AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.5 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

Food nutrition and toxicology targeting on specific organs in the era ofsingle-cell sequencing

Xiaofei WangXiaowen ChengHuiling LiuXiaohuan MuHao Zheng( )
National Engineering Technology Research Center for Fruit and Vegetable Processing, Key Open Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Food Non-Thermal Processing, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China

Peer review under responsibility of Tsinghua University Press.

Show Author Information

Abstract

Due to the complex natures of dietary food components, it is difficult to elucidate how the compounds affect host health. Dietary food often selectively presents its mechanism of action on different cell types, and participates in the modulation of targeted cells and their microenvironments within organs. However, the limitations of traditional in vitro assays or in vivo animal experiments cannot comprehensively examine cellular heterogeneity and the tissue-biased influences. Single-cell RNA sequencing (scRNA-seq) has emerged as an indispensable methodology to decompose tissues into different cell types for the demonstration of transcriptional profiles of individual cells. ScRNA-seq applications has been summarized on three typical organs (brain, liver, kidney), and two representative immune-and tumor related health problems. The everincreasing role of scRNA-seq in dietary food research with further improvement can provide sub-cellular information and the coupling between other cellular modalities. In this review, we propose utilizing scRNAseq to more effectively capture the subtle and complex effects of food chemicals, and how they may lead to health problems at single-cell resolution. This novel technique will be valuable to elucidate the underlying mechanism of both the health benefits of food nutrients and the detrimental consequences food toxicants at the cellular level.

References

[1]

A. Afshin, P.J. Sur, K.A. Fay, et al., Health effects of dietary risks in 195 countries, 1990–2017: a systematic analysis for the global burden of disease study 2017, Lancet 393 (2019) 1958–1972. https://doi.org/10.1016/S0140-6736(19)30041-8.

[2]

C. Sapienza, J.P. Issa, Diet, nutrition, and cancer epigenetics, Annu. Rev. Nutr. 36 (2016) 665–681. https://doi.org/10.1146/annurevnutr-121415-112634.

[3]

D.P. Jones, Y. Park, T.R. Ziegler, Nutritional metabolomics: progress in addressing complexity in diet and health, Annu. Rev. Nutr. 32 (2012) 183–202. https://doi.org/10.1146/annurev-nutr-072610-145159.

[4]

K.S. Vimaleswaran, C.I. Le Roy, S.P. Claus, Foodomics for personalized nutrition: how far are we?, Curr. Opin. Food Sci. 4 (2015) 129–135. https://doi.org/10.1016/j.cofs.2015.07.001.

[5]

F. Gómez-Pinilla, Brain foods: The effects of nutrients on brain function, Nat. Rev. Neurosci. 9 (2008) 568–578. http://doi.org/10.1038/nrn2421.

[6]

M. Milošević, A. Arsić, Z. Cvetković, et al., Memorable food: fighting agerelated neurodegeneration by precision nutrition, Front. Nutr. 8 (2021) 1–13. https://doi.org/10.3389/fnut.2021.688086.

[7]

J.M. Bourre, Roles of unsaturated fatty acids (especially omega-3 fatty acids) in the brain at various ages and during ageing, J. Nutr. Health Aging 8 (2004) 163–74.

[8]

P. Hajeb, J.J. Sloth, S. Shakibazadeh, et al., Toxic elements in food: occurrence, binding, and reduction approaches, Compr. Rev. Food Sci. Food Saf. 13 (2014) 457–472. https://doi.org/10.1111/1541-4337.12068.

[9]

H. Guo, J. Ji, J.S. Wang, et al., Co-contamination and interaction of fungal toxins and other environmental toxins, Trends Food Sci. Technol. 103 (2020) 162–178. https://doi.org/10.1016/j.tifs.2020.06.021.

[10]

P. Erkekoglu, T. Baydar, Acrylamide neurotoxicity, Nutr. Neurosci. 17 (2014) 49–57. https://doi.org/10.1179/1476830513Y.0000000065.

[11]

D. Wang, S. Bodovitz, Single cell analysis: the new frontier in “omics”, Trends Biotechnol. 28 (2010) 281–290. https://doi.org/10.1016/j.tibtech.2010.03.002.

[12]

D.T. Paik, S. Cho, L. Tian, et al., Single-cell RNA sequencing in cardiovascular development, disease and medicine, Nat. Rev. Cardiol. 17(2020) 457–473. https://doi.org/10.1038/s41569-020-0359-y.

