AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (3.1 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

A review of salivary composition changes induced by fasting and its impact on health

Nurul Fadhilah Kamalul Aripina,bN. Idayu ZahidbMohd Aizat Abdul RahimcHashim YaacobdParvez I. HariseZubaidah Haji Abd. Rahimf( )Rauzah Hashimb,f( )
School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, Shah Alam 40450, Malaysia
Centre for Fundamental and Frontier Sciences in Nanostructure Self-Assembly, Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
Department of Oral and Craniofacial Sciences, Faculty of Dentistry, Universiti Malaya, Kuala Lumpur 50603, Malaysia
UMSC Dental Specialist Clinic, UM Dentistry Tower, Universiti Malaya, Medical Centre, Kuala Lumpur 50603, Malaysia
Leicester School of Allied Health Sciences, De Montfort University, Leicester LE1 9BH, United Kingdom
Chancellery (Research and Innovation), Universiti Malaya, Kuala Lumpur 50603, Malaysia

Peer review under responsibility of Tsinghua University Press.

Show Author Information

Abstract

Human saliva is an indispensable fluid that maintains a healthy oral cavity which otherwise can lead to oral diseases (dental caries and periodontitis). In addition, salivary metabolites and microbiome profile provide early detection of systemic diseases such as cancer and obesity. Salivary diagnostic has gained popularity due to its non-invasive sampling technique. Fasting (abstinence from food or drink or both) research for weight loss and improve health is common, but studies using fasting saliva are scarce. Some metabolites in fasting saliva have been reported with interesting results, which can be enhanced by considering different confounding factors. For example, fasting saliva contains higher salivary nitrite, which is related to nitric oxide (NO). NO is a vasodilator supporting the healthy function of endothelial cells and its deficiency is connected to many diseases. The timely supply of NO through exogenous and endogenous means is highlighted and the potential advantage of fasting salivary composition changes in relation to COVID-19 infection is speculated. This review aims to provide a general discussion on the salivary composition, properties, and functions of the whole saliva, including the health benefits of fasting.

References

[1]

F. Gonzalez Crussi, The body fantastic, MIT Press, 2021.

[2]

R. Toprani, D. Patel, Betel leaf: revisiting the benefits of an ancient Indian herb, South Asian J. Cancer. 2(3) (2013) 140-141. https://doi.org/10.4103/2278-330X.114120.

[3]

M. Ni, The yellow emperor's classic of medicine: a new translation of the neijing suwen with commentary, Shambhala Publications, 1995.

[4]
Why your saliva may be the real reason you have digestive issues. [cited 25 May 2022]; Available from: https://taoofmedicine.com/jade-saliva-taoistway-of-chewing-and-its-benefit/.
[5]

A. Abu-Rabia, The mystical power of saliva in the middle east and Islamic culture, Glob. Adv. Res. J. Med. Med. Sci. 4(2) (2015) 71-77.

[6]

B. Dalfardi, M.H. Esnaashary, H. Yarmohammadi, Rabies in medieval Persian literature-the Canon of Avicenna (980–1037 AD), Infect. Dis. Poverty. 3(1) (2014) 7. https://doi.org/10.1186/2049-9957-3-7.

[7]

S.K. Kar, P. Pandey, N. Singh, Understanding the psychological underpinning of spitting: relevance in the context of COVID-19, Indian J. Psychol. Med. 42(6) (2020) 577-578. https://doi.org/10.1177/0253717620962429.

[8]
A. Alluri. Covid-19: India's unwinnable battle against spitting. 2021 [cited 15 February 2022];Available from: https://www.bbc.co.uk/news/world-asiaindia-51908404.
[9]

C. De Camargo, The weaponising of COVID-19: contamination prevention and the use of spit hoods in UK policing, Police J. (2021) 1-22. https://doi.org/10.1177/0032258X211018787.

[10]

R.H. Chittenden, L.B. Mendel, H.C. Jackson, A further study of the influence of alcohol and alcoholic drinks upon digestion, with special reference to secretion, Am. J. Physiol. 1(2) (1898) 164-209. https://doi.org/10.1152/ajplegacy.1898.1.2.164.

[11]

M. Edgar, C. Dawes, D. O'Mullane, Saliva and oral health, Fourth ed, Stephen Hancocks Limited, 2012.

[12]

M. Saitou, E.A. Gaylord, E. Xu, et al., Functional specialization of human salivary glands and origins of proteins intrinsic to human saliva, Cell Rep. 33(7) (2020) 108402. https://doi.org/10.1016/j.celrep.2020.108402.

[13]

D.B. Ferguson, A. Shuttleworth, D.K. Whittaker, Oral bioscience, Churchill Livingstone, 2006.

[14]

C.L.B. Lavelle, Applied oral physiology, Second ed, Butterworth-Heinemann, 2013.

[15]

T. Kardos, J. Kieser, R. Kardos, Clinical oral biology, Third ed, Hughes Lithographics Ltd., 2006.

[16]

A.S. Cole, J.E. Eastoe, Biochemistry and oral biology, Second ed, Butterworth-Heinemann, 2014.

[17]

P.D.V. de Almeida, A.M.T. Grégio, M.A.N. Machado, et al., Saliva composition and functions: a comprehensive review, J. Contemp. Dent. 9(3)(2008) 72-80.

