This study introduced an electrochemical sensor for the rapid, sensitive, and accurate detection of ciprofloxacin (CIP). The sensor utilized a screen-printed carbon electrode (SPCE) modified with Pd@Nb2C nanocomposites, which were prepared through the in-situ reduction of palladium nitrate on Nb2C nanosheets, resulting in a uniform distribution of Pd nanoparticles. Subsequently, they were drop-coated onto the SPCE surface, forming a Pd@Nb2C/SPCE electrochemical sensing platform. The electrochemical analysis demonstrated the excellent electrochemical performance of the sensor. Pd@Nb2C/SPCE showed a consistent linear correlation between redox peak current (IP) and CIP concentration (cCIP) in the range of 10–150 μmol/L, boasting a detection limit of 3 μmol/L. Notably, this technique tracked CIP in both whole and skimmed milk, achieving a high recoveries of 96.36%–105.40% (n = 3). Moreover, the sensor exhibited exceptional selectivity towards CIP, remaining unaffected by various interferences such as sulphonamide, amoxicillin, tetracycline, and chloramphenicol. These findings hold enormous promise for enabling real-time and rapid monitoring of CIP in milk.
F. H. You, Z. R. Wen, R. S. Yuan, et al., Selective and ultrasensitive detection of ciprofloxacin in milk using a photoelectrochemical aptasensor based on Ti3C2/Bi4VO8Br/TiO2 nanocomposite, J. Electroanal. Chem. 914 (2022) 116285. https://doi.org/10.1016/j.jelechem.2022.116285.
S. V. Kergaravat, A. Maria Gagneten, S. R. Hernandez, Development of an electrochemical method for the detection of quinolones: application to cladoceran ecotoxicity studies, Microchem. J. 141 (2018) 279–286. https://doi.org/10.1016/j.microc.2018.05.039.
M. Majdinasab, K. Mitsubayashi, J. L. Marty, Optical and electrochemical sensors and biosensors for the detection of quinolones, Trends Biotechnol. 37 (2019) 898–915. https://doi.org/10.1016/j.tibtech.2019.01.004.
N. R. Jalal, T. Madrakian, A. Afkhami, et al., Polyethylenimine@Fe3O4@carbon nanotubes nanocomposite as a modifier in glassy carbon electrode for sensitive determination of ciprofloxacin in biological samples, J. Electroanal. Chem. 833 (2019) 281–289. https://doi.org/10.1016/j.jelechem.2018.12.004.
D. Liang, Y. J. Xu, F. Peng, et al., Plasmonic metal NP-bismuth composite film with amplified SERS activity for multiple detection of pesticides and veterinary drugs, Chem. Eng. J. 474 (2023) 145933. https://doi.org/10.1016/j.cej.2023.145933.
D. G. Pinacho, F. Sanchez-Baeza, M. I. Pividori, et al., Electrochemical detection of fluoroquinolone antibiotics in milk using a magneto immunosensor, Sensors 14 (2014) 15965–15980. https://doi.org/10.3390/s140915965.
T. Gezahegn, B. Tegegne, F. Zewge, et al., Salting-out assisted liquid-liquid extraction for the determination of ciprofloxacin residues in water samples by high performance liquid chromatography-diode array detector, BMC Chem. 13 (2019) 28. https://doi.org/10.1186/s13065-019-0543-5.
R. Colombo, A. Papetti, Advances in the analysis of veterinary drug residues in food matrices by capillary electrophoresis techniques, Molecules 24 (2019) 4617. https://doi.org/10.3390/molecules24244617.
A. Parpounas, V. Litskas, E. Hapeshi, et al., Assessing the presence of enrofloxacin and ciprofloxacin in piggery wastewater and their adsorption behaviour onto solid materials, with a newly developed chromatographic method, Environ. Sci. Pollut. Res. 24 (2017) 23371–23381. https://doi.org/10.1007/s11356-017-9849-9.
J. Li, K. Chen, Y. Su, et al., Paper-based biosensors based on multiple recognition modes for visual detection of microbially contaminated food, J. Future Foods 4 (2024) 61–70. https://doi.org/10.1016/j.jfutfo.2023.05.007.
Y. W. Wang, B. Zhang, M. J. Guo, et al., Rapid detection of cordycepin in food by surface enhanced Raman technque, J. Future Foods 3 (2023) 24–28. https://doi.org/10.1016/j.jfutfo.2022.09.004.