[13]

Q. Zhang, W.M. Caudle, J. Pi, et al., Embracing systems toxicology at single-cell resolution, Curr. Opin. Toxicol. 16 (2019) 49–57. https://doi.org/10.1016/j.cotox.2019.04.003.

[14]

R. Cuevas-Diaz Duran, H. Wei, J.Q. Wu, Single-cell RNA-sequencing of the brain, Clin. Transl. Med. 6 (2017) 20. https://doi.org/10.1186/s40169-017-0150-9.

[15]

J. Kocot, D. Luchowska-Kocot, M. Kiełczykowska, et al., Does vitamin C influence neurodegenerative diseases and psychiatric disorders?, Nutrients 9(2017) 659. https://doi.org/10.3390/nu9070659.

[16]

H.A. Park, M.M. Hayden, S. Bannerman, et al., Anti-apoptotic effects of carotenoids in neurodegeneration, Molecules 25 (2020) 1–19. https://doi.org/10.3390/molecules25153453.

[17]

S. Petrovic, A. Arsic, D. Ristic-Medic, et al., Lipid peroxidation and antioxidant supplementation in neurodegenerative diseases: a review of human studies, Antioxidants 9 (2020) 1–27. https://doi.org/10.3390/antiox9111128.

[18]

B.R. Cardoso, B.R. Roberts, A.I. Bush, et al., Selenium, selenoproteins and neurodegenerative diseases, Metallomics 7 (2015) 1213–1228. https://doi.org/10.1039/c5mt00075k.

[19]

O.V. Forlenza, V.J.R. De-Paula, B.S.O. Diniz, Neuroprotective effects of lithium: Implications for the treatment of Alzheimer’s disease and related neurodegenerative disorders, ACS Chem. Neurosci. 5 (2014) 443–450. https://doi.org/10.1021/cn5000309.

[20]

A. Ndayisaba, C. Kaindlstorfer, G.K. Wenning, Iron in neurodegeneration-cause or consequence?, Front. Neurosci. 13 (2019) 1–15. https://doi.org/10.3389/fnins.2019.00180.

[21]

B. Szewczyk, Zinc homeostasis and neurodegenerative disorders, Front. Aging Neurosci. 5 (2013) 1–12. https://doi.org/10.3389/fnagi.2013.00033.

[22]

B. Witt, D. Schaumlöffel, T. Schwerdtle, Subcellular localization of copper—cellular bioimaging with focus on neurological disorders, Int. J. Mol. Sci. 21 (2020) 10–12. https://doi.org/10.3390/ijms21072341.

[23]

G.C. Román, R.E. Jackson, R. Gadhia, et al., Mediterranean diet: the role of long-chain ω-3 fatty acids in fish; polyphenols in fruits, vegetables, cereals, coffee, tea, cacao and wine; probiotics and vitamins in prevention of stroke, age-related cognitive decline, and Alzheimer disease, Rev. Neurol. (Paris) 175 (2019) 724–741. https://doi.org/10.1016/j.neurol.2019.08.005.

[24]

S.C. Duplantier, C.D. Gardner, A critical review of the study of neuroprotective diets to reduce cognitive decline, Nutrients 13 (2021). https://doi.org/10.3390/nu13072264.

[25]

G. Chen, B. Wang, D. Han, et al., Molecular mechanisms of the coordination between astaxanthin and fatty acid biosynthesis in Haematococcus pluvialis(Chlorophyceae), Plant J. 81 (2015) 95–107. https://doi.org/10.1111/tpj.12713.

[26]

M. Das, S. Das, Docosahexaenoic acid (DHA) induced morphological differentiation of astrocytes is associated with transcriptional upregulation and endocytosis of β 2 -AR, Mol. Neurobiol. 56 (2019) 2685–2702. https://doi.org/10.1007/s12035-018-1260-0.

[27]

J.Z. Yu, J. Wang, S.D. Sheridan, et al., N-3 polyunsaturated fatty acids promote astrocyte differentiation and neurotrophin production independent of cAMP in patient-derived neural stem cells, Mol. Psychiatry 26 (2021) 4605–4615. https://doi.org/10.1038/s41380-020-0786-5.