[18]

M.W.J. Dodds, D.A. Johnson, C.K. Yeh, Health benefits of saliva: a review, J. Dent. 33(3) (2005) 223-233. https://doi.org/10.1016/j.jdent.2004.10.009.

[19]

S.P. Humphrey, R.T. Williamson, A review of saliva: normal composition, flow, and function. J. Prosthet. Dent. 85(2) (2001) 162-169. https://doi.org/10.1067/mpr.2001.113778.

[20]

T. Vila, A.M. Rizk, A.S. Sultan, et al., The power of saliva: antimicrobial and beyond. PLoS Pathog. 15(11) (2019) e1008058. https://doi.org/10.1371/journal.ppat.1008058.

[21]

K. Sagredo-Olivares, C. Morales-Gómez, J. Aitken-Saavedra, Evaluation of saliva as a complementary technique to the diagnosis of COVID-19: a systematic review, Med. Oral Patol. Oral Cir. Bucal. 26(4) (2021) e526-e532. https://doi.org/10.4317/medoral.24424.

[22]

S. Pushalkar, B. Paul, Q. Li, et al., Electronic cigarette aerosol modulates the oral microbiome and increases risk of infection, iScience 23(3) (2020) 100884. https://doi.org/10.1016/j.isci.2020.100884.

[23]

Z.H.A. Rahim, H.B. Yaacob, Effects of fasting on saliva composition, J. Nihon Univ. Sch. Dent. 33(4) (1991) 205-210. https://doi.org/10.2334/josnusd1959.33.205.

[24]

M. Chennaoui, F. Desgorces, C. Drogou, et al., Effects of Ramadan fasting on physical performance and metabolic, hormonal, and inflammatory parameters in middle-distance runners, Appl. Physiol. Nutr. Metab. 34(4)(2009) 587-594. https://doi.org/10.1139/H09-014.

[25]

J.O. Lundberg, E. Weitzberg, J.M. Lundberg, et al., Intragastric nitric oxide production in humans: measurements in expelled air, Gut 35(11) (1994) 1543-1546. https://doi.org/10.1136/gut.35.11.1543.

[26]

A.J. Webb, N. Patel, S. Loukogeorgakis, et al., Acute blood pressure lowering, vasoprotective, and antiplatelet properties of dietary nitrate via bioconversion to nitrite, Hypertension 51(3) (2008) 784-790. https://doi.org/10.1161/HYPERTENSIONAHA.107.103523.

[27]

L.L. Fernandes, V.B. Pacheco, L. Borges, et al., Saliva in the diagnosis of COVID-19: a review and new research directions, J. Dent. Res. 99(13) (2020) 1435-1443. https://doi.org/10.1177/0022034520960070.

[28]

Y.P. Lu, J.W. Huang, I.N. Lee, et al., A portable system to monitor saliva conductivity for dehydration diagnosis and kidney healthcare, Sci. Rep. 9(1)(2019) 14771. https://doi.org/10.1038/s41598-019-51463-8.

[29]

T. Sri Santosh, R. Parmar, H. Anand, et al., A review of salivary diagnostics and its potential implication in detection of Covid-19, Cureus 12(4) (2020) e7708. https://doi.org/10.7759/cureus.7708.

[30]

S. Chandra, Textbook of dental and oral histology with embryology and multiple choice questions, Second ed, Jaypee Brothers Medical Publishers, 2010.

[31]

A. Nanci, Ten Cate's oral histology, Ninth ed, Elsevier, 2017.

[32]

M.J. Fehrenbach, T. Popowics, Illustrated dental embryology, histology, and anatomy, Fourth ed, Saunders, 2015.

[33]

A.R. Hand, M.E. Frank, Fundamentals of oral histology and physiology, Wiley-Blackwell, 2015.

[34]

J. Sneyd, E. Vera-Sigüenza, J. Rugis, et al., Calcium dynamics and water transport in salivary acinar cells, Bull. Math. Biol. 83(4) (2021) 31. https://doi.org/10.1007/s11538-020-00841-9.

[35]
R.W.A. Linden, The scientific basis of eating: taste, smell, mastication, salivation and swallowing and their dysfunctions, Karger, Vol. 9.1998.
[36]

W.M. Edgar, Saliva: its secretion, composition and functions, Br. Dent. J. 172(8) (1992) 305-312. https://doi.org/10.1038/sj.bdj.4807861

[37]

G. Feron, Unstimulated saliva: background noise in taste molecules, J. Texture Stud. 50(1) (2019) 6-18. https://doi.org/10.1111/jtxs.12369.

[38]

I. Bensahi, C. Houari, A. Elfhal, et al., 0367 : does fasting in Ramadan affect right ventricular diastolic function in hypertensive patients? A Moroccan prospective observational study, Arch. Cardiovasc. Dis. Suppl. 7(2) (2015) 185. https://doi.org/10.1016/S1878-6480(15)30146-4.

[39]
R.H. Booy, Kondisi saliva individu saat berpuasa di bulan Ramadhan, in Fakultas Kedokteran Gigi 2016, Universitas Hasanuddin.
[40]

R. Sariri, A. Varasteh, A. Erfani, Alternations in salivary glucose during Ramadan fasting, Health. 2(7) (2010) 769-772. https://doi.org/10.4236/health.2010.27116.

