PDF (3.3 MB)
Collect
Submit Manuscript
Show Outline
Figures (6)

Tables (1)
Table 1
Research Article | Open Access

Electrochemical sensor based on Pd@Nb2C nanocomposites for rapid and sensitive detection of ciprofloxacin

Haohao Zhang1,§Yujiao Sun1,§Hailing Luo2Nan Cheng1()Hao Zhang1()
College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China

§These authors contributed equally to this article.

Show Author Information

Graphical Abstract

View original image Download original image

Abstract

This study introduced an electrochemical sensor for the rapid, sensitive, and accurate detection of ciprofloxacin (CIP). The sensor utilized a screen-printed carbon electrode (SPCE) modified with Pd@Nb2C nanocomposites, which were prepared through the in-situ reduction of palladium nitrate on Nb2C nanosheets, resulting in a uniform distribution of Pd nanoparticles. Subsequently, they were drop-coated onto the SPCE surface, forming a Pd@Nb2C/SPCE electrochemical sensing platform. The electrochemical analysis demonstrated the excellent electrochemical performance of the sensor. Pd@Nb2C/SPCE showed a consistent linear correlation between redox peak current (IP) and CIP concentration (cCIP) in the range of 10–150 μmol/L, boasting a detection limit of 3 μmol/L. Notably, this technique tracked CIP in both whole and skimmed milk, achieving a high recoveries of 96.36%–105.40% (n = 3). Moreover, the sensor exhibited exceptional selectivity towards CIP, remaining unaffected by various interferences such as sulphonamide, amoxicillin, tetracycline, and chloramphenicol. These findings hold enormous promise for enabling real-time and rapid monitoring of CIP in milk.

Electronic Supplementary Material

Download File(s)
FSAP-2024-0064_ESM.pdf (614.5 KB)

References

[1]
I. C. Antunes, R. Bexiga, C. Pinto, et al., Cow’s milk in human nutrition and the emergence of plant-based milk alternatives, Foods 12 (2023) 99. https://doi.org/10.3390/foods12010099.
[2]

F. H. You, Z. R. Wen, R. S. Yuan, et al., Selective and ultrasensitive detection of ciprofloxacin in milk using a photoelectrochemical aptasensor based on Ti3C2/Bi4VO8Br/TiO2 nanocomposite, J. Electroanal. Chem. 914 (2022) 116285. https://doi.org/10.1016/j.jelechem.2022.116285.

[3]

S. V. Kergaravat, A. Maria Gagneten, S. R. Hernandez, Development of an electrochemical method for the detection of quinolones: application to cladoceran ecotoxicity studies, Microchem. J. 141 (2018) 279–286. https://doi.org/10.1016/j.microc.2018.05.039.

[4]

M. Majdinasab, K. Mitsubayashi, J. L. Marty, Optical and electrochemical sensors and biosensors for the detection of quinolones, Trends Biotechnol. 37 (2019) 898–915. https://doi.org/10.1016/j.tibtech.2019.01.004.

[5]

N. R. Jalal, T. Madrakian, A. Afkhami, et al., Polyethylenimine@Fe3O4@carbon nanotubes nanocomposite as a modifier in glassy carbon electrode for sensitive determination of ciprofloxacin in biological samples, J. Electroanal. Chem. 833 (2019) 281–289. https://doi.org/10.1016/j.jelechem.2018.12.004.

[6]

D. Liang, Y. J. Xu, F. Peng, et al., Plasmonic metal NP-bismuth composite film with amplified SERS activity for multiple detection of pesticides and veterinary drugs, Chem. Eng. J. 474 (2023) 145933. https://doi.org/10.1016/j.cej.2023.145933.

[7]

D. G. Pinacho, F. Sanchez-Baeza, M. I. Pividori, et al., Electrochemical detection of fluoroquinolone antibiotics in milk using a magneto immunosensor, Sensors 14 (2014) 15965–15980. https://doi.org/10.3390/s140915965.

