AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

Targeting gut microbiota in osteoporosis: impact of the microbial based functional food ingredients

Pauline DuffulerKhushwant S. BhullarJianping Wu( )
Department of Agricultural Food & Nutritional Science, University of Alberta, Edmonton T6G 2P5, Canada

Peer review under responsibility of Tsinghua University Press.

Show Author Information

Abstract

Osteoporosis is the most common bone disorder, characterized by low bone mineral density and microarchitectural deterioration of the bone tissue, which increases the susceptibility to fracture. In the past decade, emerging research findings reported the implication of gut microbiota on bone health and osteoporosis pathology. Osteoporotic patients or individuals with a lower bone mineral density exhibit an alteration of the gut microbiota at several taxonomic levels. Additional reports demonstrate that gut microbiota regulates bone metabolism through the modulation of the gut function (mineral availability and absorption, gut integrity), the immune system, and the endocrine system. Thus, based on the vital role of gut microbiota on bone health, it has emerged as a novel therapeutic target for the prevention of bone loss and the treatment of osteoporosis. Microbial-based functional food ingredients, such as probiotics, prebiotics, synbiotics, and fermented foods, have been developed to alter the gut microbiota composition and function and thus, to provide benefits to the host bone health. Despite promising initial results, microbial-based therapies are still under investigation. Moreover, additional animal studies and clinical trials are needed to understand the interactions between gut microbiota and bone metabolism before further applications.

References

[1]
International Osteoporosis Foundation, Introduction to bone biology: all about our bones, (2022). https://iofbonehealth.org/introduction-bonebiology-all-about-our-bones (accessed April 26, 2020).
[2]

D.J. Hadjidakis, I.I. Androulakis, Bone remodeling, Ann. N Y Acad Sci. 1092 (2006) 385-396. https://doi.org/10.1196/ANNALS.1365.035.

[3]

T. Yatsunenko, F.E. Rey, M.J. Manary, et al., Human gut microbiome viewed across age and geography, Nature 486 (2012) 222-227. https://doi.org/10.1038/nature11053.

[4]

S.I. Harada, G.A. Rodan, Control of osteoblast function and regulation of bone mass, Nature 423 (2003) 349-355. https://doi.org/10.1038/nature01660.

[5]

World Health Organization, Who Scientific Group on the Assessment of Osteoporosis at Primary Health, World Health. May (2007) 1-13. https://doi.org/10.1016/S0140-6736(02)08761-5.

[6]
Osteoporosis Canada, About the Disease | Osteoporosis Canada, (n.d.). https://osteoporosis.ca/about-the-disease/ (accessed October 21, 2019).
[7]

N.C. Wright, A.C. Looker, K.G. Saag, et al., The recent prevalence of osteoporosis and low bone mass in the United States based on bone mineral density at the femoral neck or lumbar spine, J. Bone Miner. Res. 29 (2014) 2520-2526. https://doi.org/10.1002/jbmr.2269.

[8]

J.A. Kanis, N. Norton, N.C. Harvey, et al., SCOPE 2021: a new scorecard for osteoporosis in Europe, Arch Osteoporos. 16 (2021). https://doi.org/10.1007/s11657-020-00871-9.

[9]
Government of Canada, Osteoporosis -Canada.ca, (2018). https://www.canada.ca/en/public-health/services/chronic-diseases/osteoporosis.htm (accessed November 3, 2019).
[10]

O. Ström, F. Borgström, J.A. Kanis, et al., Osteoporosis: burden, health care provision and opportunities in the EU, Arch Osteoporos. 6 (2011) 59-155. https://doi.org/10.1007/s11657-011-0060-1.

[11]

F. Hawkins, V. Garla, G. Allo, et al., Senile and postmenopausal osteoporosis: pathophysiology, diagnosis, and treatment, Elsevier Inc., 2021. https://doi.org/10.1016/b978-0-12-819667-0.00005-6.

[12]

N.B. Watts, J.P. Bilezikian, S.M. Petak, American Association of Clinical Endocrinologists medical guidelines for clinical practice for the diagnosis and treatment of postmenopausal osteoporosis: executive summary of recommendations, Physiol Behav. 176 (2016) 100-106.

[13]

F. Bäckhed, C.M. Fraser, Y. Ringel, et al., Defining a healthy human gut microbiome: Current concepts, future directions, and clinical applications, Cell Host Microbe. 12 (2012) 611-622. https://doi.org/10.1016/j.chom.2012.10.012.

[14]

C. Huttenhower, D. Gevers, R. Knight, et al., White, structure, function and diversity of the healthy human microbiome, Nature 486 (2012) 207-214. https://doi.org/10.1038/nature11234.

[15]

M. Anitha, M. Vijay-Kumar, S.V. Sitaraman, et al., Gut microbial products regulate murine gastrointestinal motility via toll-like receptor 4 signaling, Gastroenterology. 143 (2012) 1006-1016. e4. https://doi.org/10.1053/j.gastro.2012.06.034.

[16]

H. Neuman, J.W. Debelius, R. Knight, et al., Microbial endocrinology: the interplay between the microbiota and the endocrine system, FEMS Microbiol Rev. 39 (2015) 509-521. https://doi.org/10.1093/femsre/fuu010.

[17]

J.G. LeBlanc, C. Milani, G.S. de Giori, et al., Bacteria as vitamin suppliers to their host: a gut microbiota perspective, Curr Opin Biotechnol. 24 (2013) 160-168. https://doi.org/10.1016/j.copbio.2012.08.005.

[18]

H. Mineo, H. Hara, F. Tomita, Short-chain fatty acids enhance diffusional Ca transport in the epithelium of the rat cecum and colon, Life Sci. 69 (2001) 517-526. https://doi.org/10.1016/S0024-3205(01)01146-8.

[19]

S.A. Bora, M.J. Kennett, P.B. Smith, et al., Regulation of vitamin D metabolism following disruption of the microbiota using broad spectrum antibiotics, J. Nutr. Biochem. 56 (2018) 65-73. https://doi.org/10.1016/j.jnutbio.2018.01.011.

[20]

S.A. Bora, M.J. Kennett, P.B. Smith, et al., The gut microbiota regulates endocrine vitamin D metabolism through fibroblast growth factor 23, Front Immunol. 9 (2018) 1-11. https://doi.org/10.3389/fimmu.2018.00408.

