PDF (1.5 MB)
Collect
Submit Manuscript
Show Outline
Tables (3)
Table 1
Table 2
Table 3
Review Article | Open Access

Diversified modification strategies for sodium alginate-based probiotic-embedded gels and their potential for food applications

Kaili Wang1Wenjia Zhou1Jianing Zhai1Peng Du1Libo Liu1Shuang Li2Aili Li1,3 ()
Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
Beidahuang Wandashan Dairy Co., Ltd., Harbin 150030, China
Heilongjiang Green Food Research Institute, Harbin 150030, China
Show Author Information

Graphical Abstract

View original image Download original image

Abstract

Sodium alginate (SA), due to its unique biodegradability and gel-forming properties, is used as an excellent wall material. It can achieve targeted delivery of probiotics into the body for the purpose of improving human microecology. However, SA hydrogels alone tend to have weak mechanical properties and are susceptible to external environmental attack, making it difficult to adequately protect the probiotic core. In order to overcome this bottleneck, in recent years, there have been literature reports on the modification of SA-based hydrogels based on physical, chemical, and synergistic modification of both. And other novel wall materials were introduced to be blended with SA to form a composite wall material with a denser structure and superior performance, which enhances the resistance and storage period stability of probiotics. Based on this, this paper outlines the structural properties and advantages and disadvantages of SA, and systematically summarises the effects and differences of different modification methods on the performances of SA-based microcapsules. It also meticulously combs out the wide application of SA-based probiotic microcapsules in the field of food, showing its great potential in improving food quality and promoting health. Finally, this paper objectively points out the problems and challenges facing the current research on SA-based microencapsulation delivery system. It provides new perspectives and strategies for the upgrading of the wall material of SA-based microencapsulation and the improvement of the efficiency of the probiotic delivery system.

References

[1]

M. Meenu, S. Kaur, M. Kaur, et al., The golden era of fruit juices-based probiotic beverages: recent advancements and future possibilities, Process Biochem. 142 (2024) 113–135. https://doi.org/10.1016/j.procbio.2024.04.001.

[2]

M. B. Soares, C. N. Almada, E. P. R. Pereira, et al., Review: sporeforming probiotic bacteria: characteristics, health benefits, and technological aspects for their applications in foods and beverages, Trends Food Sci. Technol. 138 (2023) 453–469. https://doi.org/10.1016/j.jpgs.2023.06.029.

[3]

B. Rashidzadeh, E. Shokri, G. R. Mahdavinia, et al., Preparation and characterization of antibacterial magnetic-/pH-sensitive alginate/Ag/Fe3O4 hydrogel beads for controlled drug release, Int. J. Biol. Macromol. 154 (2020) 134–141. https://doi.org/10.1016/j.ijbiomac.2020.03.028.

[4]

X. X. Chen, M. Shen, Q. Y. Yu, et al., Recent advance in chemistry modified methods of natural polysaccharides and their applications, Trends Food Sci. Technol. 144 (2024) 104317. https://doi.org/10.1016/j.jpgs.2023.104317.

[5]

K. Fang, P. Li, B. Zhang, et al., Insights on updates in sodium alginate/MXenes composites as the designer matrix for various applications: a review, Int. J. Biol. Macromol. 269 (2024) 132032. https://doi.org/10.1016/j.ijbiomac.2024.132032.

[6]

K. Vivek, S. Mishra, R. C. Pradhan, et al., A comprehensive review on microencapsulation of probiotics: technology, carriers and current trends, Appl. Food Res. 3(1) (2023) 100248. https://doi.org/10.1016/j.afres.2022.100248.

[7]

J. Y. Tan, Y. N. Luo, Y. Q. Guo, et al., Development of alginate-based hydrogels: crosslinking strategies and biomedical applications, Int. J. Biol. Macromol. 239 (2023) 124275. https://doi.org/10.1016/j.ijbiomac.2023.124275.

[8]

S. Koirala, A. K. Anal, Probiotics-based foods and beverages as future foods and their overall safety and regulatory claims, Future Foods 3 (2021) 100013. https://doi.org/10.1016/j.fufo.2021.100013.

[9]
M. Akbar, A. Yaqoob, A. Ahmad, et al., Chapter 1-Sodium alginate: an overview, in: A. Ahmad, I. Ahmad, T. Kamal, et al., (Eds.), Sodium alginate-based nanomaterials for wastewater treatment, Elsevier, 2023, pp. 1–17. https://doi.org/10.1016/B978-0-12-823551-5.00012-4.
[10]

C. H. Hu, W. Lu, A. Mata, et al., Ions-induced gelation of alginate: mechanisms and applications, Int. J. Biol. Macromol. 177 (2021) 578–588. https://doi.org/10.1016/j.ijbiomac.2021.02.086.