[28]

B. Song, G. Xiong, H. Luo, et al., Single-cell RNA sequencing of mouse neural stem cell differentiation reveals adverse effects of cadmium on neurogenesis, Food Chem. Toxicol. 148 (2021) 111936. https://doi.org/10.1016/j.fct.2020.111936.

[29]

D. Ofengeim, N. Giagtzoglou, D. Huh, et al., Single-cell RNA sequencing: unraveling the brain one cell at a time, Trends Mol. Med. 23 (2017) 563–576. https://doi.org/10.1016/j.molmed.2017.04.006.

[30]

A. Zeisel, A.B. Muñoz-Manchado, S. Codeluppi, et al., Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq, Science 347 (2015) 1138–1142. https://doi.org/10.1126/science.aaa1934.

[31]

R. Tarawneh, D.M. Holtzman, The clinical problem of symptomatic Alzheimer disease and mild cognitive impairment, Cold Spring Harb. Perspect. Med. 2 (2012) 1–16. https://doi.org/10.1101/cshperspect.a006148.

[32]

N.C. Berchtold, P.D. Coleman, D.H. Cribbs, et al., Synaptic genes are extensively downregulated across multiple brain regions in normal human aging and Alzheimer’s disease, Neurobiol. Aging 34 (2013) 1653–1661. https://doi.org/10.1016/j.neurobiolaging.2012.11.024.

[33]

M. Magistri, D. Velmeshev, M. Makhmutova, et al., Transcriptomics profiling of Alzheimer’s disease reveal neurovascular defects, altered amyloid-β homeostasis, and deregulated expression of long noncoding RNAs, J. Alzheimer’s Dis. 48 (2015) 647–665. https://doi.org/10.3233/JAD-150398.

[34]

J.A. Miller, R.L. Woltjer, J.M. Goodenbour, S. Horvath, et al., Genes and pathways underlying regional and cell type changes in Alzheimer’s disease, Genome Med. 5 (2013) 48. https://doi.org/10.1186/gm452.

[35]

A. Grubman, G. Chew, J.F. Ouyang, et al., A single-cell atlas of entorhinal cortex from individuals with Alzheimer’s disease reveals cell-type-specific gene expression regulation, Nat. Neurosci. 22 (2019) 2087–2097. https://doi.org/10.1038/s41593-019-0539-4.

[36]

H. Mathys, J. Davila-Velderrain, Z. Peng, et al., Single-cell transcriptomic analysis of Alzheimer’s disease, Nature 570 (2019) 332–337. https://doi.org/10.1038/s41586-019-1195-2.

[37]

J.M. Banales, R.C. Huebert, T. Karlsen, et al., Cholangiocyte pathobiology, Nat. Rev. Gastroenterol. Hepatol. 16 (2019) 269–281. https://doi.org/10.1038/s41575-019-0125-y.

[38]

R.J. Schulze, M.B. Schott, C.A. Casey, et al., The cell biology of the hepatocyte: a membrane trafficking machine, J. Cell Biol. 218 (2019) 2096–2112. https://doi.org/10.1083/jcb.201903090.

[39]

K.B. Halpern, R. Shenhav, O. Matcovitch-Natan, et al., Single-cell spatial reconstruction reveals global division of labour in the mammalian liver, Nature 542 (2017) 352–356. https://doi.org/10.1038/nature21065.

[40]

P. Ramachandran, K.P. Matchett, R. Dobie, et al., Single-cell technologies in hepatology: new insights into liver biology and disease pathogenesis, Nat. Rev. Gastroenterol. Hepatol. 17 (2020) 457–472. https://doi.org/10.1038/s41575-020-0304-x.

[41]

S.R. Park, C.S. Cho, J. Xi, et al., Holistic characterization of singlehepatocyte transcriptome responses to high-fat diet, Am. J. Physiol. - Endocrinol. Metab. 320 (2021) E244–E258. https://doi.org/10.1152/AJPENDO.00391.2020.

[42]

L.M.S. Gerhardt, A.P. McMahon, Multi-omic approaches to acute kidney injury and repair, Curr. Opin. Biomed. Eng. 20 (2021) 100344. https://doi.org/10.1016/j.cobme.2021.100344.

[43]

J. Park, R. Shrestha, C. Qiu, A. Kondo, et al., Single-cell transcriptomics of the mouse kidney reveals potential cellular targets of kidney disease, Science 360 (2018) 758–763. https://doi.org/10.1126/science.aar2131.