[21]

R. Krajmalnik-Brown, Z.E. Ilhan, D.W. Kang, J, et al., Effects of gut microbes on nutrient absorption and energy regulation, Nutr Clin Pract. 27(2012) 201-214. https://doi.org/10.1177/0884533611436116.

[22]

C.N. Heiss, L.E. Olofsson, Gut microbiota-dependent modulation of energy metabolism, J. Innate. Immun. 10 (2018) 163-171. https://doi.org/10.1159/000481519.

[23]

Y. Belkaid, T.W. Hand, Role of the microbiota in immunity and inflammation, Cell. 157 (2014) 121-141. https://doi.org/10.1016/j.cell.2014.03.011.

[24]

M. Kriss, K.Z. Hazleton, N.M. Nusbacher, et al., Low diversity gut microbiota dysbiosis: drivers, functional implications and recovery, Curr. Opin. Microbiol. 44 (2018) 34. https://doi.org/10.1016/J.MIB.2018.07.003.

[25]

L. Crovesy, D. Masterson, L.E. Rosado, Profile of the gut microbiota of adults with obesity: a systematic review, Eur. J. Clin. Nutr. 74 (2020) 1251-1262. https://doi.org/10.1038/s41430-020-0607-6.

[26]

T.R. Sampson, J.W. Debelius, T. Thron, et al., Gut microbiota regulate motor deficits and neuroinflammation in a model of parkinson's disease, Cell. 167(2016) 1469-1480. e12. https://doi.org/10.1016/j.cell.2016.11.018.

[27]

E.Y. Hsiao, S.W. McBride, S. Hsien, et al., Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders, Cell. 155 (2013) 1451-1463. https://doi.org/10.1016/j.cell.2013.11.024.

[28]

L. Coretti, L. Paparo, M.P. Riccio, et al., Gut microbiota features in young children with autism spectrum disorders, Front Microbiol. 9 (2018). https://doi.org/10.3389/fmicb.2018.03146.

[29]

M.C. Dao, A. Everard, J. Aron-Wisnewsky, et al., Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: rela. pdf, Gut. 65 (2015) 426-36.

[30]

S.M. Collins, A role for the gut microbiota in IBS, Nat. Rev. Gastroenterol Hepatol. 11 (2014) 497-505. https://doi.org/10.1038/nrgastro.2014.40.

[31]

J. Wang, J. Qin, Y. Li, et al., A metagenome-wide association study of gut microbiota in type 2 diabetes, Nature 490 (2012) 55-60. https://doi.org/10.1038/nature11450.

[32]

J. Peng, X. Xiao, M. Hu, et al., Interaction between gut microbiome and cardiovascular disease, Life Sci. 214 (2018) 153-157. https://doi.org/10.1016/j.lfs.2018.10.063.

[33]

S. Zou, L. Fang, M.H. Lee, Dysbiosis of gut microbiota in promoting the development of colorectal cancer, Gastroenterol Rep (Oxf). 6 (2018) 1-12. https://doi.org/10.1093/gastro/gox031.

[34]

K. Sjögren, C. Engdahl, P. Henning, et al., The gut microbiota regulates bone mass in mice, J. Bone Miner. Res. 27 (2012) 1357-1367. https://doi.org/10.1002/jbmr.1588.

[35]

S. Carding, K. Verbeke, D.T. Vipond, et al., Dysbiosis of the gut microbiota in disease, Microb. Ecol. Health Dis. 26 (2015). https://doi.org/10.3402/mehd.v26.26191.

[36]

M. Distefano, G. Veneto, S. Malservisi, et al., Small intestine bacterial overgrowth and metabolic bone disease, Dig. Dis. Sci. 46 (2001) 1077-1082. https://doi.org/10.1023/A:1010722314493.

[37]

P. Stotzer, C. Johansson, D. Mellström, et al., Bone mineral density in patients with small intestinal bacterial overgrowth, Hepatogastroenterology. 50 (2003) 1415-1418.

[38]

J. Yan, J.W. Herzog, K. Tsang, et al., Gut microbiota induce IGF-1 and promote bone formation and growth, Proc. Natl. Acad. Sci. U.S.A. 113 (2016) E7554-E7563. https://doi.org/10.1073/pnas.1607235113.

[39]

M. Schwarzer, K. Makki, G. Storelli, et al., Lactobacillus plantarum strain maintains growth of infant mice during chronic undernutrition, Science 351(2016) 854-857. https://doi.org/10.1126/science.aad8588.

[40]

A. Anantharaju, M. Klamut, Small intestinal bacterial overgrowth: A possible risk factor for metabolic bone disease, Nutr. Rev. 61 (2003) 132-135. https://doi.org/10.1301/nr.2003.apr.132-135.

[41]

J.Y. Li, B. Chassaing, A.M. Tyagi, et al., Sex steroid deficiency-associated bone loss is microbiota dependent and prevented by probiotics, J. Clin. Investig. 126 (2016) 2049-2063. https://doi.org/10.1172/JCI86062.

[42]

N. Wang, F. Meng, S. Ma, et al., Species-level gut microbiota analysis in ovariectomized osteoporotic rats by Shallow shotgun sequencing, Gene. 817(2022) 146205. https://doi.org/10.1016/j.gene.2022.146205.

[43]

N. Wang, S. Ma, L. Fu, Gut microbiota dysbiosis as one cause of osteoporosis by impairing intestinal barrier function, Calcif. Tissue Int. 110(2022) 225-235. https://doi.org/10.1007/s00223-021-00911-7.

[44]

M. Das, O. Cronin, D.M. Keohane, et al., Gut microbiota alterations associated with reduced bone mineral density in older adults, Rheumatology. 58 (2019) 2295-2304. https://doi.org/10.1093/rheumatology/kez302.

[45]

C. Li, Q. Huang, R. Yang, et al., Gut microbiota composition and bone mineral loss-epidemiologic evidence from individuals in Wuhan, China, Osteoporos Int. 30 (2019) 1003-1013. https://doi.org/10.1007/s00198-019-04855-5.

[46]

M. Wei, C. Li, Y. Dai, High-throughput absolute quantification sequencing revealed osteoporosis-related gut microbiota alterations in Han Chinese elderly, Front Cell Infect Microbiol. 11 (2021) 1-11. https://doi.org/10.3389/fcimb.2021.630372.