[41]

H. Ben-Aryeh, A. Shalev, R. Szargel, et al., The salivary flow rate and composition of whole and parotid resting and stimulated saliva in young and old healthy subjects, Biochem. Med. Metab. Biol. 36(2) (1986) 260-265. https://doi.org/10.1016/0885-4505(86)90134-9.

[42]

M. Navazesh, C. Christensen, V. Brightman, Clinical criteria for the diagnosis of salivary gland hypofunction, J. Dent. Res. 71(7) (1992) 1363-1369. https://doi.org/10.1177/00220345920710070301.

[43]

J.A. Ship, P.C. Fox, B.J. Baum, How much saliva is enough? J. Am. Dent. Assoc. 122(3) (1991) 63-69. https://doi.org/10.14219/jada.archive.1991.0098.

[44]

W.M. Edgar, Saliva and dental health. Clinical implications of saliva: report of a consensus meeting, Br. Dent. J. 169(4) (1990) 96-98. https://doi.org/10.1038/sj.bdj.4807284.

[45]

E. Sukuroglu, G.N. Güncü, K. Kilinc, et al., Using salivary nitrite and nitrate levels as a biomarker for drug-induced gingival overgrowth, Front. Cell. Infect. Microbiol. 5 (2015) 87. https://doi.org/10.3389/fcimb.2015.00087.

[46]

M.J. Levine, Development of artificial salivas, Crit. Rev. Oral Biol. Med. 4(3) (1993) 279-286. https://doi.org/10.1177/10454411930040030401.

[47]

A.M. Lynge Pedersen, D. Belstrøm, The role of natural salivary defences in maintaining a healthy oral microbiota, J. Dent. 80 (2019) S3-S12. https://doi.org/10.1016/j.jdent.2018.08.010.

[48]

I.H. Valdez, P.C. Fox, Interactions of the salivary and gastrointestinal systems, J. Dig. Dis. 9(3) (1991) 125-132. https://doi.org/10.1159/000171298.

[49]

B. Kumar, The composition, function and role of saliva in maintaining oral health: a review, Int. J. Contemp. Dent. Med. Rev. (2017) 1-6. https://doi.org/10.15713/ins.ijcdmr.121.

[50]

G.N. Illahi, R. Tamril, R. Samad, Concentration of total protein and degree of acidity (pH) of saliva when fasting and after breakfasting, J. Dentomaxillofacial Sci. 1(1) (2016) 36-38. https://doi.org/10.15562/jdmfs.v1i1.22.

[51]

C. Dawes, C. Dong, The flow rate and electrolyte composition of whole saliva elicited by the use of sucrose-containing and sugar-free chewinggums, Arch. Oral Biol. 40(8) (1995) 699-705. https://doi.org/10.1016/0003-9969(95)00037-P.

[52]

L.M.D. Macpherson, C. Dawes, Urea concentration in minor mucous gland secretions and the effect of salivary film velocity on urea metabolism by Streptococcus vestibularis in an artificial plaque, J. Periodontal Res. 26(5)(1991) 395-401. https://doi.org/10.1111/j.1600-0765.1991.tb01728.x.

[53]

Y. Selviani, N.W. Mas'ud, A.N.I. Fitri, et al., Inorganic component of saliva during fasting and after fast break, J. Dentomaxillofacial Sci. 1(2) (2016) 125-128. https://doi.org/10.15562/jdmfs.v1i2.10.

[54]

B.S. Gow, Analysis of metals in saliva by Atomic Absorption Spectroscopy. I. Calcium, J. Dent. Res. 44(5) (1965) 885-889. https://doi.org/10.1177/00220345650440052201.

[55]

C. Bruun, A. Thylstrup, Fluoride in whole saliva and dental caries experience in areas with high or low concentrations of fluoride in the drinking water, Caries Res. 18(5) (1984) 450-456. https://doi.org/10.1159/000260802.

[56]

R.A. Jalil, F.P. Ashley, R.F. Wilson, et al., Concentrations of thiocyanate, hypothiocyanite, 'free' and 'total' lysozyme, lactoferrin and secretory lgA in resting and stimulated whole saliva of children aged 12–14 years and the relationship with plaque accumulation and gingivitis, J. Periodontal Res. 28(2) (1993) 130-136. https://doi.org/10.1111/j.1600-0765.1993.tb01060.x.

[57]

R.A. Jalil, Concentrations of thiocyanate and hypothiocyanite in the saliva of young adults, J. Nihon Univ. Sch. Dent. 36(4) (1994) 254-260. https://doi.org/10.2334/josnusd1959.36.254.

[58]

S.A. Payment, B. Liu, R.V. Soares, et al., The effects of duration and intensity of stimulation on total protein and mucin concentrations in resting and stimulated whole saliva, J. Dent. Res. 80(6) (2001) 1584-1587. https://doi.org/10.1177/00220345010800062101.

[59]

A.M. Contucci, R. Inzitari, S. Agostino, et al., Statherin levels in saliva of patients with precancerous and cancerous lesions of the oral cavity: a preliminary report, Oral Dis. 11(2) (2005) 95-99. https://doi.org/10.1111/j.1601-0825.2004.01057.x.

[60]

O.N. Develioglu, M. Kucur, H.D. Ipek, et al., Effects of Ramadan fasting on serum immunoglobulin G and M, and salivary immunoglobulin A concentrations, J. Int. Med. Res. 41(2) (2013) 463-472. https://doi.org/10.1177/0300060513476424.

