PDF (3.5 MB)
Collect
Submit Manuscript
Show Outline
Figures (6)

Tables (2)
Table 1
Table 2
Research Article | Open Access

Exploring the mechanism of galangin in alleviating alcoholic fatty liver disease based on the Gene Expression Omnibus database and network pharmacology

Yanan Zhao§Bin Li§Fei YuYitong WangHaoyang HuangLei Chen()
College of Food Science and Technology, Guangdong Ocean University, Guangdong 524000, China

§These authors contributed equally to this article.

Show Author Information

Graphical Abstract

View original image Download original image

Abstract

This study aimed to use the Gene Expression Omnibus (GEO) database combined with network pharmacology technology to investigate the positive effect of galangin on alcoholic fatty liver disease (AFLD) and explore its potential mechanism. The study first screened the differential genes in ALFD mice through the GEO database, obtained the possible targets of galangin through the SwissTargetPrediction and PharmMapper databases, and then obtained the intersection of drug and disease targets through a Venn diagram to build a “drug-target-pathway-disease” network relationship diagram, and its possible molecular mechanisms were analyzed through Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment. The network pharmacology analysis identified 22 potential targets for galangin in the treatment of AFLD, and protein-protein interaction network analysis revealed that the top 5 targets were protein kinase B (AKT) 1, epidermal growth factor receptor, mitogen-activated protein kinase (MAPK) 3, myeloid cell leukemia 1, and KIT proto-oncogene receptor tyrosine kinase. The KEGG results showed that the treatment of AFLD by galangin may be related to the MAPK signaling pathway, cyclic adenosine monophosphate signaling pathway, Ras-related protein 1 signaling pathway and phosphoinositide 3 kinase/AKT signaling pathway. Therefore, the combination of GEO database and network pharmacology prediction results showed that galangin could alleviate alcoholic fatty liver and exert anti-inflammatory effects. It provides a theoretical basis for research on the mechanism of galangin in treating AFLD and other diseases.

References

[1]

H. K. Seitz, R. Bataller, H. Cortez-Pinto, et al., Alcoholic liver disease, Nat. Rev. Dis. Prim. 4 (2018) 16. https://doi.org/10.1038/s41572-018-0014-7.

[2]

C. S. Lieber, Alcoholic fatty liver: its pathogenesis and mechanism of progression to inflammation and fibrosis, Alcohol 34 (2004) 9–19. https://doi.org/10.1016/j.alcohol.2004.07.008.

[3]

E. Gianni, P. Forte, V. Galli, et al., Prospective evaluation of liver stiffness using transient elastography in alcoholic patients following abstinence, Alcohol 52(1) (2017) 42–47. https://doi.org/10.1093/alcalc/agw053.

[4]

P. Tang-Barton, W. Vas, J. Weissman, et al., Focal fatty liver lesions in alcoholic liver disease: a broadened spectrum of CT appearances, Gastrointest. Radiol. 10 (1985) 133–137. https://doi.org/10.1007/BF01893087.

[5]

M. R. Teli, C. P. Day, A. D. Burt, et al., Determinants of progression to cirrhosis or fibrosis in pure alcoholic fatty liver, Lancet 346 (1995) 987–990. https://doi.org/10.1016/s0140-6736(95)91685-7.

[6]

R. Teschke, Alcoholic liver disease: alcohol metabolism, cascade of molecular mechanisms, cellular targets, and clinical aspects, Biomedicines 6(4) (2018) 106. https://doi.org/10.3390/biomedicines6040106.

[7]

Y. R. Shim, W. I. Jeong, Recent advances of sterile inflammation and inter-organ cross-talk in alcoholic liver disease, Exp. Mol. Med. 52 (2020) 772–780. https://doi.org/10.1038/s12276-020-0438-5.

[8]

C. H. Zhang, Y. Hang, W. M. Tang, et al., Dually active polycation/miRNA nanoparticles for the treatment of fibrosis in alcohol-associated liver disease, Pharmaceutics 14(3) (2022) 669. https://doi.org/10.3390/pharmaceutics14030669.

[9]

M. Y. Heo, S. J. Sohn, W. W. Au, Anti-genotoxicity of galangin as a cancer chemopreventive agent candidate, Mutat. Res. 488 (2001) 135–150. https://doi.org/10.1016/s1383-5742(01)00054-0.

