in energy metabolism: the cellular perspective, J. Lipid Res. 57 (2016) 943–954. https://doi.org/10.1194/jlr.R067629.

[39]

R. P. Jones, P. F. Greenfield, Effect of carbon dioxide on yeast growth and fermentation, Enzyme Microb. Technol. 4 (1982) 210–223. https://doi.org/10.1016/0141-0229(82)90034-5.

[40]

S. Kolbeck, H. Kienberger, K. Kleigrewe, et al., Effect of high levels of CO2 and O2 on membrane fatty acid profile and membrane physiology of meat spoilage bacteria, Eur. Food Res. Technol. 247 (2021) 999–1011. https://doi.org/10.1007/s00217-020-03681-y.

[41]

P. Y. Li, J. Mei, J. Xie, Carbon dioxide can inhibit biofilms formation and cellular properties of Shewanella putrefaciens at both 30 °C and 4 °C, Food Res. Int. 161 (2022) 111781. https://doi.org/10.1016/j.foodres.2022.111781.

[42]

G. Y. Wang, F. Ma, L. Y. Zeng, et al., Modified atmosphere packaging decreased Pseudomonas fragi cell metabolism and extracellular proteolytic activities on meat, Food Microbiol. 76 (2018) 443–449. https://doi.org/10.1016/j.fm.2018.07.007.

[43]

J. Neuhard, Pyrimidine nucleotide metabolism and pathways of thymidine triphosphate biosynthesis in Salmonella typhimurium, J. Bacteriol. 96 (1968) 1519–1527. https://doi.org/10.1128/jb.96.5.1519-1527.1968.

[44]

I. S. Kim, E. K. Jo, Inosine: a bioactive metabolite with multimodal actions in human diseases, Front. Pharmacol. 13 (2022) 1043970. https://doi.org/10.3389/fphar.2022.1043970.

[45]

A. E. D. A. Bekhit, B. W. B. Holman, S. G. Giteru, et al., Total volatile basic nitrogen (TVB-N) and its role in meat spoilage: a review, Trends Food. Sci. Technol. 109 (2021) 280–302. https://doi.org/10.1016/j.jpgs.2021.01.006.

[46]

J. M. P. Jorge, A. Q. D. Nguyen, F. Pérez-García, et al., Improved fermentative production of γ-aminobutyric acid via the putrescine route: systems metabolic engineering for production from glucose, amino sugars, and xylose, Biotechnol. Bioeng. 114 (2017) 862–873. https://doi.org/10.1002/bit.26211.

[47]

C. M. E. dos Santos, A. Alberti, G. D. A. M. Pietrowski, et al., Supplementation of amino acids in apple must for the standardization of volatile compounds in ciders, J. Inst. Brew. 122 (2016) 334–341. https://doi.org/10.1002/jib.318.

[48]

G. Piedrafita, M. A. Keller, M. Ralser, The impact of non-enzymatic reactions and enzyme promiscuity on cellular metabolism during (oxidative) stress conditions, Biomolecules 5 (2015) 2101–2122. https://doi.org/10.3390/biom5032101.

[49]
B. Ezraty, M. Chabalier, A. Ducret, et al., CO2 exacerbates oxygen toxicity, EMBO Rep. 12 (2011) 321–326. https://doi.org/10.1038/embor.2011.7.
[50]

J. S. Armstrong, D. P. Jones, Glutathione depletion enforces the mitochondrial permeability transition and causes cell death in HL60 cells that overexpress Bcl-2, FASEB J. 16 (2002) 1263–1265. https://doi.org/10.1096/fj.02-0097fje.

[51]

M. D. Xie, W. Q. Chen, X. C. Lai, et al., Metabolic responses and their correlations with phytochelatins in Amaranthus hypochondriacus under cadmium stress, Environ. Pollut. 252 (2019) 1791–1800. https://doi.org/10.1016/j.envpol.2019.06.103.

[52]

R. Dringen, Metabolism and functions of glutathione in brain, Prog. Neurobiol. 62 (2000) 649–671. https://doi.org/10.1016/S0301-0082(99)00060-X.

[53]

P. Maher, The effects of stress and aging on glutathione metabolism, Ageing Res. Rev. 4 (2005) 288–314. https://doi.org/10.1016/j.arr.2005.02.005.

Food Science of Animal Products
Article number: 9240084
Cite this article:
Yang J, Xu Y, Zhang Y, et al. Genome sequence and metabolic analysis of Pseudomonas fragi unveil the meat spoilage and CO2-antibacterial mechanism under high-oxygen modified atmosphere packaging. Food Science of Animal Products, 2024, 2(4): 9240084. https://doi.org/10.26599/FSAP.2024.9240084
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return