[47]

Z. Xu, Z. Xie, J. Sun, Gut microbiome reveals specific dysbiosis in primary osteoporosis, Front Cell Infect Microbiol. 10 (2020) 1-12. https://doi.org/10.3389/fcimb.2020.00160.

[48]

J. He, S. Xu, B. Zhang, Gut microbiota and metabolite alterations associated with reduced bone mineral density or bone metabolic indexes in postmenopausal osteoporosis, Aging. 12 (2020) 8583-8604. https://doi.org/10.18632/aging.103168.

[49]

Y.W. Zhang, Y.J. Li, P.P. Lu, et al., The modulatory effect and implication of gut microbiota on osteoporosis: from the perspective of "brain-gut-bone" axis, Food Funct. (2021). https://doi.org/10.1039/d0fo03468a.

[50]

D. Ozaki, R. Kubota, T. Maeno, et al., Association between gut microbiota, bone metabolism, and fracture risk in postmenopausal Japanese women, Osteoporos Int. 32 (2021) 145-156. https://doi.org/10.1007/s00198-020-05728-y.

[51]

M. Das, O. Cronin, D.M. Keohane, et al., Gut microbiota alterations associated with reduced bone mineral density in older adults, Rheumatology. 58 (2019) 2295-2304. https://doi.org/10.1093/rheumatology/kez302.

[52]

J. Cheng, W.L. Zhong, J.W. Zhao, et al., Alterations in the composition of the gut microbiota affect absorption of cholecalciferol in severe osteoporosis, J. Bone Miner. Metab. 40 (2022) 478-486. https://doi.org/10.1007/S00774-021-01303-5/FIGURES/4.

[53]

C. Palacios, The role of nutrients in bone health, from A to Z, Crit Rev Food Sci. Nutr. 46 (2006) 621-628. https://doi.org/10.1080/10408390500466174.

[54]

D.M. Hegsted, Calcium and osteoporosis?, Adv Nutr Res. 9 (1994) 119-128.

[55]

T.C. Wallace, M. Marzorati, L. Spence, et al., New frontiers in fibers: Innovative and emerging research on the gut microbiome and bone health, J. Am. Coll Nutr. 36 (2017) 218-222. https://doi.org/10.1080/07315724.2016.1257961.

[56]

S. Tedelind, F. Westberg, M. Kjerrulf, et al., Anti-inflammatory properties of the short-chain fatty acids acetate and propionate: a study with relevance to inflammatory bowel disease, World J. Gastroenterol. 13 (2007) 2826. https://doi.org/10.3748/WJG.V13.I20.2826.

[57]
E. Hijová, A. Chmelarova, Short chain fatty acids and colonic health, (2007). https://www.researchgate.net/publication/5647158 (accessed June 22, 2022).
[58]

F. Liu, J. Li, F. Wu, et al., Altered composition and function of intestinal microbiota in autism spectrum disorders: a systematic review, Transl Psychiatry. 9 (2019). https://doi.org/10.1038/s41398-019-0389-6.

[59]

K. Hiippala, H. Jouhten, A. Ronkainen, et al., The potential of gut commensals in reinforcing intestinal barrier function and alleviating inflammation, Nutrients 10 (2018) 988. https://doi.org/10.3390/NU10080988.

[60]

P. Van Den Abbeele, C. Belzer, M. Goossens, et al., Butyrate-producing Clostridium cluster XIVa species specifically colonize mucins in an in vitro gut model, ISME Journal. 7 (2013) 949-961. https://doi.org/10.1038/ismej.2012.158.

[61]

J.B. Lian, G.S. Stein, Vitamin D regulation of osteoblast growth and differentiation, Nutrition and Gene Expression. (2018) 391-429. https://doi.org/10.1201/9781351075114-18.

[62]

P. Lips, N.M. van Schoor, The effect of vitamin D on bone and osteoporosis, Best Pract. Res. Clin. Endocrinol Metab. 25 (2011) 585-591. https://doi.org/10.1016/J.BEEM.2011.05.002.

[63]

S. Ruiz-Gaspà, N. Guañabens, A. Enjuanes, et al., Lithocholic acid downregulates vitamin D effects in human osteoblasts, Eur. J. Clin. Invest. 40 (2010) 25-34. https://doi.org/10.1111/j.1365-2362.2009.02230.x.

[64]

S.W. Cho, J.H. An, H. Park, et al., Positive regulation of osteogenesis by bile acid through FXR, J. Bone Miner. Res. 28 (2013) 2109-2121. https://doi.org/10.1002/jbmr.1961.

[65]

J. Wu, D.E. Shang, S. Yang, et al., Association between the vitamin D receptor gene polymorphism and osteoporosis, Biomed Rep. 5 (2016) 233-236. https://doi.org/10.3892/br.2016.697.

[66]

W. He, M. Liu, X. Huang, et al., The influence of vitamin D receptor genetic variants on bone mineral density and osteoporosis in chinese postmenopausal women, Dis. Markers. (2015) https://doi.org/10.1155/2015/760313.

[67]

M. Kow, E. Akam, P. Singh, et al., Vitamin D receptor (VDR) gene polymorphism and osteoporosis risk in White British men, Ann. Hum. Biol. 46 (2019) 430-433. https://doi.org/10.1080/03014460.2019.1659851.

[68]

M. Bashir, B. Prietl, M. Tauschmann, et al., Effects of high doses of vitamin D3 on mucosa-associated gut microbiome vary between regions of the human gastrointestinal tract, Eur. J. Nutr. 55 (2016) 1479-1489. https://doi.org/10.1007/s00394-015-0966-2.

[69]

M.S. Hamidi, O. Gajic-Veljanoski, A.M. Cheung, Vitamin K and bone health, J. Clin. Densitom. 16 (2013) 409-413. https://doi.org/10.1016/j.jocd.2013.08.017.

[70]

J.K.D. Villa, M.A.N. Diaz, V.R. Pizziolo, et al., Effect of vitamin K in bone metabolism and vascular calcification: A review of mechanisms of action and evidence, Crit. Rev. Food Sci. Nutr. 57 (2017) 3959-3970. https://doi.org/10.1080/10408398.2016.1211616.

[71]

D. Ulluwishewa, R.C. Anderson, W.C. McNabb, et al., Regulation of tight junction permeability by intestinal bacteria and dietary components, J. Nutr. 141 (2011) 769-776. https://doi.org/10.3945/jn.110.135657.