[11]
K. Chaturvedi, K. Ganguly, U. A. More, et al., Chapter 3-Sodium alginate in drug delivery and biomedical areas, in: M. S. Hasnain, A. K. Nayak (Eds.), Natural polysaccharides in drug delivery and biomedical applications, Academic Press, Salt Lake City, 2019, pp. 59–100. https://doi.org/10.1016/B978-0-12-817055-7.00003-0.
[12]
P. P. Zhang, D. F, Su, X. X. Shen, et al., Preparation and evaluation of microcapsules of sodium alginate based on microfluidic technology, Food Hydrocolloid. 154 (2024) 110113. https://doi.org/10.1016/j.foodhyd.2024.110113.
[13]

G. Kaklamani, D. Cheneler, L. M. Grover, et al., Mechanical properties of alginate hydrogels manufactured using external gelation, J. Mech. Behav. Biomed. Mater. 36 (2014) 135–142. https://doi.org/10.1016/j.jmbbm.2014.04.013.

[14]

N. Paiboon, S. Surassmo, U. Rungsardthong Ruktanonchai, et al., Internal gelation of alginate microparticle prepared by emulsification and microfluidic method: effect of Ca-EDTA as a calcium source, Food Hydrocolloid. 141 (2023) 108712. https://doi.org/10.1016/j.foodhyd.2023.108712.

[15]

B. Jadach, W. Świetlik, A. Froelich, Sodium alginate as a pharmaceutical excipient: novel applications of a well-known polymer, J. Pharm. Sci. 111(5) (2022) 1250–1261. https://doi.org/10.1016/j.xphs.2021.12.024.

[16]

L. B. Norcino, J. F. Mendes, J. A. Figueiredo, et al., Development of alginate/pectin microcapsules by a dual process combining emulsification and ultrasonic gelation for encapsulation and controlled release of anthocyanins from grapes ( Vitis labrusca L.), Food Chem. 391 (2022) 133256. https://doi.org/10.1016/j.foodchem.2022.133256.

[17]

P. L. Liao, S. Yang, S. C. Dai, et al., The multilayered emulsion-filled gel microparticles: regulated the release behavior of β-carotene, J. Food Eng. 331 (2022) 111119. https://doi.org/10.1016/j.jfoodeng.2022.111119.

[18]

N. Alavi, M. T. Golmakani, S. M. H. Hosseini, Fabrication and characterization of phycocyanin-alginate-pregelatinized corn starch composite gel beads: effects of carriers on kinetic stability of phycocyanin, Int. J. Biol. Macromol. 218 (2022) 665–678. https://doi.org/10.1016/j.ijbiomac.2022.07.111.

[19]

K. Fang, Y. Q. Zhang, J. Y. Yin, et al., Hydrogel beads based on carboxymethyl cassava starch/alginate enriched with MgFe2O4 nanoparticles for controlling drug release, Int. J. Biol. Macromol. 220 (2022) 573–588. https://doi.org/10.1016/j.ijbiomac.2022.08.081.

[20]

T. Jiang, J. G. Munguia-Lopez, K. Gu, et al., Engineering bioprintable alginate/gelatin composite hydrogels with tunable mechanical and cell adhesive properties to modulate tumor spheroid growth kinetics, Biofabrication 12(1) (2019) 015024. https://doi.org/10.1088/1758-5090/ab3a5c.

[21]

X. Guo, Y. Wang, Y. M. Qin, et al., Structures, properties and application of alginic acid: a review, Int. J. Biol. Macromol. 162 (2020) 618–628. https://doi.org/10.1016/j.ijbiomac.2020.06.180.

[22]

M. Azam, M. Saeed, T. Ahmad, et al., Characterization of biopolymeric encapsulation system for improved survival of Lactobacillus brevis, J. Food Meas. Charact. 16(3) (2022) 2292–2299. https://doi.org/10.1007/s11694-022-01383-5.

[23]

C. C. Coghetto, G. B. Brinques, N. M. Siqueira, et al., Electrospraying microencapsulation of Lactobacillus plantarum enhances cell viability under refrigeration storage and simulated gastric and intestinal fluids, J. Funct. Foods 24 (2016) 316–326. https://doi.org/10.1016/j.jff.2016.03.036.