[61]

B. Gandara, K. Izutsu, E. Truelove, et al., Sialochemistry of whole, parotid, and labial minor gland saliva in patients with oral lichen planus, J. Dent. Res. 66(11) (1987) 1619-1622. https://doi.org/10.1177/00220345870660110201.

[62]

S.A. Rayment, B. Liu, R.V. Soares, et al., The effects of duration and intensity of stimulation on total protein and mucin concentrations in resting and stimulated whole saliva, J. Dent. Res. 80(6) (2001) 1584-1587.

[63]

A. Bahammam, Effect of fasting during Ramadan on sleep architecture, daytime sleepiness and sleep pattern, Sleep Biol. Rhythms. 2(2) (2004) 135-143. https://doi.org/10.1111/j.1479-8425.2004.00135.x.

[64]

R. Bansil, J.P. Celli, J.M. Hardcastle, et al., The influence of mucus microstructure and rheology in helicobacter pylori infection, Front. Immunol. 4 (2013) 310. https://doi.org/10.3389/fimmu.2013.00310.

[65]

C.E. Wagner, B.S. Turner, M. Rubinstein, et al., A rheological study of the association and dynamics of MUC5AC gels, Biomacromolecules 18(11)(2017) 3654-3664. https://doi.org/10.1021/acs.biomac.7b00809.

[66]

H. Inoue, K. Ono, W. Masuda, et al., Rheological properties of human saliva and salivary mucins, J. Oral Biosci. 50(2) (2008) 134-141. https://doi.org/10.1016/S1349-0079(08)80027-8.

[67]

A.V. Amerongen, J.G. Bolscher, E.C. Veerman, Salivary mucins: protective functions in relation to their diversity, Glycobiology 5(8) (1995) 733-740. https://doi.org/10.1093/glycob/5.8.733.

[68]

G.C. Hansson, Mucins and the microbiome, Annu. Rev. Biochem. 89(1)(2020) 769-793. https://doi.org/10.1146/annurev-biochem-011520-105053.

[69]

S.J. Haward, J.A. Odell, M. Berry, et al., Extensional rheology of human saliva, Rheol. Acta. 50(11-12) (2011) 869-879. https://doi.org/10.1007/s00397-010-0494-1.

[70]

A. Sarkar, F. Xu, S. Lee, Human saliva and model saliva at bulk to adsorbed phases-similarities and differences, Adv. Colloid Interface Sci. 273 (2019) 102034. https://doi.org/10.1016/j.cis.2019.102034.

[71]

W. van't Hof, E.C.I. Veerman, A.V. Nieuw Amerongen, et al., Antimicrobial defense systems in saliva, Monogr Oral Sci. 24 (2014) 40-51. https://doi.org/10.1159/000358783.

[72]

I. Nasidze, J. Li, D. Quinque, et al., Global diversity in the human salivary microbiome, Genome Res. 19(4) (2009) 636-643. https://doi.org/10.1101/gr.084616.108.

[73]

G. Berg, D. Rybakova, D. Fischer, et al., Microbiome definition re-visited: old concepts and new challenges, Microbiome 8(1) (2020) 103. https://doi.org/10.1186/s40168-020-00875-0.

[74]

D. Belstrøm, The salivary microbiota in health and disease, J. Oral Microbiol. 12(1) (2020) 1723975. https://doi.org/10.1080/20002297.2020.1723975.

[75]

R.J. Lamont, H. Koo, G. Hajishengallis, The oral microbiota: dynamic communities and host interactions, Nat. Rev. Microbiol. 16(12) (2018) 745-759. https://doi.org/10.1038/s41579-018-0089-x.

[76]

S.M. Dabdoub, S.M. Ganesan, P.S. Kumar, Comparative metagenomics reveals taxonomically idiosyncratic yet functionally congruent communities in periodontitis, Sci. Rep. 6(1) (2016) 38993. https://doi.org/10.1038/srep38993.

[77]

M. Lu, S. Xuan, Z. Wang, Oral microbiota: a new view of body health, Food Sci. Hum. Well. 8(1) (2019) 8-15. https://doi.org/10.1016/j.fshw.2018.12.001.

[78]

A.D. Francesco, C.D. Germanio, M. Bernier, et al., A time to fast, Science 362(6416) (2018) 770-775. https://doi.org/10.1126/science.aau2095.

[79]

A. Attinà, C. Leggeri, R. Paroni, et al., Fasting: how to guide, Nutrients 13(5) (2021) 1570. https://doi.org/10.3390/nu13051570.

[80]

C. Laurens, F. Grundler, A. Damiot, et al., Is muscle and protein loss relevant in long-term fasting in healthy men? A prospective trial on physiological adaptations, J. Cachexia Sarcopenia Muscle. 12(6) (2021) 1690-1703. https://doi.org/10.1002/jcsm.12766.

[81]

M. Dote-Montero, G. Sanchez-Delgado, E. Ravussin, Effects of intermittent fasting on cardiometabolic health: an energy metabolism perspective, Nutrients 14(3) (2022) 489. https://doi.org/10.3390/nu14030489.

[82]

K. Gabel, K.K. Hoddy, N. Haggerty, et al., Effects of 8-hour time restricted feeding on body weight and metabolic disease risk factors in obese adults: a pilot study, Nutr. Healthy Aging 4 (2018) 345-353. https://doi.org/10.3233/NHA-170036.