[72]

G. Qi. Hou, C. Guo, G.H. Song, et al., Lipopolysaccharide (LPS) promotes osteoclast differentiation and activation by enhancing the MAPK pathway and COX-2 expression in RAW264.7 cells, Int. J. Mol. Med. 32 (2013) 503-510. https://doi.org/10.3892/ijmm.2013.1406.

[73]

H. Kadono, J.I. Kido, M. Kataoka, et al., Inhibition of osteoblastic cell differentiation by lipopolysaccharide extract from Porphyromonas gingivalis, Infect Immun. 67(1999) 2841-2846. https://doi.org/10.1128/iai.67.6.2841-2846.1999.

[74]

A. di Benedetto, I. Gigante, S. Colucci, et al., Periodontal disease: linking the primary inflammation to bone loss, Clin. Dev. Immunol. 2013 (2013) 1-7. https://doi.org/10.1155/2013/503754.

[75]

O. Kudo, A. Sabokbar, A. Pocock, et al., Interleukin-6 and interleukin-11 support human osteoclast formation by a RANKL-independent mechanism, Bone. 32 (2003) 1-7. https://doi.org/10.1016/S8756-3282(02)00915-8.

[76]

P.P.C. Souza, U.H. Lerner, The role of cytokines in inflammatory bone loss, Immunol. Invest. 42 (2013) 555-622. https://doi.org/10.3109/08820139.2013.822766.

[77]

K. Itoh, N. Udagawa, K. Kobayashi, et al., Lipopolysaccharide promotes the survival of osteoclasts via toll-like receptor 4, but cytokine production of osteoclasts in response to lipopolysaccharide is different from that of macrophages, J. Immunol. 170 (2003) 3688-3695. https://doi.org/10.4049/jimmunol.170.7.3688.

[78]

P.B. Eckburg, E.M. Bik, C.N. Bernstein, et al., Microbiology: diversity of the human intestinal microbial flora, Science 308 (2005) 1635-1638. https://doi.org/10.1126/science.1110591.

[79]

Y. Abu-Amer, F.P. Ross, J. Edwards, et al., Lipopolysaccharide-stimulated osteoclastogenesis is mediated by tumor necrosis factor via its P55 receptor, J. Clin. Investig. 100 (1997) 1557-1565. https://doi.org/10.1172/JCI119679.

[80]

M. Mörmann, M. Thederan, I. Nackchbandi, et al., Lipopolysaccharides (LPS) induce the differentiation of human monocytes to osteoclasts in a tumour necrosis factor (TNF) α-dependent manner: a link between infection and pathological bone resorption, Mol. Immunol. 45 (2008) 3330-3337. https://doi.org/10.1016/j.molimm.2008.04.022.

[81]

T.R. Sponholtz, X. Zhang, J.D.T. Fontes, et al., Association between inflammatory biomarkers and bone mineral density in a community-based cohort of men and women, Arthritis. Care. Res. (Hoboken). 66 (2014) 1233-1240. https://doi.org/10.1002/acr.22270.

[82]

C. Scheidt-Nave, H. Bismar, G. Leidig-Bruckner, et al., Serum interleukin 6 is a major predictor of bone loss in women specific to the first decade past menopause, J. Clin. Endocrinol. Metab. 86 (2001) 2032-2042. https://doi.org/10.1210/jc.86.5.2032.

[83]

M. Rescigno, Intestinal microbiota and its effects on the immune system, Cell Microbiol. 16 (2014) 1004-1013. https://doi.org/10.1111/cmi.12301.

[84]

L. Macia, A.N. Thorburn, L.C. Binge, et al., Microbial influences on epithelial integrity and immune function as a basis for inflammatory diseases, Immunol Rev. 245 (2012) 164-176. https://doi.org/10.1111/j.1600-065X.2011.01080.x.

[85]

A. Kassem, P. Henning, B. Kindlund, et al., TLR5, a novel mediator of innate immunity-induced osteoclastogenesis and bone loss, FASEB J. 29(2015) 4449-4460. https://doi.org/10.1096/fj.15-272559.

[86]

J.A. Chaves de Souza, Sa. C.T. Frasnelli, F. de A. Curylofo-Zotti, et al., NOD1 in the modulation of host-microbe interactions and inflammatory bone resorption in the periodontal disease model, Immunology. 149 (2016) 374-385. https://doi.org/10.1111/imm.12654.

[87]

L. Li, S. Rao, Y. Cheng, et al., Microbial osteoporosis: the interplay between the gut microbiota and bones via host metabolism and immunity, Microbiologyopen. 8 (2019) 1-15. https://doi.org/10.1002/mbo3.810.

[88]

C. Li, G. Pi, F. Li, The role of intestinal flora in the regulation of bone homeostasis, Front Cell Infect. Microbiol. 11 (2021) 1-16. https://doi.org/10.3389/fcimb.2021.579323.

[89]

T.P. Prates, T.M. Taira, M.C. Holanda, et al., NOD2 contributes to porphyromonas gingivalis-induced bone resorption, J. Dent. Res. 93 (2014) 1155-1162. https://doi.org/10.1177/0022034514551770.

[90]

K. Sato, A. Suematsu, K. Okamoto, et al., Th17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction, J. Exp. Med. 203 (2006) 2673-2682. https://doi.org/10.1084/JEM.20061775.

[91]

M. Yu, S. Pal, C.W. Paterson, et al., Ovariectomy induces bone loss via microbial-dependent trafficking of intestinal TNF+T cells and Th17 cells, J. Clin. Investig. 131 (2021) 1-13. https://doi.org/10.1172/JCI143137.

[92]

S. Kotake, N. Udagawa, N. Takahashi, et al., Suda, IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulator of osteoclastogenesis, J. Clin. Investig. 103 (1999) 1345-1352. https://doi.org/10.1172/JCI5703.

[93]

J. Lam, S. Takeshita, J.E. Barker, et al., TNF-α induces osteoclastogenesis by direct stimulation of macrophages exposed to permissive levels of RANK ligand, J. Clin. Investig. 106 (2000) 1481-1488. https://doi.org/10.1172/JCI11176.

[94]

Y. Gao, F. Grassi, M.R. Ryan, et al., IFN-γ stimulates osteoclast formation and bone loss in vivo via antigen-driven T cell activation, J. Clin. Investig. 117 (2007) 122-132. https://doi.org/10.1172/JCI30074.