H. Karimi-Maleh, F. Karimi, M. Alizadeh, et al., Electrochemical sensors, a bright future in the fabrication of portable kits in analytical systems, Chem. Rec. 20 (2020) 682–692. https://doi.org/10.1002/tcr.201900092.
P. A. Rasheed, R. P. Pandey, K. A. Jabbar, et al., Sensitive electrochemical detection of L-cysteine based on a highly stable Pd@Ti3C2T x (MXene) nanocomposite modified glassy carbon electrode, Anal. Methods 11 (2019) 3851–3856. https://doi.org/10.1039/c9ay00912d.
P. H. Deng, C. Q. Zhou, H. Sun, et al., Manganese cobalt sulfide nanoparticles wrapped by reduced graphene oxide: a fascinating nanocomposite as an efficient electrochemical sensing platform for vanillin determination, J. Future Foods 5 (2025) 162–171. https://doi.org/10.1016/j.jfutfo.2024.05.005.
Y. J. Sun, X. Wang, H. Zhang, Sensitive and stable electrochemical sensor for folic acid determination using a ZIF-67/AgNWs nanocomposite, Biosensors 12 (2022) 382. https://doi.org/10.3390/bios12060382.
Y. Zhao, J. J. Shao, Z. Jin, et al., Plasmon-enhanced electroreduction activity of Au-AgPd Janus nanoparticles for ochratoxin a detection, Food Chem. 412 (2023) 135526. https://doi.org/10.1016/j.foodchem.2023.135526.
Y. C. Ouyang, B. J. Yeom, Y. Zhao, et al., Progress and prospects of chiral nanomaterials for biosensing platforms, Rare Metals 43 (2024) 2469–2497. https://doi.org/10.1007/s12598-023-02602-8.
L. Fotouhi, M. Alahyari, Electrochemical behavior and analytical application of ciprofloxacin using a multi-walled nanotube composite film-glassy carbon electrode, Colloids Surf. B 81 (2010) 110–114. https://doi.org/10.1016/j.colsurfb.2010.06.030.
P. Abdul Rasheed, R. P. Pandey, T. Gomez, et al., Nb-based MXenes for efficient electrochemical sensing of small biomolecules in the anodic potential, Electrochem. Commun. 119 (2020) 106811. https://doi.org/10.1016/j.elecom.2020.106811.
C. Peng, P. Wei, X. Chen, et al., A hydrothermal etching route to synthesis of 2D MXene (Ti3C2, Nb2C): enhanced exfoliation and improved adsorption performance, Ceram. Int. 44 (2018) 18886–18893. https://doi.org/10.1016/j.ceramint.2018.07.124.
X. Z. Wu, P. Y. Ma, Y. Sun, et al., Application of MXene in electrochemical sensors: a review, Electroanalysis 33 (2021) 1827–1851. https://doi.org/10.1002/elan.202100192.
X. T. Jiang, A. V. Kuklin, A. Baev, et al., Two-dimensional MXenes: from morphological to optical, electric, and magnetic properties and applications, Phys. Rep. 848 (2020) 1–58. https://doi.org/10.1016/j.physrep.2019.12.006.
H. Lin, S. S. Gao, C. Dai, et al., A two-dimensional biodegradable niobium carbide (MXene) for photothermal tumor eradication in NIR-I and NIR-II biowindows, J. Am. Chem. Soc. 139 (2017) 16235–16247. https://doi.org/10.1021/jacs.7b07818.
J. Li, X. Gao, L. Zhu, et al., Graphdiyne for crucial gas involved catalytic reactions in energy conversion applications, Energ. Environ. Sci. 13 (2020) 1326–1346. https://doi.org/10.1039/c9ee03558c.
L. Gao, C. Ma, S. Wei, et al., Applications of few-layer Nb2C MXene: narrow-band photodetectors and femtosecond mode-locked fiber lasers, ACS Nano 15 (2021) 954–965. https://doi.org/10.1021/acsnano.0c07608.
Y. Gogotsi, B. Anasori, The rise of MXenes, ACS Nano 13 (2019) 8491–8494. https://doi.org/10.1021/acsnano.9b06394.
Y. Xin, Y. X. Yu, Possibility of bare and functionalized niobium carbide MXenes for electrode materials of supercapacitors and field emitters, Mater. Des. 130 (2017) 512–520. https://doi.org/10.1016/j.matdes.2017.05.052.