[10]

A. S. Sivakumar, C. V. Anuradha, Effect of galangin supplementation on oxidative damage and inflammatory changes in fructose-fed rat liver, Chem. Biol. Interact. 193 (2011) 141–148. https://doi.org/10.1016/j.cbi.2011.06.003.

[11]

S. Kumar, K. R. Alagawadi, Anti-obesity effects of galangin, a pancreatic lipase inhibitor in cafeteria diet fed female rats, Pharm. Biol. 51 (2013) 607–613. https://doi.org/10.3109/13880209.2012.757327.

[12]

J. J. Meyer, A. J. Afolayan, M. B. Taylor, et al., Antiviral activity of galangin isolated from the aerial parts of Helichrysum aureonitens, J. Ethnopharmacol. 56 (1997) 165–169. https://doi.org/10.1016/s0378-8741(97)01514-6.

[13]

M. S. Tsai, C. C. Chien, T. H. Lin, et al., Galangin prevents acute hepatorenal toxicity in novel propacetamol-induced acetaminophen-overdosed mice, J. Med. Food 18 (2015) 1187–1197. https://doi.org/10.1089/jmf.2014.3328.

[14]

Q. Q. Luo, L. P. Zhu, J. Y. Ding, et al., Protective effect of galangin in concanavalin A-induced hepatitis in mice, Drug Des. Dev. Ther. 9 (2015) 2983–2992. https://doi.org/10.2147/DDDT.S80979.

[15]

X. X. Zhang, Y. Y. Deng, J. Xiang, et al., Galangin improved non-alcoholic fatty liver disease in mice by promoting autophagy, Drug Des. Dev. Ther. 14 (2020) 3393–3405. https://doi.org/10.2147/DDDT.S258187.

[16]

L. J. Liu, S. J. Jiang, X. Q. Liu, et al., Inflammatory response and oxidative stress as mechanism of reducing hyperuricemia of gardenia jasminoides- Poria cocos with network pharmacology, Oxid. Med. Cell. Longev. 2021 (2021) 8031319. https://doi.org/10.1155/2021/8031319.

[17]

H. D. Yuan, Q. Q. Ma, H. Y. Cui, et al., How can synergism of traditional medicines benefit from network pharmacology?, Molecules 22(7) (2017) 1135. https://doi.org/10.3390/molecules22071135.

[18]

W. Y. Yun, W. C. Dan, J. L. Liu, et al., Investigation of the mechanism of traditional Chinese medicines in angiogenesis through network pharmacology and data mining, Evid.-Based Complement. Altern. Med. 2021 (2021) 5539970. https://doi.org/10.1155/2021/5539970.

[19]

L. Lou, L. P. Chen, Y. H. Wu, et al., Identification of hub genes and construction of prognostic nomogram for patients with Wilms tumors, Front. Oncol. 12 (2022) 982110. https://doi.org/10.3389/fonc.2022.982110.

[20]

A. Aslam, P. Y. Kwo, Epidemiology and disease burden of alcohol associated liver disease, J. Clin. Exp. Hepatol. 13 (2023) 88–102. https://doi.org/10.1016/j.jceh.2022.09.001.

[21]

P. Charatcharoenwitthaya, S. Liangpunsakul, T. Piratvisuth, Alcohol-associated liver disease: east versus west, Clin. Liver Dis. 16 (2020) 231–235. https://doi.org/10.1002/cld.920.

[22]

Y. N. Zhao, B. Li, J. Liu, et al., Galangin prevents against ethanol-induced intestinal barrier dysfunction and NLRP3 inflammasome activation via NF-κB/MAPK signaling pathways in mice and Caco-2 cells, J. Agric. Food Chem. 72 (2024) 9376–9388. https://doi.org/10.1021/acs.jafc.4c00747.

[23]

A. L. Hopkins, Network pharmacology: the next paradigm in drug discovery, Nat. Chem. Biol. 4 (2008) 682–690. https://doi.org/10.1038/nchembio.118.

[24]

X. M. Li, X. Q. Dong, W. D. Lu, et al., Integrated analysis of gene expression and methylation data to identify potential biomarkers related to atherosclerosis onset, Oxid. Med. Cell. Longev. 2022 (2022) 5493051. https://doi.org/10.1155/2022/5493051.