[95]

Y.Y. Kong, U. Felge, I. Sarosi, et al., Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand, Nature 402 (1999) 304-309. https://doi.org/10.1038/46303.

[96]

K. Sato, A. Suematsu, K. Okamoto, et al., Th17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction, J. Exp. Med. 203 (2006) 2673-2682. https://doi.org/10.1084/jem.20061775.

[97]

I.I. Ivanov, K. Atarashi, N. Manel, et al., Induction of intestinal Th17 Cells by segmented filamentous bacteria, Cell. 139 (2009) 485-498. https://doi.org/10.1016/j.cell.2009.09.033.

[98]

M.M. Zaiss, K. Sarter, A. Hess, et al., Increased bone density and resistance to ovariectomy-induced bone loss in FoxP3-transgenic mice based on impaired osteoclast differentiation, Arthritis Rheum. 62 (2010) 2328-2338. https://doi.org/10.1002/art.27535.

[99]

A.M. Tyagi, M. Yu, T.M. Darby, et al., The microbial metabolite butyrate stimulates bone formation via T regulatory cell-mediated regulation of WNT10B expression, Immunity. 49 (2018) 1116-1131. e7. https://doi.org/10.1016/j.immuni.2018.10.013.

[100]

P.M. Smith, M.R. Howitt, N. Panikov, et al., The microbial metabolites, short-chain fatty acids, regulate colonic T reg cell homeostasis, Science(1979). 341 (2013) 569-573. https://doi.org/10.1126/science.1241165/suppl_file/smith.sm.revision.1.pdf.

[101]

Y. Furusawa, Y. Obata, S. Fukuda, et al., Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells, Nature 504 (2013) 446-450. https://doi.org/10.1038/nature12721.

[102]

K. Atarashi, T. Tanoue, T. Shima, et al., Induction of colonic regulatory T cells by indigenous Clostridium species, Science (1979). 331 (2011) 337-341. https://doi.org/10.1126/science.1198469/suppl_file/atarashi_som.pdf.

[103]

M.D. Gershon, J. Tack, The serotonin signaling system: From basic understanding to drug development for functional GI disorders, Gastroenterology. 132 (2007) 397-414. https://doi.org/10.1053/j.gastro.2006.11.002.

[104]

B. Lavoie, J.A. Roberts, M.M. Haag, et al., Gut-derived serotonin contributes to bone deficits in colitis, Pharmacol Res. 140 (2019) 75-84. https://doi.org/10.1016/J.PHRS.2018.07.018.

[105]

H.L. Kristjansdottir, C. Lewerin, U.H. Lerner, et al., High serum serotonin predicts increased risk for hip fracture and nonvertebral osteoporotic fractures: The MrOS Sweden Study, J. Bone Miner. Res. 33 (2018) 1560-1567. https://doi.org/10.1002/JBMR.3443.

[106]

U.I. Mödder, S.J. Achenbach, S. Amin, et al., Relation of serum serotonin levels to bone density and structural parameters in women, J. Bone Miner. Res. 25 (2010) 415-422. https://doi.org/10.1359/JBMR.090721.

[107]
P. Ducy, G. Karsenty, The two faces of serotonin in bone biology, 191 (2010). https://doi.org/10.1083/jcb.201006123.
[108]

D.J. Walther, J.U. Peter, S. Bashammakh, et al., Synthesis of serotonin by a second tryptophan hydroxylase isoform, Science (1979). 299 (2003) 76. https://doi.org/10.1126/science.1078197.

[109]

F. Côté, E. Thévenot, C. Fligny, et al., Disruption of the nonneuronal tph1 gene demonstrates the importance of peripheral serotonin in cardiac function, Proc. Natl. Acad. Sci. U.S.A. 100 (2003) 13525-13530. https://doi.org/10.1073/pnas.2233056100.

[110]

J.M. Yano, K. Yu, G.P. Donaldson, et al., Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis, Cell. 161 (2015) 264-276. https://doi.org/10.1016/j.cell.2015.02.047.

[111]

M. Bliziotes, A. Eshleman, B. Burt-Pichat, et al., Serotonin transporter and receptor expression in osteocytic MLO-Y4 cells, Bone. 39 (2006) 1313-1321. https://doi.org/10.1016/j.bone.2006.06.009.

[112]

V.K. Yadav, S. Balaji, P.S. Suresh, et al., Pharmacological inhibition of gut-derived serotonin synthesis is a potential bone anabolic treatment for osteoporosis, Nat. Med. 16 (2010) 308-312. https://doi.org/10.1038/nm.2098.

[113]

Y. Chabbi-Achengli, A.E. Coudert, J. Callebert et al., Decreased osteoclastogenesis in serotonin-deficient mice, Proc. Natl. Acad. Sci. U.S.A. 109 (2012) 2567-2572. https://doi.org/10.1073/pnas.1117792109.

[114]
L.R. McCabe, Understanding the gut-bone signaling axis, 2017. https://doi.org/10.1007/978-3-319-66653-2.
[115]

F. Zhang, Y. Chen, M. Heiman, et al., Leptin: structure, function and biology, Vitam. Horm. 71 (2005) 345-372. https://doi.org/10.1016/S0083-6729(05)71012-8.

[116]

Y. Charnay, I. Cusin, P.G. Vallet, et al., Intracerebroventricular infusion of leptin decreases serotonin transporter binding sites in the frontal cortex of the rat, Neurosci. Lett. 283 (2000) 89-92. https://doi.org/10.1016/S0304-3940(00)00951-4.

[117]

V.K. Yadav, F. Oury, N. Suda, Z et al., A serotonin-dependent mechanism explains the leptin regulation of bone mass, appetite, and energy expenditure, Cell. 138 (2009) 976-989. https://doi.org/10.1016/j.cell.2009.06.051.

[118]

M.I. Queipo-Ortuño, L.M. Seoane, M. Murri, et al., Gut microbiota composition in male rat models under different nutritional status and physical activity and its association with serum leptin and ghrelin levels, PLoS One 8(2013). https://doi.org/10.1371/journal.pone.0065465.

[119]

J.Y. Li, M. Yu, S. Pal, et al., Parathyroid hormone-dependent bone formation requires butyrate production by intestinal microbiota, J. Clin. Investig. 130(2020) 1767-1781. https://doi.org/10.1172/JCI133473.