[44]

J. Liao, Z. Yu, Y. Chen, et al., Single-cell RNA sequencing of human kidney, Sci. Data 7 (2020) 1–9. https://doi.org/10.1038/s41597-019-0351-8.

[45]

H. Zhu, C. Cao, Z. Wu, et al., The probiotic L. casei Zhang slows the progression of acute and chronic kidney disease, Cell Metab. 33 (2021) 1926-1942. https://doi.org/10.1016/j.cmet.2021.06.014.

[46]

M.K. Yadav, I. Kumari, B. Singh, et al., Probiotics, prebiotics and synbiotics: safe options for next-generation therapeutics, Appl. Microbiol. Biotechnol. 106 (2022) 505–521. https://doi.org/10.1007/s00253-021-11646-8.

[47]

S. Raha, H.J. Lee, S. Yumnam, et al., Vitamin D2 suppresses amyloid-β 25–35 induced microglial activation in BV2 cells by blocking the NF-κB inflammatory signaling pathway, Life Sci. 161 (2016) 37–44. https://doi.org/10.1016/j.lfs.2016.07.017.

[48]

P.C. Calder, Foods to deliver immune-supporting nutrients, Curr. Opin. Food Sci. 43 (2022) 136–145. https://doi.org/10.1016/j.cofs.2021.12.006.

[49]

R. Thirumdas, A. Kothakota, R. Pandiselvam, et al., Role of food nutrients and supplementation in fighting against viral infections and boosting immunity: a review, Trends Food Sci. Technol. 110 (2021) 66–77. https://doi.org/10.1016/j.tifs.2021.01.069.

[50]

M.J.T. Stubbington, O. Rozenblatt-Rosen, A. Regev, et al., Single-cell transcriptomics to explore the immune system in health and disease, Science 358(2017): 58-63 https://doi.org/10.1126/science.aan6828.

[51]

Y. Elyahu, I. Hekselman, I. Eizenberg-Magar, et al., Aging promotes reorganization of the CD4 T cell landscape toward extreme regulatory and effector phenotypes, Sci. Adv. 5 (2019). https://doi.org/10.1126/sciadv.aaw8330.

[52]

D.A. Jaitin, E. Kenigsberg, H. Keren-Shaul, et al., Massively parallel singlecell RNA-seq for marker-free decomposition of tissues into cell types, Science 343 (2014) 776–779. https://doi.org/10.1126/science.1247651.

[53]

E. Papalexi, R. Satija, Single-cell RNA sequencing to explore immune cell heterogeneity, Nat. Rev. Immunol. 18 (2018) 35–45. https://doi.org/10.1038/nri.2017.76.

[54]

C.S. Smillie, M. Biton, J. Ordovas-Montanes, et al., Intra-and inter-cellular rewiring of the human colon during ulcerative colitis, Cell 178 (2019) 714-730. https://doi.org/10.1016/j.cell.2019.06.029.

[55]

M. Liao, Y. Liu, J. Yuan, et al., Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19, Nat. Med. 26 (2020) 842–844. https://doi.org/10.1038/s41591-020-0901-9.

[56]

B. Lim, Y. Lin, N. Navin, Advancing cancer research and medicine with single-cell genomics, Cancer Cell 37 (2020) 456–470. https://doi.org/10.1016/j.ccell.2020.03.008.

[57]

V. Bernard, A. Semaan, J. Huang, et al., Single-cell transcriptomics of pancreatic cancer precursors demonstrates epithelial and microenvironmental heterogeneity as an early event in neoplastic progression, Clin. Cancer Res. 25 (2019) 2194–2205. https://doi.org/10.1158/1078-0432.CCR-18-1955.

[58]

M.G. Filbin, I. Tirosh, V. Hovestadt, et al., Developmental and oncogenic programs in H3K27M gliomas dissected by single-cell RNA-seq, Science 360 (2018) 331–335. https://doi.org/10.1126/science.aao4750.

[59]

R. Kalluri, The biology and function of fibroblasts in cancer, Nat. Rev. Cancer 16 (2016) 582–598. https://doi.org/10.1038/nrc.2016.73.

[60]

A.S. Venteicher, I. Tirosh, C. Hebert, et al., Decoupling genetics, lineages, and microenvironment in IDH-mutant gliomas by single-cell RNA-seq, Science 355 (2017). https://doi.org/10.1126/science.aai8478.