[83]

S. Gill, S. Panda, A smartphone app reveals erratic diurnal eating patterns in humans that can be modulated for health benefits, Cell Metab. 22(5) (2015) 789-798. https://doi.org/10.1016/j.cmet.2015.09.005.

[84]

R. Antoni, T.M. Robertson, M.D. Robertson, et al., A pilot feasibility study exploring the effects of a moderate time-restricted feeding intervention on energy intake, adiposity and metabolic physiology in free-living human subjects, J. Nutr. Sci. 7 (2018) e22. https://doi.org/10.1017/jns.2018.13.

[85]

W. Currenti, J. Godos, S. Castellano, et al., Time restricted feeding and mental health: a review of possible mechanisms on affective and cognitive disorders, Int. J. Food Sci. Nutr. 72(6) (2021) 723-733. https://doi.org/10.108 0/09637486.2020.1866504.

[86]

J. George F. Cahill, Fuel Metabolism in Starvation, Annu. Rev. Nutr. 26(1)(2006) 1-22. https://doi.org/10.1146/annurev.nutr.26.061505.111258.

[87]

M.C. Stockman, D. Thomas, J. Burke, et al., Intermittent fasting: is the wait worth the weight? Curr. Obes. Rep. 7(2) (2018) 172-185. https://doi.org/10.1007/s13679-018-0308-9.

[88]

R.E. Patterson, D.D. Sears, Metabolic effects of intermittent fasting, Annu. Rev. Nutr. 37(1) (2017) 371-393. https://doi.org/10.1146/annurevnutr-071816-064634.

[89]

A. Parvaresh, R. Razavi, B. Abbasi, et al., Modified alternate-day fasting vs. calorie restriction in the treatment of patients with metabolic syndrome: a randomized clinical trial. Complement, Ther. Med. 47 (2019) 102187. https://doi.org/10.1016/j.ctim.2019.08.021.

[90]

N. Lessan, T. Ali, Energy metabolism and intermittent fasting: the ramadan perspective, Nutrients 11(5) (2019) 1192. https://doi.org/10.3390/nu11051192.

[91]
[92]

S. Sobariah, S.A. Marliyati, The effect of monday and thursday fasting on body weight and body fat percentage among overweight and obese men, Malays. J. Med. Sci. (2020).

[93]

J.F. Trepanowski, R.J. Bloomer, The impact of religious fasting on human health. Nutr. J. 9(1) (2010) 57. https://doi.org/10.1186/1475-2891-9-57.

[94]

R.J. Bloomer, M.M. Kabir, R.E. Canale, et al., Effect of a 21 day Daniel Fast on metabolic and cardiovascular disease risk factors in men and women, Lipids Health Dis. 9 (2010) 94. https://doi.org/10.1186/1476-511x-9-94.

[95]

S. Kannan, S. Mahadevan, K. Seshadri, et al., Fasting practices in Tamil Nadu and their importance for patients with diabetes, Indian J. Endocrinol. Metab. 20(6) (2016) 858-862. https://doi.org/10.4103/2230-8210.192921.

[96]
C. Venegas-Borsellino, Sonikpreet, R.G. Martindale, From religion to secularism: the benefits of fasting, 7(3) (2018) 131-138. https://doi.org/10.1007/s13668-018-0233-2.
[97]

C.W. Chen, Y.L. Lin, T.K. Lin, et al., Total cardiovascular risk profile of Taiwanese vegetarians, Eur. J. Clin. Nutr. 62(1) (2008) 138-144. https://doi.org/10.1038/sj.ejcn.1602689.

[98]

L.T. Ho-Pham, P.L.T. Nguyen, T.T.T. Le, et al., Veganism, bone mineral density, and body composition: a study in Buddhist nuns, Osteoporos. Int. 20(12) (2009) 2087-2093. https://doi.org/10.1007/s00198-009-0916-z.

[99]

P. Dave, R. Rojas-Cessa, Z. Dong, et al., Survey of saliva components and virus sensors for prevention of COVID-19 and infectious diseases, Biosensors 11(1) (2020) 14. https://doi.org/10.3390/bios11010014.

[100]

N. Khaleghifar, R. Sariri, M. Aghamaali, et al., The effect of Ramadan fasting on biochemistry of saliva, J. Appl. Biotechnol. Rep. 4 (2017) 583-586.

[101]

C. Allen, B. Sellers, M. Smith, et al., Effects of intermittent fasting and physical activity on salivary expression of reduced glutathione and interleukin-1β, Int. J. Exerc. Sci. 13(7) (2020) 1063-1071.

[102]

R.E. Patterson, G.A. Laughlin, A.Z. LaCroix, et al., Intermittent fasting and human metabolic health, J. Acad. Nutr. Diet. 115(8) (2015) 1203-1212. https://doi.org/10.1016/j.jand.2015.02.018.

[103]
M. Haddad. Ramadan 2021: Fasting hours around the world. 2021 [cited 23 January 2022];Available from: https://www.aljazeera.com/news/2021/4/7/ramadan-2021-fasting-hours-around-the-world.
[104]

M. Maislos, N. Khamaysi, A. Assali, et al., Marked increase in plasma highdensity-lipoprotein cholesterol after prolonged fasting during Ramadan, Am. J. Clin. Nutr. 57(5) (1993) 640-642. https://doi.org/10.1093/ajcn/57.5.640.