[120]

M.A. Avella, A. Place, S.J. Du, et al., Lactobacillus rhamnosus accelerates zebrafish backbone calcification and gonadal differentiation through effects on the GnRH and IGF systems, PLoS One 7 (2012) 1-10. https://doi.org/10.1371/journal.pone.0045572.

[121]

S.C. Shin, S.H. Kim, H. You, et al., Drosophila microbiome modulates host developmental and metabolic homeostasis via insulin signaling, Science(1979). 334 (2011) 670-674. https://doi.org/10.1126/science.1212782.

[122]

G. Storelli, A. Defaye, B. Erkosar, et al., Lactobacillus plantarum promotes drosophila systemic growth by modulating hormonal signals through TORdependent nutrient sensing, Cell Metab. 14 (2011) 403-414. https://doi.org/10.1016/j.cmet.2011.07.012.

[123]

B.Y. Reed, J.E. Zerwekh, K. Sakhaee, et al., Serum IGF 1 is low and correlated with osteoblastic surface in idiopathic osteoporosis, J. Bone Miner. Res. 10 (1995) 1218-1224. https://doi.org/10.1002/jbmr.5650100812.

[124]

J. Yan, J.W. Herzog, K. Tsang, et al., Gut microbiota induce IGF-1 and promote bone formation and growth, Proc. Natl. Acad. Sci. U.S.A. 113 (2016) E7554-E7563. https://doi.org/10.1073/pnas.1607235113.

[125]

J. Yan, A. Takakura, K. Zandi-Nejad, et al., Mechanisms of gut microbiotamediated bone remodeling, Gut Microbes. 9 (2018) 84-92. https://doi.org/10.1080/19490976.2017.1371893.

[126]

J. Yan, J.F. Charles, Gut microbiota and IGF-1, Calcif Tissue Int. 102 (2018) 406-414. https://doi.org/10.1007/s00223-018-0395-3.

[127]

F. Albright, P. Smith, A. Richardson, Post menopausal osteoporosis: its clinical features, JAMA. 116 (1941) 2465-2474.

[128]

C.S. Plottel, M.J. Blaser, Microbiome and malignancy, Cell Host Microbe. 10 (2011) 324-335. https://doi.org/10.1016/j.chom.2011.10.003.

[129]

J.M. Baker, L. Al-Nakkash, M.M. Herbst-Kralovetz, Estrogen-gut microbiome axis: Physiological and clinical implications, Maturitas. 103(2017) 45-53. https://doi.org/10.1016/j.maturitas.2017.06.025.

[130]

M. Kwa, C.S. Plottel, M.J. Blaser, et al., The intestinal microbiome and estrogen receptor-positive female breast cancer, J. Natl. Cancer Inst. 108(2016) 1-10. https://doi.org/10.1093/jnci/djw029.

[131]

V. Blasco-Baque, M. Serino, J.N. Vergnes, et al., High-fat diet induces periodontitis in mice through lipopolysaccharides (LPS) receptor signaling: Protective action of estrogens, PLoS One 7 (2012) 1-12. https://doi.org/10.1371/journal.pone.0048220.

[132]

J.A. Spanier, F.E. Nashold, C.G. Mayne, et al., Vitamin D and estrogen synergy in Vdr-expressing CD4+T cells is essential to induce Helios+FoxP3+T cells and prevent autoimmune demyelinating disease, J. Neuroimmunol. 286 (2015) 48-58. https://doi.org/10.1016/j.jneuroim.2015.06.015.

[133]

E. Seeman, T.J. Martin, Antiresorptive and anabolic agents in the prevention and reversal of bone fragility, Nat Rev Rheumatol. 15 (2019) 225-236. https://doi.org/10.1038/s41584-019-0172-3.

[134]

S. Khosla, R. Pacifici, Estrogen deficiency, postmenopausal osteoporosis, and age-related bone loss, Fourth Edi, Elsevier, 2013. https://doi.org/10.1016/B978-0-12-415853-5.00046-7.

[135]

A.M. Pack, Anticonvulsant-related bone disease, Fourth Edi, Elsevier, 2013. https://doi.org/10.1016/B978-0-12-415853-5.00050-9.

[136]

C. Hill, F. Guarner, G. Reid, et al., Expert consensus document: The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic, Nat Rev Gastroenterol Hepatol. 11 (2014) 506-514. https://doi.org/10.1038/nrgastro.2014.66.

[137]

L.R. Mccabe, R. Irwin, L. Schaefer, et al., Probiotic use decreases intestinal inflammation and increases bone density in healthy male but not female mice, J. Cell Physiol. 228 (2013) 1793-1798. https://doi.org/10.1002/jcp.24340.

[138]

R.A. Britton, R. Irwin, D. Quach, et al., Probiotic L. reuteri treatment prevents bone loss in a menopausal ovariectomized mouse Model, J. Cell Physiol. 229 (2014) 1822-1830. https://doi.org/10.1002/jcp.24636.

[139]

J. Zhang, K.J. Motyl, R. Irwin, et al., Loss of bone and Wnt10b expression in male type 1 diabetic mice is blocked by the probiotic Lactobacillus reuteri, Endocrinology. 156 (2015) 3169-3182. https://doi.org/10.1210/EN.2015-1308.

[140]

J.D. Schepper, F. Collins, N.D. Rios-Arce, et al., Involvement of the gut microbiota and barrier function in glucocorticoid-induced osteoporosis, J. Bone Miner. Res. 35 (2020) 801-820. https://doi.org/10.1002/jbmr.3947.

[141]

A.G. Nilsson, D. Sundh, F. Bäckhed, et al., Lactobacillus reuteri reduces bone loss in older women with low bone mineral density: a randomized, placebo-controlled, double-blind, clinical trial, J. Intern. Med. 284 (2018) 307-317. https://doi.org/10.1111/joim.12805.

[142]

C. Ohlsson, C. Engdahl, F. Fak, et al., Probiotics protect mice from ovariectomy-induced cortical bone loss, PLoS One. 9 (2014). https://doi.org/10.1371/journal.pone.0092368.

[143]

T. Maekawa, G. Hajishengallis, Topical treatment with probiotic Lactobacillus brevis CD2 inhibits experimental periodontal inflammation and bone loss, J. Periodontal Res. 49 (2014) 785-791. https://doi.org/10.1111/JRE.12164.