[8]

T. Gezahegn, B. Tegegne, F. Zewge, et al., Salting-out assisted liquid-liquid extraction for the determination of ciprofloxacin residues in water samples by high performance liquid chromatography-diode array detector, BMC Chem. 13 (2019) 28. https://doi.org/10.1186/s13065-019-0543-5.

[9]

R. Colombo, A. Papetti, Advances in the analysis of veterinary drug residues in food matrices by capillary electrophoresis techniques, Molecules 24 (2019) 4617. https://doi.org/10.3390/molecules24244617.

[10]

A. Parpounas, V. Litskas, E. Hapeshi, et al., Assessing the presence of enrofloxacin and ciprofloxacin in piggery wastewater and their adsorption behaviour onto solid materials, with a newly developed chromatographic method, Environ. Sci. Pollut. Res. 24 (2017) 23371–23381. https://doi.org/10.1007/s11356-017-9849-9.

[11]

J. Li, K. Chen, Y. Su, et al., Paper-based biosensors based on multiple recognition modes for visual detection of microbially contaminated food, J. Future Foods 4 (2024) 61–70. https://doi.org/10.1016/j.jfutfo.2023.05.007.

[12]

Y. W. Wang, B. Zhang, M. J. Guo, et al., Rapid detection of cordycepin in food by surface enhanced Raman technque, J. Future Foods 3 (2023) 24–28. https://doi.org/10.1016/j.jfutfo.2022.09.004.

[13]

H. Karimi-Maleh, F. Karimi, M. Alizadeh, et al., Electrochemical sensors, a bright future in the fabrication of portable kits in analytical systems, Chem. Rec. 20 (2020) 682–692. https://doi.org/10.1002/tcr.201900092.

[14]

P. A. Rasheed, R. P. Pandey, K. A. Jabbar, et al., Sensitive electrochemical detection of L-cysteine based on a highly stable Pd@Ti3C2T x (MXene) nanocomposite modified glassy carbon electrode, Anal. Methods 11 (2019) 3851–3856. https://doi.org/10.1039/c9ay00912d.

[15]

P. H. Deng, C. Q. Zhou, H. Sun, et al., Manganese cobalt sulfide nanoparticles wrapped by reduced graphene oxide: a fascinating nanocomposite as an efficient electrochemical sensing platform for vanillin determination, J. Future Foods 5 (2025) 162–171. https://doi.org/10.1016/j.jfutfo.2024.05.005.

[16]
Y. Zhao, Y. J. Xu, X. H. Jing, et al., SERS-active plasmonic metal NP-CsPbX3 films for multiple veterinary drug residues detection, Food Chem. 412 (2023) 135420. https://doi.org/10.1016/j.foodchem.2023.135420.
[17]

Y. J. Sun, X. Wang, H. Zhang, Sensitive and stable electrochemical sensor for folic acid determination using a ZIF-67/AgNWs nanocomposite, Biosensors 12 (2022) 382. https://doi.org/10.3390/bios12060382.

[18]

Y. Zhao, J. J. Shao, Z. Jin, et al., Plasmon-enhanced electroreduction activity of Au-AgPd Janus nanoparticles for ochratoxin a detection, Food Chem. 412 (2023) 135526. https://doi.org/10.1016/j.foodchem.2023.135526.

[19]

Y. C. Ouyang, B. J. Yeom, Y. Zhao, et al., Progress and prospects of chiral nanomaterials for biosensing platforms, Rare Metals 43 (2024) 2469–2497. https://doi.org/10.1007/s12598-023-02602-8.

[20]

L. Fotouhi, M. Alahyari, Electrochemical behavior and analytical application of ciprofloxacin using a multi-walled nanotube composite film-glassy carbon electrode, Colloids Surf. B 81 (2010) 110–114. https://doi.org/10.1016/j.colsurfb.2010.06.030.

