PDF (1.4 MB)
Collect
Submit Manuscript
Show Outline
Figures (1)

Tables (5)
Table 1
Table 2
Table 3
Table 4
Table 5
Research Article | Open Access

Development and validation of a rapid gas chromatography for simultaneous quantification of major fatty acids in royal jelly

Xinyu YuWenting WeiYuqi WuYuanyuan LuFuliang Hu()Shanshan Li()
College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
Show Author Information

Graphical Abstract

View original image Download original image

Abstract

Fatty acids are distinctive components of royal jelly (RJ), serving as a crucial indicator for assessing the quality of RJ. This study aimed to establish a rapid and simultaneous quantification method for various fatty acids in RJ utilizing gas chromatography. An optimized two-step extraction process, incorporating ethanol and diethyl ether followed by derivatization with N,O-bis-(trimethylsilyl) trifluoroacetamide, was developed to enhance sensitivity and precision in detecting fatty acids. Validation of the methodology revealed excellent linearity (R2 > 0.999), precision (relative standard deviation (RSD) < 1%), repeatability (RSD < 1%), and recoveries (94.4%–104%). Furthermore, the limits of detection and quantification were found to be low. The results indicated that the method offered reliable and consistent quantification of major fatty acids, thereby improving quality control for RJ and facilitating its applications in food, pharmaceutical, and biochemical research.

References

[1]

F. L. Hu, K. Bíliková, H. Casabianca, et al., Standard methods for Apis mellifera royal jelly research, J. Apicult. Res. 58(2) (2017) 1–68. https://doi.org/10.1080/00218839.2017.1286003.

[2]

N. Collazo, M. Carpena, B. Nuñez-Estevez, et al., Health promoting properties of bee royal jelly: food of the queens, Nutrients 13(2) (2021) 543. https://doi.org/10.3390/nu13020543.

[3]

F. P. Drijfhout, J. Kochansky, S. Lin, et al., Components of honeybee royal jelly as deterrents of the parasitic Varroa Mite, Varroa destructor, J. Chem. Ecol. 31(8) (2005) 1747–1764. https://doi.org/10.1007/s10886-005-5925-6.

[4]

M. F. Ramadan, A. Al-Ghamdi, Bioactive compounds and health-promoting properties of royal jelly: a review, J. Funct. Foods 4(1) (2012) 39–52. https://doi.org/10.1016/j.jff.2011.12.007.

[5]

G. Lercker, P. Capella, L. S. Conte, et al., Components of royal jelly: I. Identification of the organic acids, Lipids 16(12) (1981) 912–919. https://doi.org/10.1007/Bf02534997.

[6]

X. Y. Yu, X. Y. Tu, L. C. Tao, et al., Royal jelly fatty acids: chemical composition, extraction, biological activity, and prospect, J. Funct. Foods 111 (2023) 105868. https://doi.org/10.1016/j.jff.2023.105868.

[7]

S. Ahmad, M. G. Campos, F. Fratini, et al., New insights into the biological and pharmaceutical properties of royal jelly, Int. J. Mol. Sci. 21(2) (2020) 382. https://doi.org/10.3390/ijms21020382.

[8]

J. Kocot, M. Kielczykowska, D. Luchowska-Koco, et al., Antioxidant potential of propolis, bee pollen, and royal jelly: possible medical application, Oxid. Med. Cell. Longev. 2018 (2018) 7074209. https://doi.org/10.1155/2018/7074209.

[9]
Y. C. Yang, W. M. Chou, D. A. Widowati, et al., 10-Hydroxy-2-decenoic acid of royal jelly exhibits bactericide and anti-inflammatory activity in human colon cancer cells, BMC Complement. Altern. Med. 18(1) (2018) 202. https://doi.org/10.1186/s12906-018-2267-9.
[10]

F. Fratini, G. Cilia, S. Mancini, et al., Royal jelly: an ancient remedy with remarkable antibacterial properties, Microbiol. Res. 192 (2016) 130–141. https://doi.org/10.1016/j.micres.2016.06.007.

[11]

F. Ferioli, G. L. Marcazzan, M. F. Caboni, Determination of ( E)-10-hydroxy-2-decenoic acid content in pure royal jelly: a comparison between a new CZE method and HPLC, J. Sep. Sci. 30(7) (2007) 1061–1069. https://doi.org/10.1002/jssc.200600416.

[12]

J. F. Antinelli, S. Zeggane, R. Davico, et al., Evaluation of ( E)-10-hydroxydec-2-enoic acid as a freshness parameter for royal jelly, Food Chem. 80(1) (2003) 85–89. https://doi.org/10.1016/S0308-8146(02)00243-1.

[13]

V. A. Isidorov, S. Bakier, I. Grzech, Gas chromatographic-mass spectrometric investigation of volatile and extractable compounds of crude royal jelly, J. Chromatogr. B 885 (2012) 109–116. https://doi.org/10.1016/j.jchromb.2011.12.025.

[14]
R. S. Pan, P. Li, S. Q. Li, Determination of 10 hydroxy-α-decenoic acid in royal jelly by ELISA, Qual. Saf. Inspect. Test. 1 (2001) 22–23; 35.
[15]

C. Caparica-Santos, M. C. Marcucci, Quantitative determination oftrans-10-hydroxy-2-decenoic acid (10-HDA) in Brazilian royal jelly and commercial products containing royal jelly, J. Apic. Res. 46(3) (2015) 149–153. https://doi.org/10.1080/00218839.2007.11101386.