[144]

N. Montazeri-Najafabady, Y. Ghasemi, M.H. Dabbaghmanesh, et al., Supportive role of probiotic strains in protecting rats from ovariectomyinduced cortical bone loss, Probiotics Antimicrob Proteins. 11 (2019) 1145-1154. https://doi.org/10.1007/S12602-018-9443-6/FIGURES/4.

[145]

M.L. Jones, C.J. Martoni, S. Prakash, Oral supplementation with probiotic L. reuteri NCIMB 30242 increases mean circulating 25-hydroxyvitamin D: a post hoc analysis of a randomized controlled trial, J. Clin. Endocrinol Metab. 98 (2013) 2944-2951. https://doi.org/10.1210/JC.2012-4262.

[146]

K. Parvaneh, M. Ebrahimi, M.R. Sabran, et al., Probiotics (Bifidobacterium longum) increase bone mass density and upregulate Sparc and Bmp-2 genes in rats with bone loss resulting from ovariectomy, Biomed Res Int. 2015(2015). https://doi.org/10.1155/2015/897639.

[147]

F. Ca. Rodrigues, A.S.B. Castro, V.C. Rodrigues, et al., Yacon flour and Bifidobacterium longum modulate bone health in rats, J. Med. Food. 15(2012) 664-670. https://doi.org/10.1089/jmf.2011.0296.

[148]

H. Lan, W.H. Liu, H. Zheng, et al., Bifidobacterium lactis BL-99 protects mice with osteoporosis caused by colitis via gut inflammation and gut microbiota regulation, Food Funct. 13 (2022) 1482-1494. https://doi.org/10.1039/D1FO02218K.

[149]

D.E. Kim, J.K. Kim, S.K. Han, et al., Lactobacillus plantarum NK3 and Bifidobacterium longum NK49 alleviate bacterial vaginosis and osteoporosis in mice by suppressing NF-κB-Linked TNF-α Expression, J. Med. Food. 22(2019) 1022-1031. https://doi.org/10.1089/jmf.2019.4419.

[150]

S. Yuan, J. Shen, Bacteroides vulgatus diminishes colonic microbiota dysbiosis ameliorating lumbar bone loss in ovariectomized mice, Bone. 142(2021) 115710. https://doi.org/10.1016/j.bone.2020.115710.

[151]

M. Hatanaka, T. Hoshino, K. Tanaka, et al., Effect of Bacillus subtilis C-3102 on bone mineral density in healthy double-blind clinical trial Takuou TAKIMOTO, Biosci Microbiota Food Health. (2018).

[152]

G.R. Gibson, R. Hutkins, M.E. Sanders, et al., The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics, Nat Rev Gastroenterol Hepatol. 14(2017). https://doi.org/10.1038/s41575-021-00440-6.

[153]

Y. Bouhnik, L. Raskine, G. Simoneau, et al., The capacity of nondigestible carbohydrates to stimulate fecal bifidobacteria in healthy humans: a doubleblind, randomized, placebo-controlled, parallel-group, dose-response relation study, Am. J. Clin. Nutri. 80 (2004) 1658-1664. https://doi.org/10.1093/ajcn/80.6.1658.

[154]

O. Chonan, K. Matsumoto, M. Watanuki, Effect of galactooligosaccharides on calcium absroption and preventing bone loss in ovariectomized rats, Chemical Pharmaceutical Bulletin. 17 (1994) 1460-1462.

[155]

C.M. Weaver, B.R. Martin, C.H. Nakatsu, et al., Galactooligosaccharides improve mineral absorption and bone properties in growing rats through gut fermentation, J. Agric. Food Chem. 59 (2011) 6501-6510. https://doi.org/10.1021/jf2009777.

[156]

E.G.H.M. Van Den Heuvel, M.H.C. Schoterman, T. Muijs, Transgalactooligosaccharides stimulate calcium absorption in postmenopausal women, J. Nutr. 130 (2000) 2938-2942. https://doi.org/10.1093/jn/130.12.2938.

[157]

S.A. Jakeman, C.N. Henry, B.R. Martin, et al., Soluble corn fiber increases bone calcium retention in postmenopausal women in a dose-dependent manner: A randomized crossover trial, Am. J. Clin. Nutr. 104 (2016) 837-843. https://doi.org/10.3945/ajcn.116.132761.

[158]

M. Dolores Tenorio, I. Espinosa-Martos, G. Préstamo, et al., Soybean whey enhance mineral balance and caecal fermentation in rats, Eur. J. Nutr. 49(2010) 155-163. https://doi.org/10.1007/s00394-009-0060-8.

[159]

L. Raschka, H. Daniel, Mechanisms underlying the effects of inulin-type fructans on calcium absorption in the large intestine of rats, Bone. 37 (2005) 728-735. https://doi.org/10.1016/j.bone.2005.05.015.

[160]

L. Holloway, S. Moynihan, S.A. Abrams, et al., Effects of oligofructoseenriched inulin on intestinal absorption of calcium and magnesium and bone turnover markers in postmenopausal women, British J. Nutr. 97 (2007) 365-372. https://doi.org/10.1017/S000711450733674X.

[161]

M. De Vrese, J. Schrezenmeir, Probiotics, prebiotics, and synbiotics, Adv Biochem Engin/Biotechnol. 111 (2008) 1-66. https://doi.org/10.1007/10_2008_097.

[162]

D. Pérez-Conesa, G. Lopez, P. Abellan, et al., Bioavailability of calcium, magnesiumand phosphorus in rats fed probiotic, prebiotic and synbiotic powder follow-upinfant formulas and their effect on physiological and nutritional parameters, J. Sci. Food Agric. 1243 (2006) 2327-2336. https://doi.org/10.1002/jsfa.

[163]

D. Pérez-Conesa, G. Lopez, G. Ros, Effects of probiotic, prebiotic and synbiotic follow-up infant formulas on large intestine morphology and bone mineralisation in rats, J. Sci. Food Agric. 87 (2007) 1059-1068. https://doi.org/10.1002/jsfa.2812.

[164]

B. Adolphi, K.E. Scholz-Ahrens, M. de Vrese, et al., Short-term effect of bedtime consumption of fermented milk supplemented with calcium, inulin-type fructans and caseinphosphopeptides on bone metabolism in healthy, postmenopausal women, Eur. J. Nutr. 48 (2009) 45-53. https://doi.org/10.1007/s00394-008-0759-y.