[24]

I. Sandoval-Mosqueda, A. Llorente-Bousquets, J. F. Montiel-Sosa, et al., Encapsulation of Lactobacillus plantarum ATCC 8014 and Pediococcus acidilactici ATCC 8042 in a freeze-dried alginate-gum arabic system and its in vitro testing under gastrointestinal conditions, J. Microencapsul. 36(7) (2019) 591–602. https://doi.org/10.1080/02652048.2019.1660729.

[25]

Y. Benavent-Gil, D. Rodrigo, C. M. Rosell, Thermal stabilization of probiotics by adsorption onto porous starches, Carbohydr. Polym. 197 (2018) 558–564. https://doi.org/10.1016/j.carbpol.2018.06.044.

[26]

F. S. Li, P. Phyo, J. Jacobowitz, et al., The molecular structure of plant sporopollenin, Nat. Plants 5(1) (2019) 41–46. https://doi.org/10.1038/s41477-018-0330-7.

[27]

Z. Y. Deng, J. Li, R. Song, et al., Carboxymethylpachymaran/alginate gel entrapping of natural pollen capsules for the encapsulation, protection and delivery of probiotics with enhanced viability, Food Hydrocolloid. 120 (2021) 106855. https://doi.org/10.1016/j.foodhyd.2021.106855.

[28]

C. S. Ranadheera, C. A. Evans, M. C. Adams, et al., Microencapsulation of Lactobacillus acidophilus LA-5, Bifidobacterium animalis subsp. lactis BB-12 and Propionibacterium jensenii 702 by spray drying in goat’s milk, Small Ruminant Res. 123(1) (2015) 155–159. https://doi.org/10.1016/j.smallrumres.2014.10.012.

[29]
A. Šipailienė, G. Šlimaitė, S. Jeznienė, et al., W/O/W double emulsion-loaded alginate capsules containing Lactobacillus plantarum and lipophilic sea buckthorn (Hippophae rhamnoides L.) pomace extract in different phases, Food Sci. Technol. Int. 28(5) (2022) 397–407. https://doi.org/10.1177/10820132211018036.
[30]

H. Y. Song, W. T. Yu, M. Gao, et al., Microencapsulated probiotics using emulsification technique coupled with internal or external gelation process, Carbohydr. Polym. 96(1) (2013) 181–189. https://doi.org/10.1016/j.carbpol.2013.03.068.

[31]

Z. M. Moghanjougi, M. R. Bari, M. A. Khaledabad, et al., Microencapsulation of Lactobacillus acidophilus LA-5 and Bifidobacterium animalis BB-12 in pectin and sodium alginate: a comparative study on viability, stability, and structure, Food Sci. Nutr. 9(9) (2021) 5103–5111. https://doi.org/10.1002/fsn3.2470.

[32]

W. T. Qi, X. X. Liang, T. T. Yun, et al., Growth and survival of microencapsulated probiotics prepared by emulsion and internal gelation, J. Food Sci. Technol. 56(3) (2019) 1398–1404. https://doi.org/10.1007/s13197-019-03616-w.

[33]

Q. Luan, H. Zhang, J. H. Wang, et al., Electrostatically reinforced and sealed nanocellulose-based macrosphere by alginate/chitosan multi-layer coatings for delivery of probiotics, Food Hydrocolloid. 142 (2023) 108804. https://doi.org/10.1016/j.foodhyd.2023.108804.

[34]

I. Trabelsi, D. Ayadi, W. Bejar, et al., Effects of Lactobacillus plantarum immobilization in alginate coated with chitosan and gelatin on antibacterial activity, Int. J. Biol. Macromol. 64 (2014) 84–89. https://doi.org/10.1016/j.ijbiomac.2013.11.031.

[35]

D. Rahimi, A. Sadeghi, M. Kashaninejad, et al., Postbiotic characterization of a potential probiotic yeast isolate, and its microencapsulation in alginate beads coated layer-by-layer with chitosan, Heliyon 10(7) (2024) e28452. https://doi.org/10.1016/j.heliyon.2024.e28452.

[36]

Z. K. Yang, M. R. Li, Y. X. Li, et al., Entrapment of probiotic ( Bifidobacterium longum) in bilayer emulsion film with enhanced barrier property for improving viability, Food Chem. 423 (2023) 136300. https://doi.org/10.1016/j.foodchem.2023.136300.