[21]

P. Abdul Rasheed, R. P. Pandey, T. Gomez, et al., Nb-based MXenes for efficient electrochemical sensing of small biomolecules in the anodic potential, Electrochem. Commun. 119 (2020) 106811. https://doi.org/10.1016/j.elecom.2020.106811.

[22]

C. Peng, P. Wei, X. Chen, et al., A hydrothermal etching route to synthesis of 2D MXene (Ti3C2, Nb2C): enhanced exfoliation and improved adsorption performance, Ceram. Int. 44 (2018) 18886–18893. https://doi.org/10.1016/j.ceramint.2018.07.124.

[23]

X. Z. Wu, P. Y. Ma, Y. Sun, et al., Application of MXene in electrochemical sensors: a review, Electroanalysis 33 (2021) 1827–1851. https://doi.org/10.1002/elan.202100192.

[24]

X. T. Jiang, A. V. Kuklin, A. Baev, et al., Two-dimensional MXenes: from morphological to optical, electric, and magnetic properties and applications, Phys. Rep. 848 (2020) 1–58. https://doi.org/10.1016/j.physrep.2019.12.006.

[25]

H. Lin, S. S. Gao, C. Dai, et al., A two-dimensional biodegradable niobium carbide (MXene) for photothermal tumor eradication in NIR-I and NIR-II biowindows, J. Am. Chem. Soc. 139 (2017) 16235–16247. https://doi.org/10.1021/jacs.7b07818.

[26]

J. Li, X. Gao, L. Zhu, et al., Graphdiyne for crucial gas involved catalytic reactions in energy conversion applications, Energ. Environ. Sci. 13 (2020) 1326–1346. https://doi.org/10.1039/c9ee03558c.

[27]

L. Gao, C. Ma, S. Wei, et al., Applications of few-layer Nb2C MXene: narrow-band photodetectors and femtosecond mode-locked fiber lasers, ACS Nano 15 (2021) 954–965. https://doi.org/10.1021/acsnano.0c07608.

[28]

Y. Gogotsi, B. Anasori, The rise of MXenes, ACS Nano 13 (2019) 8491–8494. https://doi.org/10.1021/acsnano.9b06394.

[29]

Y. Xin, Y. X. Yu, Possibility of bare and functionalized niobium carbide MXenes for electrode materials of supercapacitors and field emitters, Mater. Des. 130 (2017) 512–520. https://doi.org/10.1016/j.matdes.2017.05.052.

[30]

V. M. H. Ng, H. Huang, K. Zhou, et al., Recent progress in layered transition metal carbides and/or nitrides (MXenes) and their composites: synthesis and applications, J. Mater. Chem. A 5 (2017) 3039–3068. https://doi.org/10.1039/c6ta06772g.

[31]

L. Li, N. Zhang, M. Y. Zhang, et al., Ag-nanoparticle-decorated 2D titanium carbide (MXene) with superior electrochemical performance for supercapacitors, ACS Sustain. Chem. Eng. 6 (2018) 7442–7450. https://doi.org/10.1021/acssuschemeng.8b00047.

[32]

N. Arif, S. Gul, M. Sohail, et al., Synthesis and characterization of layered Nb2C MXene/ZnS nanocomposites for highly selective electrochemical sensing of dopamine, Ceram. Int. 47 (2021) 2388–2396. https://doi.org/10.1016/j.ceramint.2020.09.081.

[33]

M. Rezayat, R. K. Blundell, J. E. Camp, et al., Green one-step synthesis of catalytically active palladium nanoparticles supported on cellulose nanocrystals, ACS Sustain. Chem. Eng. 2 (2014) 1241–1250. https://doi.org/10.1021/sc500079q.

[34]

E. Satheeshkumar, T. Makaryan, A. Melikyan, et al., One-step solution processing of Ag, Au and Pd@MXene hybrids for SERS, Sci. Rep. 6 (2016) 32049. https://doi.org/10.1038/srep32049.

[35]

J. B. Zhao, J. Wen, L. N. Bai, et al., One-step synthesis of few-layer niobium carbide MXene as a promising anode material for high-rate lithium ion batteries, Dalton Trans. 48 (2019) 14433–14439. https://doi.org/10.1039/c9dt03260f.