[105]

H.M. Al Hourani, M.F. Atoum, S. Akel, et al., Effects of Ramadan fasting on some haematological and biochemical parameters, Jordan J. Biol. Sci. 2(3)(2009) 103-108.

[106]

A. Afrasiabi, S. Hassanzadeh, R. Sattarivand, et al., Effects of Ramadan fasting on serum lipid profiles on 2 hyperlipidemic groups with or without diet pattern, Saudi Med. J. 24(1) (2003) 23-26.

[107]
I. Mirzaii-Dizgah, B. Vasaghi-Gharamaleki, Unstimulated whole saliva cortisol levels during Ramadan in Iranian muslims, 15(3) (2014) 341-344. https://doi.org/10.5005/jp-journals-10024-1540.
[108]
M. Ünalacak, İ.H. Kara, D. Baltaci, et al., Effects of Ramadan fasting on biochemical and hematological parameters and cytokines in healthy and obese individuals, 9(2) (2011) 157-161. https://doi.org/10.1089/met.2010.0084.
[109]

J. Kjeldsen-Kragh, M. Haugen, C.F. Borchgrevink, et al., Controlled trial of fasting and one-year vegetarian diet in rheumatoid arthritis, Lancet 338(8772) (1991) 899-902. https://doi.org/10.1016/0140-6736(91)91770-u.

[110]

J. Kim, M. Lee, B. Baldwin-Hunter, et al., Minimal associations between short-term dietary intake and salivary microbiome composition, Microorganisms 9(8) (2021) 1739. https://doi.org/10.3390/microorganisms9081739.

[111]

C. Ozkul, M. Yalinay, T. Karakan, Structural changes in gut microbiome after Ramadan fasting: a pilot study, Benef. Microbes. 11(3) (2020) 227-233. https://doi.org/10.3920/BM2019.0039.

[112]

I. Ali, K. Liu, D. Long, et al., Ramadan fasting leads to shifts in human gut microbiota structured by dietary composition, Front. Microbiol. 12 (2021). https://doi.org/10.3389/fmicb.2021.642999.

[113]

J. Su, Y. Wang, X. Zhang, et al., Remodeling of the gut microbiome during Ramadan-associated intermittent fasting, Am. J. Clin. Nutr. 113(5) (2021) 1332-1342. https://doi.org/10.1093/ajcn/nqaa388.

[114]

A. Maifeld, H. Bartolomaeus, U. Löber, et al., Fasting alters the gut microbiome reducing blood pressure and body weight in metabolic syndrome patients, Nat. Commun. 12(1) (2021). https://doi.org/10.1038/s41467-021-22097-0.

[115]

F.C.S. Pinto, A.A.M. Silva, S.L. Souza, Repercussions of intermittent fasting on the intestinal microbiota community and body composition: a systematic review, Nutr. Rev. 80(3) (2022) 613-628. https://doi.org/10.1093/nutrit/nuab108.

[116]

L. Ma, L. Hu, X. Feng, et al., Nitrate and nitrite in health and disease, Aging Dis. 9(5) (2018) 938-938. https://doi.org/10.14336/AD.2017.1207.

[117]

D. Forman, S. Al-Dabbagh, R. Doll, Nitrates, nitrites and gastric cancer in Great Britain, Nature 313(6004) (1985) 620-625. https://doi.org/10.1038/313620a0.

[118]

P. Song, L. Wu, W. Guan, Dietary nitrates, nitrites, and nitrosamines intake and the risk of gastric cancer: a meta-analysis, Nutrients 7(12) (2015) 9872-9895. https://doi.org/10.3390/nu7125505.

[119]

J.O. Lundberg, E. Weitzberg, M.T. Gladwin, The nitrate–nitrite–nitric oxide pathway in physiology and therapeutics, Nat. Rev. Drug Discov. 7(2) (2008) 156-167. https://doi.org/10.1038/nrd2466.

[120]

G. Eisenbrand, B. Spiegelhalder, R. Preussmann, Nitrate and nitrite in saliva, Oncology. 37(4) (1980) 227-231. https://doi.org/10.1159/000225441

[121]

B.A. Haddock, C.W. Jones, Bacterial respiration, Bacteriol. Rev. 41(1)(1977) 47-99. https://doi.org/10.1128/br.41.1.47-99.1977.

[122]

H. Björne, J. Petersson, M. Phillipson, et al., Nitrite in saliva increases gastric mucosal blood flow and mucus thickness, J. Clin. Investig. 113(1)(2004) 106-114. https://doi.org/10.1172/JCI19019.

[123]

S.J. Klebanoff, Reactive nitrogen intermediates and antimicrobial activity: role of nitrite, Free Radic. Biol. 14(4) (1993) 351-360. https://doi.org/10.1016/0891-5849(93)90084-8.

[124]

N.S. Bryan, J.L. Ivy, Inorganic nitrite and nitrate: evidence to support consideration as dietary nutrients, Nutr. Res. 35(8) (2015) 643-654. https://doi.org/10.1016/j.nutres.2015.06.001.

[125]

N.S. Bryan, D.D. Alexander, J.R. Coughlin, et al., Ingested nitrate and nitrite and stomach cancer risk: an updated review, Food Chem. Toxicol. 50(10)(2012) 3646-3665. https://doi.org/10.1016/j.fct.2012.07.062.