[37]

V. Castillo-Escandón, G. Ramos-Clamont Montfort, A. R. Islas Rubio, et al., Development of healthy synbiotic corn-based snack: nutritional composition and effect of agave fructan-alginate coating on survival of Lactobacillus acidophilus, J. Cereal Sci. 114 (2023) 103777. https://doi.org/10.1016/j.jcs.2023.103777.

[38]

Q. X. Wu, X. Xu, Q. Xie, et al., Evaluation of chitosan hydrochloride-alginate as enteric micro-probiotic-carrier with dual protective barriers, Int. J. Biol. Macromol. 93 (2016) 665–671. https://doi.org/10.1016/j.ijbiomac.2016.09.034.

[39]

S. U. D. Wani, M. Ali, S. Mehdi, et al., A review on chitosan and alginate-based microcapsules: mechanism and applications in drug delivery systems, Int. J. Biol. Macromol. 248 (2023) 125875. https://doi.org/10.1016/j.ijbiomac.2023.125875.

[40]
X. C. Wang, S. K. Gao, S. T. Yun, et al. Microencapsulating alginate-based polymers for probiotics delivery systems and their application, Pharmaceuticals 15(5) (2022) 644. https://doi.org/10.3390/ph15050644.
[41]
T. Heidebach, P. Först, U. Kulozik, Microencapsulation of probiotic cells by means of rennet-gelation of milk proteins, Food Hydrocolloid. 23(7) (2009) 1670–1677. https://doi.org/10.1016/j.foodhyd.2009.01.006.
[42]

C. D. Munialo, E. van der Linden, K. Ako, et al., The effect of polysaccharides on the ability of whey protein gels to either store or dissipate energy upon mechanical deformation, Food Hydrocolloid. 52 (2016) 707–720. https://doi.org/10.1016/j.foodhyd.2015.08.013.

[43]

J. L. Liu, F. H. Liu, T. Ren, et al., Fabrication of fish gelatin/sodium alginate double network gels for encapsulation of probiotics, J. Sci. Food Agr. 101(10) (2021) 4398–4408. https://doi.org/10.1002/jsfa.11081.

[44]

D. H. Ma, B. J. Yang, J. Zhao, et al., Advances in protein-based microcapsules and their applications: a review, Int. J. Biol. Macromol. 263 (2024) 129742. https://doi.org/10.1016/j.ijbiomac.2024.129742.

[45]

A. Nesterenko, I. Alric, F. Violleau, et al., The effect of vegetable protein modifications on the microencapsulation process, Food Hydrocolloid. 41 (2014) 95–102. https://doi.org/10.1016/j.foodhyd.2014.03.017.

[46]
T. Riaz, M. W. Iqbal, M. Saeed, et al., In vitro survival of Bifidobacterium bifidum microencapsulated in zein-coated alginate hydrogel microbeads, J. Microencapsul. 36(2) (2019) 192–203. https://doi.org/10.1080/02652048.2019.1618403.
[47]

X. Huang, M. Gänzle, H. Zhang, et al., Microencapsulation of probiotic lactobacilli with shellac as moisture barrier and to allow controlled release, J. Sci. Food Agr. 101(2) (2021) 726–734. https://doi.org/10.1002/jsfa.10685.

[48]

C. Eckert, W. D. Agnol, D. Dallé, et al., Development of alginate-pectin microparticles with dairy whey using vibration technology: effects of matrix composition on the protection of Lactobacillus spp. from adverse conditions, Food Res. Int. 113 (2018) 65–73. https://doi.org/10.1016/j.foodres.2018.07.001.

[49]

X. Q. Ding, Y. B. Xu, Y. Y. Wang, et al., Carboxymethyl konjac glucomannan-chitosan complex nanogels stabilized double emulsions incorporated into alginate hydrogel beads for the encapsulation, protection and delivery of probiotics, Carbohydr. Polym. 289 (2022) 119438. https://doi.org/10.1016/j.carbpol.2022.119438.

[50]

Y. Li, C. Feng, J. Li, et al., Construction of multilayer alginate hydrogel beads for oral delivery of probiotics cells, Int. J. Biol. Macromol. 105 (2017) 924–930. https://doi.org/10.1016/j.ijbiomac.2017.07.124.

[51]

R. M. Huang, K. Feng, S. F. Li, et al., Enhanced survival of probiotics in the electrosprayed microcapsule by addition of fish oil, J. Food Eng. 307 (2021) 110650. https://doi.org/10.1016/j.jfoodeng.2021.110650.