[16]

J. H. Zhou, J. Zhao, H. C. Yuan, et al., Comparison of UPLC and HPLC for determination of trans-10-hydroxy-2-decenoic acid content in royal jelly by ultra sound-assisted extraction with internal standard, Chromatographia 66(3/4) (2007) 185–190. https://doi.org/10.1365/s10337-007-0305-8.

[17]

X. H. Yang, Y. P. Li, L. Wang, et al., Determination of 10-HDA in royal jelly by ATR-FTMIR and NIR spectral combining with data fusion strategy, Optik 203 (2020) 164052. https://doi.org/10.1016/j.ijleo.2019.164052.

[18]

H. A. Duong, M. T. Vu, T. D. Nguyen, et al., Determination of 10-hydroxy-2-decenoic acid and free amino acids in royal jelly supplements with purpose-made capillary electrophoresis coupled with contactless conductivity detection, J. Food Compost. Anal. 87 (2020) 103422. https://doi.org/10.1016/j.jfca.2020.103422.

[19]

M. G. Kokotou, C. Mantzourani, R. Babaiti, et al., Study of the royal jelly free fatty acids by liquid chromatography-high resolution mass spectrometry (LC-HRMS), Metabolites 10(1) (2020) 40. https://doi.org/10.3390/metabo10010040.

[20]

M. A. Korany, M. S. Moneeb, A. M. Asaad, et al., A validated stability-indicating HPTLC assay for determination of 10-hydroxy-2-decenoic acid content in royal jelly products using robust regression methods, J. Chromatogr. Sci. 58(6) (2020) 520–534. https://doi.org/10.1093/chromsci/bmaa016.

[21]

S. X. Su, S. S. Li, J. Hu, et al., A colorimetric sensing strategy for detecting 10-hydroxy-2-decenoic acid in royal jelly based on Ag(I)-tetramethylbenzidine, Sens. Actuat. B: Chem. 354 (2022) 131241. https://doi.org/10.1016/j.snb.2021.131241.

[22]

X. Y. Yu, S. S. Li, S. Q. Peng, et al., Optimization of ultrasound-assisted extraction of fatty acids from royal jelly and its effect on the structural and antioxidant property, Ultrason. Sonochem. 104 (2024) 106802. https://doi.org/10.1016/j.ultsonch.2024.106802.

[23]

L. Xiang, L. Zhu, Y. Huang, et al., Application of derivatization in fatty acids and fatty acyls detection: mass spectrometry-based targeted lipidomics, Small Methods 4(8) (2020) 2000160. https://doi.org/10.1002/smtd.202000160.

[24]

G. L. Wei, E. Y. Zeng, Gas chromatography-mass spectrometry and high-performance liquid chromatography-tandem mass spectrometry in quantifying fatty acids, TrAC-Trends Anal. Chem. 30(9) (2011) 1429–1436. https://doi.org/10.1016/j.trac.2011.05.005.

[25]

H. H. Chiu, C. H. Kuo, Gas chromatography-mass spectrometry-based analytical strategies for fatty acid analysis in biological samples, J. Food Drug. Anal. 28(1) (2020) 60–73. https://doi.org/10.1016/j.jfda.2019.10.003.

[26]

F. Raposo, Evaluation of analytical calibration based on least-squares linear regression for instrumental techniques: a tutorial review, TrAC-Trends Anal. Chem. 77 (2016) 167–185. https://doi.org/10.1016/j.trac.2015.12.006.

[27]

N. S. Han, J. S. Lim, Review of gas-chromatographic measurement methodologies for atmospheric halogenated greenhouse gases, Crit. Rev. Anal. Chem. 19 (2024) 1–14. https://doi.org/10.1080/10408347.2024.2302576.

[28]

S. A. Gegenschatz, F. A. Chiappini, C. M. Teglia, et al., Binding the gap between experiments, statistics, and method comparison: a tutorial for computing limits of detection and quantification in univariate calibration for complex samples, Anal. Chim. Acta 1209 (2022) 339342. https://doi.org/10.1016/j.aca.2021.339342.

[29]

S. Y. Wang, X. C. Shi, F. Q. Liu, et al., Chromatographic methods for detection and quantification of carbendazim in food, J. Agric. Food Chem. 68(43) (2020) 11880–11894. https://doi.org/10.1021/acs.jafc.0c04225.

[30]

C. Li, C. Zang, Q. X. Nie, et al., Simultaneous determination of seven flavonoids, two phenolic acids and two cholesterines in Tanreqing injection by UHPLC-MS/MS, J. Pharm. Biomed. Anal. 163 (2019) 105–112. https://doi.org/10.1016/j.jpba.2018.08.058.

[31]

D. Thakur, N. P. Dubey, R. Singh, A review on spike and recovery method in analytical method development and validation, Crit. Rev. Anal. Chem. 54(7) (2022) 2053–2071. https://doi.org/10.1080/10408347.2022.2152275.

Food Science of Animal Products
Article number: 9240099
Cite this article:
Yu X, Wei W, Wu Y, et al. Development and validation of a rapid gas chromatography for simultaneous quantification of major fatty acids in royal jelly. Food Science of Animal Products, 2025, 3(1): 9240099. https://doi.org/10.26599/FSAP.2025.9240099
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return