[126]

R.T. Zamanian, C.V. Pollack, M.A. Gentile, et al., Outpatient inhaled nitric oxide in a patient with vasoreactive idiopathic pulmonary arterial hypertension and COVID-19 infection, Am. J. Respir. Crit. Care Med. 202(1) (2020) 130-132. https://doi.org/10.1164/rccm.202004-0937LE.

[127]

S. Divakaran, J. Loscalzo, The role of nitroglycerin and other nitrogen oxides in cardiovascular therapeutics, J. Am. Coll. Cardiol. 70(19) (2017) 2393-2410. https://doi.org/10.1016/j.jacc.2017.09.1064.

[128]

G.M. Sokol, G.G. Konduri, K.P. Van Meurs, Inhaled nitric oxide therapy for pulmonary disorders of the term and preterm infant, Semin. Perinatol. 40(6)(2016) 356-369. https://doi.org/10.1053/j.semperi.2016.05.007.

[129]

N.S. Bryan, Nitric oxide enhancement strategies, Future Sci. OA. 1(1) (2015) FSO48. https://doi.org/10.4155/fso.15.48.

[130]

J. Kobayashi, Lifestyle-mediated nitric oxide boost to prevent SARSCoV-2 infection: a perspective, Nitric Oxide 115 (2021) 55-61. https://doi.org/10.1016/j.niox.2021.08.001.

[131]

E. Calabretta, J.M. Moraleda, M. Iacobelli, et al., COVID-19-induced endotheliitis: emerging evidence and possible therapeutic strategies, Br. J. Haematol. 193(1) (2021) 43-51. https://doi.org/10.1111/bjh.17240.

[132]

J. Kobayashi, K. Ohtake, H. Uchida, NO-rich diet for lifestyle-related diseases, Nutrients 7(6) (2015) 4911-4937. https://doi.org/10.3390/nu7064911.

[133]

A. Banerjee, L. Pasea, S. Harris, et al., Estimating excess 1-year mortality associated with the COVID-19 pandemic according to underlying conditions and age: a population-based cohort study, Lancet. 395(10238) (2020) 1715-1725. https://doi.org/10.1016/S0140-6736(20)30854-0.

[134]

B. Ozdemir, A. Yazici, Could the decrease in the endothelial nitric oxide (NO) production and NO bioavailability be the crucial cause of COVID-19 related deaths? Med. Hypotheses. 144 (2020) 109970. https://doi.org/10.1016/j.mehy.2020.109970.

[135]

M.P. Nägele, B. Haubner, F.C. Tanner, et al., Endothelial dysfunction in COVID-19: current findings and therapeutic implications, Atherosclerosis 314 (2020) 58-62. https://doi.org/10.1016/j.atherosclerosis.2020.10.014.

[136]

N.G. Hord, Y. Tang, N.S. Bryan, Food sources of nitrates and nitrites: the physiologic context for potential health benefits, Am. J. Clin. Nutr. 90(1)(2009) 1-10. https://doi.org/10.3945/ajcn.2008.27131.

[137]

H. Yamasaki, Blood nitrate and nitrite modulating nitric oxide bioavailability: potential therapeutic functions in COVID-19, Nitric Oxide 103 (2020) 29-30. https://doi.org/10.1016/j.niox.2020.07.005.

[138]

J.M. Mir, R.C. Maurya, Nitric oxide as a therapeutic option for COVID-19 treatment: a concise perspective, New J. Chem. 45(4) (2021) 1774-1784. https://doi.org/10.1039/D0NJ03823G.

[139]

N.C. Adusumilli, D. Zhang, J.M. Friedman, et al., Harnessing nitric oxide for preventing, limiting and treating the severe pulmonary consequences of COVID-19, Nitric Oxide 103 (2020) 4-8. https://doi.org/10.1016/j.niox.2020.07.003.

[140]

A.T. Williams, C.R. Muller, K. Govender, et al., Control of systemic inflammation through early nitric oxide supplementation with nitric oxide releasing nanoparticles, Free Radic. Biol. 161 (2020) 15-22. https://doi.org/10.1016/j.freeradbiomed.2020.09.025.

[141]

J. Wang, F. Mei, L. Bai, et al., Serum nitrite and nitrate: a potential biomarker for post-COVID-19 complications? Free Radic. Biol. 175 (2021) 216-225. https://doi.org/10.1016/j.freeradbiomed.2021.08.237.

[142]

W. Fang, J. Jiang, L. Su, et al., The role of NO in COVID-19 and potential therapeutic strategies. Free Radic. Biol. Med. 163 (2021) 153-162. https://doi.org/10.1016/j.freeradbiomed.2020.12.008.

[143]

S. Ruhl, The scientific exploration of saliva in the post-proteomic era: from database back to basic function, Expert Rev. Proteom. 9(1) (2012) 85-96. https://doi.org/10.1586/epr.11.80.

[144]

H. Xu, L. Zhong, J. Deng, et al., High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa, Int. J. Oral Sci. 12(1) (2020) 8. https://doi.org/10.1038/s41368-020-0074-x.

[145]

L.V. Bel'skaya, E.A. Sarf, N.A. Makarova, Use of Fourier Transform IR Spectroscopy for the study of saliva composition, J. Appl. Spectrosc. 85(3)(2018) 445-451. https://doi.org/10.1007/s10812-018-0670-0.