[61]

D.A. Lawson, N.R. Bhakta, K. Kessenbrock, et al., Single-cell analysis reveals a stem-cell program in human metastatic breast cancer cells, Nature 526 (2015) 131–135. https://doi.org/10.1038/nature15260.

[62]

T.T. Kwan, A. Bardia, L.M. Spring, et al., A digital RNA signature of circulating tumor cells predicting early therapeutic response in localized and metastatic breast cancer, Cancer Discov. 8 (2018) 1286–1299. https://doi.org/10.1158/2159-8290.CD-18-0432.

[63]

Z. Su, Z. Wang, X. Ni, J. Duan, et al., Inferring the evolution and progression of small-cell lung cancer by single-cell sequencing of circulating tumor cells, Clin. Cancer Res. 25 (2019) 5049–5060. https://doi.org/10.1158/1078-0432.CCR-18-3571.

[64]

N. Kanarek, B. Petrova, D.M. Sabatini, Dietary modifications for enhanced cancer therapy, Nature 579 (2020) 507–517. https://doi.org/10.1038/s41586-020-2124-0.

[65]

O. Descamps, J. Riondel, V. Ducros, et al., Mitochondrial production of reactive oxygen species and incidence of age-associated lymphoma in OF1 mice: effect of alternate-day fasting, Mech. Ageing Dev. 126 (2005) 1185–1191. https://doi.org/10.1016/j.mad.2005.06.007.

[66]

C. Lee, L. Raffaghello, S. Brandhorst, et al., Fasting cycles retard growth of tumors and sensitize a range of cancer cell types to chemotherapy, Sci. Transl. Med. 4 (2012) 1–7. https://doi.org/10.1126/scitranslmed.3003293.

[67]

T.N. Seyfried, T.M. Sanderson, M.M. El-Abbadi, et al., Role of glucose and ketone bodies in the metabolic control of experimental brain cancer, Br. J. Cancer 89 (2003) 1375–1382. https://doi.org/10.1038/sj.bjc.6601269.

[68]

K. Zaugg, Y. Yao, P.T. Reilly, et al., Carnitine palmitoyltransferase 1C promotes cell survival and tumor growth under conditions of metabolic stress, Genes Dev. 25 (2011) 1041–1051. https://doi.org/10.1101/gad.1987211.

[69]

R. Camarda, A.Y. Zhou, R.A. Kohnz, et al., Inhibition of fatty acid oxidation as a therapy for MYC-overexpressing triple-negative breast cancer, Nat. Med. 22 (2016) 427–432. https://doi.org/10.1038/nm.4055.

[70]

G. Pascual, D. Domínguez, M. Elosúa-Bayes, et al., Dietary palmitic acid promotes a prometastatic memory via Schwann cells, Nature 599 (2021) 485–490. https://doi.org/10.1038/s41586-021-04075-0.

[71]

W. Zhao, A. Dovas, E.F. Spinazzi, et al., Deconvolution of cell type-specific drug responses in human tumor tissue with single-cell RNA-seq, Genome Med. 13 (2021) 1–15. https://doi.org/10.1186/s13073-021-00894-y.

[72]

F. Tang, C. Barbacioru, Y. Wang, et al., mRNA-Seq whole-transcriptome analysis of a single cell, Nat. Methods 6 (2009) 377–382. https://doi.org/10.1038/nmeth.1315.

[73]

N. Thrupp, C. Sala Frigerio, L. Wolfs, et al., Single-nucleus RNA-seq is not suitable for detection of microglial activation genes in humans, Cell Rep. 32(2020) 108189. https://doi.org/10.1016/j.celrep.2020.108189.

[74]

B. Hwang, J.H. Lee, D. Bang, Single-cell RNA sequencing technologies and bioinformatics pipelines, Exp. Mol. Med. 50 (2018). https://doi.org/10.1038/s12276-018-0071-8.

[75]

A.A. Kolodziejczyk, J.K. Kim, V. Svensson, et al., The technology and biology of single-cell RNA sequencing, Mol. Cell 58 (2015) 610–620. https://doi.org/10.1016/j.molcel.2015.04.005.

[76]

A. Haque, J. Engel, S.A. Teichmann, et al., A practical guide to single-cell RNA-sequencing for biomedical research and clinical applications, Genome Med. 9 (2017) 1–12. https://doi.org/10.1186/s13073-017-0467-4.