V. M. H. Ng, H. Huang, K. Zhou, et al., Recent progress in layered transition metal carbides and/or nitrides (MXenes) and their composites: synthesis and applications, J. Mater. Chem. A 5 (2017) 3039–3068. https://doi.org/10.1039/c6ta06772g.
L. Li, N. Zhang, M. Y. Zhang, et al., Ag-nanoparticle-decorated 2D titanium carbide (MXene) with superior electrochemical performance for supercapacitors, ACS Sustain. Chem. Eng. 6 (2018) 7442–7450. https://doi.org/10.1021/acssuschemeng.8b00047.
N. Arif, S. Gul, M. Sohail, et al., Synthesis and characterization of layered Nb2C MXene/ZnS nanocomposites for highly selective electrochemical sensing of dopamine, Ceram. Int. 47 (2021) 2388–2396. https://doi.org/10.1016/j.ceramint.2020.09.081.
M. Rezayat, R. K. Blundell, J. E. Camp, et al., Green one-step synthesis of catalytically active palladium nanoparticles supported on cellulose nanocrystals, ACS Sustain. Chem. Eng. 2 (2014) 1241–1250. https://doi.org/10.1021/sc500079q.
E. Satheeshkumar, T. Makaryan, A. Melikyan, et al., One-step solution processing of Ag, Au and Pd@MXene hybrids for SERS, Sci. Rep. 6 (2016) 32049. https://doi.org/10.1038/srep32049.
J. B. Zhao, J. Wen, L. N. Bai, et al., One-step synthesis of few-layer niobium carbide MXene as a promising anode material for high-rate lithium ion batteries, Dalton Trans. 48 (2019) 14433–14439. https://doi.org/10.1039/c9dt03260f.
O. Mashtalir, M. R. Lukatskaya, M. Q. Zhao, et al., Amine-assisted delamination of Nb2C MXene for Li-ion energy storage devices, Adv. Mater. 27 (2015) 3501–3506. https://doi.org/10.1002/adma.201500604.
R. P. Pandey, K. Rasool, V. E. Madhavan, et al., Ultrahigh-flux and fouling-resistant membranes based on layered silver/MXene (Ti3C2T x ) nanosheets, J. Mater. Chem. 6 (2018) 3522–3533. https://doi.org/10.1039/c7ta10888e.
B. Anasori, Y. Xie, M. Beidaghi, et al., Two-dimensional, ordered, double transition metals carbides (MXenes), ACS Nano 9 (2015) 9507–9516. https://doi.org/10.1021/acsnano.5b03591.
W. Acchar, J. R. B. da Silva, Surface characterization of alumina reinforced with niobium carbide obtained by polymer precursor, Mater. Res. 9 (2006) 271–274. https://doi.org/10.1590/S1516-14392006000300005.
D. Ponnalagar, D. R. Hang, S. E. Islam, et al., Recent progress in two-dimensional Nb2C MXene for applications in energy storage and conversion, Mater. Des. 231 (2023) 112046. https://doi.org/10.1016/j.matdes.2023.112046.
J. S. Zheng, B. Wang, A. L. Ding, et al., Synthesis of MXene/DNA/Pd/Pt nanocomposite for sensitive detection of dopamine, J. Electroanal. Chem. 816 (2018) 189–194. https://doi.org/10.1016/j.jelechem.2018.03.056.
J. H. Yin, S. S. Pan, X. Guo, et al., Nb2C MXene-functionalized scaffolds enables osteosarcoma phototherapy and angiogenesis/osteogenesis of bone defects, Nano-Micro. Lett. 13 (2021) 30. https://doi.org/10.1007/s40820-020-00547-6.
T. T. Mao, F. Zhou, K. Han, et al., Self-standing reduced graphene oxide/Nb2C MXene paper electrode with three-dimensional open structure for high-rate potassium ion storage, J. Phys. Chem. Solids 169 (2022) 110838. https://doi.org/10.1016/j.jpcs.2022.110838.
R. D. K. Misra, Core-shell magnetic nanoparticle carrier for targeted drug delivery: challenges and design, Mater. Technol. 25 (2010) 118–126. https://doi.org/10.1179/175355510X12723642365241.
H. Bagheri, N. Pajooheshpour, A. Afkhami, et al., Fabrication of a novel electrochemical sensing platform based on a core-shell nano-structured/molecularly imprinted polymer for sensitive and selective determination of ephedrine, RSC Adv. 6 (2016) 51135–51145. https://doi.org/10.1039/c6ra09488k.