[146]

N. Pisanic, P.R. Randad, K. Kruczynski, et al., COVID-19 serology at population scale: SARS-CoV-2-specific antibody responses in saliva, J. Clin. Microbiol. 59(1) (2020) e02204-e02220. https://doi.org/10.1128/JCM.02204-20.

[147]

S.E. Faustini, S.E. Jossi, M. Perez-Toledo, et al., Development of a highsensitivity ELISA detecting IgG, IgA and IgM antibodies to the SARSCoV-2 spike glycoprotein in serum and saliva, Immunology 164(1) (2021) 135-147. https://doi.org/10.1111/imm.13349.

[148]

T. Mitsui, M. Fujihara, R. Harasawa, Salivary nitrate and nitrite may have antimicrobial effects on Desulfovibrio species, Biosci. Biotechnol. Biochem. 77(12) (2013) 2489-2491. https://doi.org/10.1271/bbb.130521.

[149]

N. Robinson, A treatise on the virtues and efficacy of a crust of bread: eat early in a morning fasting, to which are added some particular remarks concerning the great cures accomplished by the saliva or fasting spittle, E. Robinson, J. Fuller, 1756.

[150]

D.T. Leung, S.K. Das, M.A. Malek, et al., Impact of Ramadan on clinical and microbiologic parameters of patients seen at a diarrheal hospital in urban Dhaka, Bangladesh, 1996-2012, Am. J. Trop. Med. Hyg. 90(2) (2014) 294-298. https://doi.org/10.4269/ajtmh.13-0513.

[151]

M. Almulhem, R. Thayakaran, S. Hanif, et al., Ramadan is not associated with increased infection risk in Pakistani and Bangladeshi populations: findings from controlled interrupted time series analysis of UK primary care data, PLoS One 17(1) (2022) e0262530. https://doi.org/10.1371/journal.pone.0262530.

[152]

S. Waqar, M. Asaria, N. Ghouri, et al., Assessing the impact of Ramadan fasting on COVID-19 mortality in the UK, J. Glob. Health. 11 (2021) 03060. https://doi.org/10.7189/jogh.11.03060.

[153]

D. Malamud, W.R. Abrams, C.A. Barber, et al., Antiviral activities in human saliva, Adv. Dent. Res. 23(1) (2011) 34-37. https://doi.org/10.1177/0022034511399282.

[154]

H.R. Conti, O. Baker, A.F. Freeman, et al., New mechanism of oral immunity to mucosal candidiasis in hyper-IgE syndrome, Mucosal Immunol. 4(4) (2011) 448-455. https://doi.org/10.1038/mi.2011.5.

[155]

A. Tada, H. Senpuku, The impact of oral health on respiratory viral infection, Dent. J. (Basel). 9(4) (2021). https://doi.org/10.3390/dj9040043.

[156]

R.N. D'Souza, F.S. Collins, V.H. Murthy, Oral health for all-realizing the promise of science, N. Engl. J. Med. 386(9) (2022) 809-811.https://doi.org/10.1056/NEJMp2118478.

[157]

K.K. Clifton, C.X. Ma, L. Fontana, et al., Intermittent fasting in the prevention and treatment of cancer, CA: Cancer J. Clin. 71(6) (2021) 527-546.https://doi.org/10.3322/caac.21694.

[158]

S. Park, B.K. Shin, Intermittent fasting with a high-protein diet mitigated osteoarthritis symptoms by increasing lean body mass and reducing inflammation in osteoarthritic rats with Alzheimer's diseaselike dementia, Br. J. Nutr. 127(1) (2022) 55-67. https://doi.org/10.1017/S0007114521000829.

[159]

A.N. Crupi, J. Haase, S. Brandhorst, et al., Periodic and intermittent fasting in diabetes and cardiovascular disease, Curr. Diab. Rep. 20(12) (2020) 83. https://doi.org/10.1007/s11892-020-01362-4.

[160]

H.K. Elmajnoun, M.E. Faris, S. Uday, et al., Impact of COVID-19 on children and young adults with type 2 diabetes: a narrative review with emphasis on the potential of intermittent fasting as a preventive strategy, Front. Nutr. 8 (2021). https://doi.org/10.3389/fnut.2021.756413.

[161]

M. González-Sánchez, F. Bartolome, D. Antequera, et al., Decreased salivary lactoferrin levels are specific to Alzheimer's disease, EBioMedicine 57 (2020) 102834. https://doi.org/10.1016/j.ebiom.2020.102834.

[162]

H.S. Gleerup, C.S. Jensen, P. Høgh, et al., Lactoferrin in cerebrospinal fluid and saliva is not a diagnostic biomarker for Alzheimer's disease in a mixed memory clinic population, EBioMedicine 67 (2021) 103361. https://doi.org/10.1016/j.ebiom.2021.103361.

Food Science and Human Wellness
Pages 50-64
Cite this article:
Aripin NFK, Idayu Zahid N, Rahim MAA, et al. A review of salivary composition changes induced by fasting and its impact on health. Food Science and Human Wellness, 2024, 13(1): 50-64. https://doi.org/10.26599/FSHW.2022.9250004

4781

Views

982

Downloads

8

Crossref

6

Web of Science

7

Scopus

0

CSCD

Altmetrics

Received: 22 March 2022
Revised: 07 May 2022
Accepted: 23 June 2022
Published: 01 June 2023
© 2024 Beijing Academy of Food Sciences. Publishing services by Tsinghua University Press.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return