[52]

R. Iqbal, A. Liaqat, I. Yasmin, et al., Double layered encapsulation to immobilize Bifidobacterium bifidum ATCC 35914 in polysaccharide-protein matrices and their viability in set type yoghurt, J. Food Process. Preserv. 46(8) (2022) e16748. https://doi.org/10.1111/jfpp.16748.

[53]

M. Martins, A. C. Kawazoe Sato, K. Ogino, et al., Evaluating the addition of xylooligosaccharides into alginate-gelatin hydrogels, Food Res. Int. 147 (2021) 110516. https://doi.org/10.1016/j.foodres.2021.110516.

[54]

T. Ramdhan, S. H. Ching, S. Prakash, et al., Physical and mechanical properties of alginate based composite gels, Trends Food Sci. Technol. 106 (2020) 150–159. https://doi.org/10.1016/j.jpgs.2020.10.002.

[55]

Q. W. Du, J. H. Liu, Y. T. Ding, Recent progress in biological activities and health benefits of konjac glucomannan and its derivatives, Bioact. Carbohydr. Dietary Fibre 26 (2021) 100270. https://doi.org/10.1016/j.bcdf.2021.100270.

[56]

A. Farahmand, B. Ghorani, B. Emadzadeh, et al., Millifluidic-assisted ionic gelation technique for encapsulation of probiotics in double-layered polysaccharide structure, Food Res. Int. 160 (2022) 111699. https://doi.org/10.1016/j.foodres.2022.111699.

[57]

V. L. S. dos Santos, R. C. Araújo, E. S. Lisboa, et al., Layer-by-layer assembly: a versatile approach for tailored biomedical films and drug delivery, J. Drug. Deliv. Sci. Technol. 91 (2024) 105243. https://doi.org/10.1016/j.jddst.2023.105243.

[58]

E. C. Cezarino, K. C. Guedes Silva, F. Souza Almeida, et al., Stability and viability of synbiotic microgels incorporated into liquid, Greek and frozen yogurts, J. Food Sci. 87(4) (2022) 1796–1809. https://doi.org/10.1111/1750-3841.16107.

[59]

H. S. El Sayed, A. M. Mabrouk, Encapsulation of probiotics using mixed sodium alginate and rice flour to enhance their survivability in simulated gastric conditions and in UF-Kariesh cheese, Biocatal. Agr. Biotechnol. 50 (2023) 102738. https://doi.org/10.1016/j.bcab.2023.102738.

[60]

N. Kavas, G. Kavas, Ö. Kinik, et al., Effect of probiotic and symbiotic microencapsulation supplementation on the physico-chemical characteristics and organic acid content of goat cheese, J. Food Process. Preserv. 46(10) (2022) e16815. https://doi.org/10.1111/jfpp.16815.

[61]

M. N. da Silva, B. L. Tagliapietra, N. S. P. dos Santos Richards, Encapsulation, storage viability, and consumer acceptance of probiotic butter, LWT-Food Sci. Technol. 139 (2021) 110536. https://doi.org/10.1016/j.lwt.2020.110536.

[62]

M. N. da Silva, B. L. Tagliapietra, F. P. Pivetta, et al., Nutritional, functional and sensory profile of added butter from Lactobacillus acidophilus encapsulated and hyposodium salt, LWT-Food Sci. Technol. 161 (2022) 113385. https://doi.org/10.1016/j.lwt.2022.113385.

[63]

M. Afzaal, F. Saeed, M. U. Arshad, et al., The effect of encapsulation on the stability of probiotic bacteria in ice cream and simulated gastrointestinal conditions, Probiotics Antimicrob. Proteins 11(4) (2019) 1348–1354. https://doi.org/10.1007/s12602-018-9485-9.

[64]

A. Varela-Pérez, O. O. Romero-Chapol, A. G. Castillo-Olmos, et al., Encapsulation of lactobacillus gasseri: characterization, probiotic survival, in vitro evaluation and viability in apple juice, Foods 11(5) (2022) 740. https://doi.org/10.3390/foods11050740.

[65]

M. Jouki, N. Khazaei, S. Rashidi-Alavijeh, et al., Encapsulation of Lactobacillus casei in quince seed gum-alginate beads to produce a functional synbiotic drink powder by agro-industrial by-products and freeze-drying, Food Hydrocolloid. 120 (2021) 106895. https://doi.org/10.1016/j.foodhyd.2021.106895.

[66]

T. Krunić, M. B. Rakin, Enriching alginate matrix used for probiotic encapsulation with whey protein concentrate or its trypsin-derived hydrolysate: impact on antioxidant capacity and stability of fermented whey-based beverages, Food Chem. 370 (2022) 130931. https://doi.org/10.1016/j.foodchem.2021.130931.