[25]

H. L. Wan, M. Y. Gao, C. L. Wang, et al., Study on the mechanism of schisandra chinensis liver to protect based on zebrafish alcohol fatty liver model and network pharmacology technology, Spec. Wild Econ. Anim. Plant Res. 2024 (2024) 1–8. https://doi.org/10.16720/j.cnki.tcyj.2024.073.

[26]

D. Yang, H. Rong, Progress in mechanisms of NLRP3 inflammasome activation and regulation, China J. Tradit. Chin. Med. Pharm. 42 (2018) 294–302.

[27]

G. Carpenter, Employment of the epidermal growth factor receptor in growth factor-independent signaling pathways, J. Cell Biol. 146 (1999) 697–702. https://doi.org/10.1083/jcb.146.4.697.

[28]

K. Oda, Y. Matsuoka, A. Funahashi, et al., A comprehensive pathway map of epidermal growth factor receptor signaling, Mol. Syst. Biol. 1 (2005) 2005.0010. https://doi.org/10.1038/msb4100014.

[29]

M. C. S. Rodriguez, M. Petersen, J. Mundy, Mitogen-activated protein kinase signaling in plants, Annu. Rev. Plant Biol. 61 (2010) 621–649. https://doi.org/10.1146/annurev-arplant-042809-112252.

[30]

O. Šamajová, O. Plíhal, M. Al-Yousif, et al., Improvement of stress tolerance in plants by genetic manipulation of mitogen-activated protein kinases, Biotechnol. Adv. 31 (2013) 118–128. https://doi.org/10.1016/j.biotechadv.2011.12.002.

[31]
J. Cui, W. J. Placzek, PTBP1 enhances miR-101-guided AGO2 targeting to MCL1 and promotes miR-101-induced apoptosis, Cell Death Dis. 9 (2018) 552. https://doi.org/10.1038/s41419-018-0551-8.
[32]
Y. N. Lee, S. Brandal, P. Noel, et al., KIT signaling regulates MITF expression through miRNAs in normal and malignant mast cell proliferation, Blood 117 (2011) 3629–3640. https://doi.org/10.1182/blood-2010-07-293548.
[33]

R. J. Roskoski, Structure and regulation of Kit protein-tyrosine kinase: the stem cell factor receptor, Biochem. Biophys. Res. Commun. 338 (2005) 1307–1315. https://doi.org/10.1016/j.bbrc.2005.09.150.

[34]

M. Certo, V. Del Gaizo Moore, M. Nishino, et al., Mitochondria primed by death signals determine cellular addiction to antiapoptotic BCL-2 family members, Cancer Cell 9 (2006) 351–365. https://doi.org/10.1016/j.ccr.2006.03.027.

[35]

Q. Chu, X. Yu, R. Y. Jia, et al., Flavonoids from Apios americana Medikus leaves protect RAW264.7 cells against inflammation via inhibition of MAPKs, Akt-mTOR pathways, and Nfr2 activation, Oxid. Med. Cell. Longev. 2019 (2019) 1563024. https://doi.org/10.1155/2019/1563024.

[36]

J. Papaconstantinou, The role of signaling pathways of inflammation and oxidative stress in development of senescence and aging phenotypes in cardiovascular disease, Cells 8 (2019) 1383. https://doi.org/10.3390/cells8111383.

[37]

Y. Sun, W. Z. Liu, T. Liu, et al., Signaling pathway of MAPK/ERK in cell proliferation, differentiation, migration, senescence and apoptosis, J. Recept. Signal Transduct. Res. 35 (2015) 600–604. https://doi.org/10.3109/10799893.2015.1030412.

[38]

L. W. Tan, J. S. Li, Y. Y. Wang, et al., Anti-neuroinflammatory effect of alantolactone through the suppression of the NF-κB and MAPK signaling pathways, Cells 8 (2019) 739. https://doi.org/10.3390/cells8070739.

[39]

J. Y. Lin, D. E. Fisher, Melanocyte biology and skin pigmentation, Nature 445 (2007) 843–850. https://doi.org/10.1038/nature05660.