[36]

O. Mashtalir, M. R. Lukatskaya, M. Q. Zhao, et al., Amine-assisted delamination of Nb2C MXene for Li-ion energy storage devices, Adv. Mater. 27 (2015) 3501–3506. https://doi.org/10.1002/adma.201500604.

[37]

R. P. Pandey, K. Rasool, V. E. Madhavan, et al., Ultrahigh-flux and fouling-resistant membranes based on layered silver/MXene (Ti3C2T x ) nanosheets, J. Mater. Chem. 6 (2018) 3522–3533. https://doi.org/10.1039/c7ta10888e.

[38]

B. Anasori, Y. Xie, M. Beidaghi, et al., Two-dimensional, ordered, double transition metals carbides (MXenes), ACS Nano 9 (2015) 9507–9516. https://doi.org/10.1021/acsnano.5b03591.

[39]

W. Acchar, J. R. B. da Silva, Surface characterization of alumina reinforced with niobium carbide obtained by polymer precursor, Mater. Res. 9 (2006) 271–274. https://doi.org/10.1590/S1516-14392006000300005.

[40]
A. Nemamcha, H. Moumeni, J. L. Rehspringer, PVP Protective mechanism of palladium nanoparticles obtained by sonochemical process, Phys. Procedia 2 (2009) 713–717. https://doi.org/10.1016/j.phpro.2009.11.015.
[41]

D. Ponnalagar, D. R. Hang, S. E. Islam, et al., Recent progress in two-dimensional Nb2C MXene for applications in energy storage and conversion, Mater. Des. 231 (2023) 112046. https://doi.org/10.1016/j.matdes.2023.112046.

[42]
Z. U. D. Babar, M. S. Anwar, M. Mumtaz, et al., Peculiar magnetic behaviour and Meissner effect in two-dimensional layered Nb2C MXene, 2D Mater. 7 (2020) 035012. https://doi.org/10.1088/2053-1583/ab86d2.
[43]

J. S. Zheng, B. Wang, A. L. Ding, et al., Synthesis of MXene/DNA/Pd/Pt nanocomposite for sensitive detection of dopamine, J. Electroanal. Chem. 816 (2018) 189–194. https://doi.org/10.1016/j.jelechem.2018.03.056.

[44]

J. H. Yin, S. S. Pan, X. Guo, et al., Nb2C MXene-functionalized scaffolds enables osteosarcoma phototherapy and angiogenesis/osteogenesis of bone defects, Nano-Micro. Lett. 13 (2021) 30. https://doi.org/10.1007/s40820-020-00547-6.

[45]

T. T. Mao, F. Zhou, K. Han, et al., Self-standing reduced graphene oxide/Nb2C MXene paper electrode with three-dimensional open structure for high-rate potassium ion storage, J. Phys. Chem. Solids 169 (2022) 110838. https://doi.org/10.1016/j.jpcs.2022.110838.

[46]

R. D. K. Misra, Core-shell magnetic nanoparticle carrier for targeted drug delivery: challenges and design, Mater. Technol. 25 (2010) 118–126. https://doi.org/10.1179/175355510X12723642365241.

[47]

H. Bagheri, N. Pajooheshpour, A. Afkhami, et al., Fabrication of a novel electrochemical sensing platform based on a core-shell nano-structured/molecularly imprinted polymer for sensitive and selective determination of ephedrine, RSC Adv. 6 (2016) 51135–51145. https://doi.org/10.1039/c6ra09488k.

Food Science of Animal Products
Article number: 9240097
Cite this article:
Zhang H, Sun Y, Luo H, et al. Electrochemical sensor based on Pd@Nb2C nanocomposites for rapid and sensitive detection of ciprofloxacin. Food Science of Animal Products, 2025, 3(1): 9240097. https://doi.org/10.26599/FSAP.2025.9240097
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return