[67]

N. Obradović, M. Volić, V. Nedović, et al., Microencapsulation of probiotic starter culture in protein-carbohydrate carriers using spray and freeze-drying processes: implementation in whey-based beverages, J. Food Eng. 321 (2022) 110948. https://doi.org/10.1016/j.jfoodeng.2022.110948.

[68]

J. P. Wang, D. R. Korber, N. H. Low, et al., Encapsulation of Bifidobacterium adolescentis cells with legume proteins and survival under stimulated gastric conditions and during storage in commercial fruit juices, Food Sci. Biotechnol. 24(2) (2015) 383–391. https://doi.org/10.1007/s10068-015-0051-x.

[69]

S. S. Mirzamani, A. R. Bassiri, H. Tavakolipour, et al., Survival of fluidized bed encapsulated Lactobacillus acidophilus under simulated gastro-intestinal conditions and heat treatment during bread baking, J. Food Meas. Charact. 15(6) (2021) 5477–5484. https://doi.org/10.1007/s11694-021-01108-0.

[70]

M. Hadidi, N. Majidiyan, A. Z. Jelyani, et al., Alginate/fish gelatin-encapsulated Lactobacillus acidophilus: a study on viability and technological quality of bread during baking and storage, Foods 10(9) (2021) 2215. https://doi.org/10.3390/foods10092215.

[71]

M. N. Hossain, C. S. Ranadheera, Z. Fang, et al., Impact of encapsulating probiotics with cocoa powder on the viability of probiotics during chocolate processing, storage, and in vitro gastrointestinal digestion, J. Food Sci. 86(5) (2021) 1629–1641. https://doi.org/10.1111/1750-3841.15695.

[72]

M. N. Hossain, C. S. Ranadheera, Z. Fang, et al., Protecting the viability of encapsulated Lactobacillus rhamnosus LGG using chocolate as a carrier, Emir. J. Food Agr. 33(8) (2021) 647–656. https://doi.org/10.9755/ejfa.2021.v33.i8.2740.

[73]

Y. P. Cao, R. Mezzenga, Design principles of food gels, Nat. Food 1(2) (2020) 106–118. https://doi.org/10.1038/s43016-019-0009-x.

[74]

Q. Y. Ye, N. Georges, C. Selomulya, Microencapsulation of active ingredients in functional foods: from research stage to commercial food products, Trends Food Sci. Technol. 78 (2018) 167–179. https://doi.org/10.1016/j.jpgs.2018.05.025.

[75]

H. J. Mao, X. D. Chen, N. Fu, Exploring the integrity of cellular membrane and resistance to digestive juices of dehydrated lactic acid bacteria as influenced by drying kinetics, Food Res. Int. 157 (2022) 111395. https://doi.org/10.1016/j.foodres.2022.111395.

[76]

Y. Lee, Y. R. Ji, S. Lee, et al., Microencapsulation of probiotic Lactobacillus acidophilus KBL409 by extrusion technology to enhance survival under simulated intestinal and freeze-drying conditions, J. Microbiol. Biotechnol. 29(5) (2019) 721–730. https://doi.org/10.4014/jmb.1903.03018.

[77]

U. Rockinger, M. Funk, G. Winter, Current approaches of preservation of cells during (freeze-) drying, J. Pharm. Sci. 110(8) (2021) 2873–2893. https://doi.org/10.1016/j.xphs.2021.04.018.

[78]

A. V. Altamirano-Ríos, A. Y. Guadarrama-Lezama, I. J. Arroyo-Maya, Effect of encapsulation methods and materials on the survival and viability of Lactobacillus acidophilus: a review, Int. J. Food Sci. Technol. 57(7) (2022) 4027–4040. https://doi.org/10.1111/ijfs.15779.

[79]

K. Oberoi, A. Tolun, Z. Altintas, et al., Effect of Alginate-microencapsulated hydrogels on the survival of Lactobacillus rhamnosus under simulated gastrointestinal conditions, Foods 10(9) (2021) 1999. https://doi.org/10.3390/foods10091999.

Food Science of Animal Products
Article number: 9240090
Cite this article:
Wang K, Zhou W, Zhai J, et al. Diversified modification strategies for sodium alginate-based probiotic-embedded gels and their potential for food applications. Food Science of Animal Products, 2024, 2(4): 9240090. https://doi.org/10.26599/FSAP.2024.9240090
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return