[40]

D. Datta, S. N. Leslie, M. Wang, et al., Arnsten, age-related calcium dysregulation linked with tau pathology and impaired cognition in non-human primates, Alzh. Dement. 17 (2021) 920–932. https://doi.org/10.1002/alz.12325.

[41]
M. M. You, Y. M. Pan, Y. C, Liu, et al., Royal jelly alleviates cognitive deficits and β-amyloid accumulation in APP/PS1 mouse model via activation of the cAMP/PKA/CREB/BDNF pathway and inhibition of neuronal apoptosis, Front. Aging Neurosci. 10 (2018) 428. https://doi.org/10.3389/fnagi.2018.00428.
[42]

X. J. Zhou, R. Zhang, S. H. Zhang, et al., Activation of 5-HT1A receptors promotes retinal ganglion cell function by inhibiting the cAMP-PKA pathway to modulate presynaptic GABA release in chronic glaucoma, J. Neurosci. 39 (2019) 1484–1504. https://doi.org/10.1523/jneurosci.1685-18.2018.

[43]

Y. R. Chen, Y. H. Li, T. C. Hsieh, et al., Aging-induced Akt activation involves in aging-related pathologies and Aβ-induced toxicity, Aging Cell 18 (2019) e12989. https://doi.org/10.1111/acel.12989.

[44]

J. A. Engelman, J. Luo, L. C. Cantley, The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism, Nat. Rev. Genet. 7 (2006) 606–619. https://doi.org/10.1038/nrg1879.

[45]

D. A. Fruman, H. Chiu, B. D. Hopkins, et al., The PI3K pathway in human disease, Cell 170 (2017) 605–635. https://doi.org/10.1016/j.cell.2017.07.029.

[46]

S. R. Zhou, Z. Y. Zhong, Y. Z. Lu, et al., A LETM2-regulated PI3K-Akt signaling axis reveals a prognostic and therapeutic target in pancreatic cancer, Cancers 14(19) (2022) 4722. https://doi.org/10.3390/cancers14194722.

[47]

G. Hoxhaj, B. D. Manning, The PI3K-AKT network at the interface of oncogenic signalling and cancer metabolism, Nat. Rev. Cancer 20 (2020) 74–88. https://doi.org/10.1038/s41568-019-0216-7.

[48]

J. Yang, J. Nie, X. L. Ma, et al., Targeting PI3K in cancer: mechanisms and advances in clinical trials, Mol. Cancer 18 (2019) 26. https://doi.org/10.1186/s12943-019-0954-x.

[49]

T. Jerabek, F. Klingler, N. Raab, et al., Life at the periphery: what makes CHO cells survival talents, Appl. Microbiol. Biotechnol. 106 (2022) 6157–6167. https://doi.org/10.1007/s00253-022-12123-6.

[50]

A. Jaśkiewicz, B. Pająk, A. Orzechowski, The many faces of Rap1 GTPase, Int. J. Mol. Sci. 19 (2018) 2848. https://doi.org/10.3390/ijms19102848.

[51]

S. H. Aladaileh, M. H. Abukhalil, S. A. M. Saghir, et al., Galangin activates Nrf2 signaling and attenuates oxidative damage, inflammation, and apoptosis in a rat model of cyclophosphamide-induced hepatotoxicity, Biomolecules 9 (2019) 346. https://doi.org/10.3390/biom9080346.

[52]

Y. Li, L. Q. Tong, J. Y. Zhang, et al., Galangin alleviates liver ischemia-reperfusion injury in a rat model by mediating the PI3K/AKT pathway, Cell. Physiol. Biochem. 51 (2018) 1354–1363. https://doi.org/10.1159/000495553.

[53]

M. J. Choi, E. J. Lee, J. S. Park, et al., Anti-inflammatory mechanism of galangin in lipopolysaccharide-stimulated microglia: critical role of PPARγ signaling pathway, Biochem. Pharmacol. 144 (2017) 120–131. https://doi.org/10.1016/j.bcp.2017.07.021.

Food Science of Animal Products
Article number: 9240107
Cite this article:
Zhao Y, Li B, Yu F, et al. Exploring the mechanism of galangin in alleviating alcoholic fatty liver disease based on the Gene Expression Omnibus database and network pharmacology. Food Science of Animal Products, 2025, 3(1): 9240107. https://doi.org/10.26599/FSAP.2025.9240107
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return