[165]

M.L. Marco, M.E. Sanders, M. Gänzle, et al., The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on fermented foods, Nat Rev Gastroenterol Hepatol. 18 (2021) 196-208. https://doi.org/10.1038/s41575-020-00390-5.

[166]

S.S. Chiang, T.M. Pan, Antiosteoporotic effects of Lactobacillus-fermented soy skim milk on bone mineral density and the microstructure of femoral bone in ovariectomized mice, J. Agric. Food. Chem. 59 (2011) 7734-7742. https://doi.org/10.1021/jf2013716.

[167]

C.S. Lee, S.H. Lee, S.H. Kim, Bone-protective effects of Lactobacillus plantarum B719-fermented milk product, Int. J. Dairy Technol. 73 (2020) 706-717. https://doi.org/10.1111/1471-0307.12701.

[168]

M. Narva, J. Halleen, K. Väänänen, et al., Effects of Lactobacillus helveticus fermented milk on bone cells in vitro, Life Sci. 75 (2004) 1727-1734. https://doi.org/10.1016/j.lfs.2004.04.011.

[169]

M. Narva, R. Nevala, T. Poussa, et al., The effect of Lactobacillus helveticus fermented milk on acute changes in calcium metabolism in postmenopausal women, Eur. J. Nutr. 43 (2004) 61-68. https://doi.org/10.1007/s00394-004-0441-y.

[170]

M. Narva, M. Collin, T. Jauhiainen, et al., Effects of Lactobacillus helveticus fermented milk and its bioactive peptides on bone parameters in spontaneously hypertensive rats, Milchwissenschaft. 59 (2004) 359-363.

[171]

Y.Manios, G.Moschonis, K.Koutsikas, et al., Changes in body composition following a dietary and lifestyle intervention trial: the postmenopausal health study, Maturitas.62 (2009) 58-65.https://doi.org/10.1016/j.maturitas.2008.11.005.

[172]

Y. Manios, G. Moschonis, G. Trovas, et al., Changes in biochemical indexes of bone metabolism and bone mineral density after a 12-mo dietary intervention program: the postmenopausal health Study, Am. J. Clin. Nutr.86 (2007) 781-789. https://doi.org/10.1093/ajcn/86.3.781.

[173]

G. Moschonis, S. Kanellakis, N. Papaioannou, et al., Possible site-specific effect of an intervention combining nutrition and lifestyle counselling with consumption of fortified dairy products on bone mass: the postmenopausal health study Ⅱ, J. Bone Miner. Metab. 29 (2011) 501-506. https://doi.org/10.1007/S00774-010-0256-2/TABLES/2.

[174]

G. Moschonis, I. Katsaroli, G.P. Lyritis, et al., The effects of a 30-month dietary intervention on bone mineral density: the postmenopausal health study, British Journal of Nutrition. 104 (2010) 100-107. https://doi.org/10.1017/S000711451000019X.

[175]

G. Moschonis, Y. Manios, Skeletal site-dependent response of bone mineral density and quantitative ultrasound parameters following a 12-month dietary intervention using dairy products fortified with calcium and vitamin D: the Postmenopausal Health Study, Br. J. Nutr. 96 (2006) 1140-1148. https://doi.org/10.1017/BJN20061977.

[176]

J.-P. Bonjour, V. Benoit, O. Pourchaire, et al., Nutritional approach for inhibiting bone resorption in institutionalized elderly women with vitamin D insufficiency and high prevalence of fracture, J. Nutr. Health Aging. 15(2011) 404-409. https://doi.org/10.1007/s12603-011-0003-y.

[177]

M.Y. Tu, K.Y. Han, G.R.L. Chang, et al., Kefir peptides prevent estrogen deficiency-induced bone loss and modulate the structure of the gut microbiota in ovariectomized mice, Nutrients. 12 (2020) 3432. https://doi.org/10.3390/nu12113432.

[178]

M. Moazen, Z. Mazloom, N. Tanideh, et al., Osteoprotective effects of kefir fortified with omega-3 and vitamin C in ovariectomized rats, Int J Vitam Nutr Res, (2021) (2021). https://doi.org/10.1024/0300-9831/A000718.

[179]

Y. Ikeda, M. Iki, A. Morita, et al., Intake of fermented soybeans, natto, is associated with reduced bone loss in postmenopausal women: japanese population-based osteoporosis (JPOS) study, J. Nutr. 136 (2006) 1323-1328. https://doi.org/10.1093/jn/136.5.1323.

[180]

A. Kojima, S. Ikehara, K. Kamiya, et al., Natto intake is inversely associated with osteoporotic fracture risk in postmenopausal Japanese Women, J Nutr. 150 (2020) 599-605. https://doi.org/10.1093/jn/nxz292.

[181]

H. Katsuyama, S. Ideguchi, M. Fukunaga, et al., Promotion of bone formation by fermented soybean (Natto) intake in premenopausal women, J. Nutr. Sci. Vitaminol (Tokyo). 50 (2004) 114-120. https://doi.org/10.3177/jnsv.50.114.

[182]

S. Shin, H. Joung, A dairy and fruit dietary pattern is associated with a reduced likelihood of osteoporosis in Korean postmenopausal women, Br. J. Nutr. 110 (2013) 1926-1933. https://doi.org/10.1017/S0007114513001219.

[183]

S. Shin, J. Sung, H. Joung, A fruit, milk and whole grain dietary pattern is positively associated with bone mineral density in Korean healthy adults, Eur. J. Clin. Nutri. 69 (2015) 442-448. https://doi.org/10.1038/ejcn.2014.231.

Food Science and Human Wellness
Pages 1-15
Cite this article:
Duffuler P, Bhullar KS, Wu J. Targeting gut microbiota in osteoporosis: impact of the microbial based functional food ingredients. Food Science and Human Wellness, 2024, 13(1): 1-15. https://doi.org/10.26599/FSHW.2022.9250001

3878

Views

963

Downloads

14

Crossref

15

Web of Science

16

Scopus

0

CSCD

Altmetrics

Received: 28 June 2022
Revised: 12 September 2022
Accepted: 02 October 2022
Published: 01 June 2023
© 2024 Beijing Academy of Food Sciences. Publishing services by Tsinghua University Press.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return