[77]

D. Ramsköld, S. Luo, Y.C. Wang, et al., Full-length mRNA-Seq from singlecell levels of RNA and individual circulating tumor cells, Nat. Biotechnol. 30 (2012) 777–782. https://doi.org/10.1038/nbt.2282.

[78]

S. Islam, U. Kjällquist, A. Moliner, et al., Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq, Genome Res. 21(2011) 1160–1167. https://doi.org/10.1101/gr.110882.110.

[79]

T. Hashimshony, F. Wagner, N. Sher, et al., CEL-seq: Single-cell RNA-seq by multiplexed linear amplification, Cell Rep. 2 (2012) 666–673. https://doi.org/10.1016/j.celrep.2012.08.003.

[80]

S. Islam, U. Kjällquist, A. Moliner, et al., Highly multiplexed and strandspecific single-cell RNA 5’ end sequencing, Nat. Protoc. 7 (2012) 813–828. https://doi.org/10.1038/nprot.2012.022.

[81]

S. Islam, A. Zeisel, S. Joost, et al., Quantitative single-cell RNA-seq with unique molecular identifiers, Nat. Methods 11 (2014) 163–166. https://doi.org/10.1038/nmeth.2772.

[82]

E.Z. Macosko, A. Basu, R. Satija, et al., Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets, Cell 161(2015) 1202–1214. https://doi.org/10.1016/j.cell.2015.05.002.

[83]

C. Ziegenhain, B. Vieth, S. Parekh, et al., Comparative analysis of singlecell RNA sequencing methods, Mol. Cell 65 (2017) 631-643. https://doi.org/10.1016/j.molcel.2017.01.023.

[84]

A. Lafzi, C. Moutinho, S. Picelli, et al., Tutorial: guidelines for the experimental design of single-cell RNA sequencing studies, Nat. Protoc. 13(2018) 2742–2757. https://doi.org/10.1038/s41596-018-0073-y.

[85]

H. Nguyen, D. Tran, B. Tran, et al., A comprehensive survey of regulatory network inference methods using single cell RNA sequencing data, Brief. Bioinform. 22 (2021) 1–15. https://doi.org/10.1093/bib/bbaa190.

[86]

A. Dal Molin, B. Di Camillo, How to design a single-cell RNA-sequencing experiment: Pitfalls, challenges and perspectives, Brief. Bioinform. 20 (2018) 1384–1394. https://doi.org/10.1093/bib/bby007.

[87]

L.E. Mickelsen, M. Bolisetty, B.R. Chimileski, et al., Single-cell transcriptomic analysis of the lateral hypothalamic area reveals molecularly distinct populations of inhibitory and excitatory neurons, Nat. Neurosci. 22(2019) 642–656. https://doi.org/10.1038/s41593-019-0349-8.

[88]

E. Armingol, A. Officer, O. Harismendy, et al., Deciphering cell–cell interactions and communication from gene expression, Nat. Rev. Genet. 22(2021) 71–88. https://doi.org/10.1038/s41576-020-00292-x.

[89]

N. Salehi, M.H. Karimi-Jafari, M. Totonchi, et al., Integration and gene co-expression network analysis of scRNA-seq transcriptomes reveal heterogeneity and key functional genes in human spermatogenesis, Sci. Rep. 11 (2021) 1–13. https://doi.org/10.1038/s41598-021-98267-3.

[90]

A. Bhattacherjee, M.N. Djekidel, R. Chen, et al., Cell type-specific transcriptional programs in mouse prefrontal cortex during adolescence and addiction, Nat. Commun. 10 (2019) 1–18. https://doi.org/10.1038/s41467-019-12054-3.

[91]

R. Chen, X. Wu, L. Jiang, et al., Single-cell RNA-Seq reveals hypothalamic cell diversity, Cell Rep. 18 (2017) 3227–3241. https://doi.org/10.1016/j.celrep.2017.03.004.

[92]

H. Choi, Y. Choi, E.J. Lee, et al., Hippocampal glucose uptake as a surrogate of metabolic change of microglia in Alzheimer’s disease, J. Neuroinflammation 18 (2021) 190. https://doi.org/10.1186/s12974-021-02244-6.

[93]

C.J. Finno, J. Peterson, M. Kang, et al., Single-cell RNA-seq reveals profound alterations in mechanosensitive dorsal root ganglion neurons with vitamin e deficiency, IScience 21 (2019) 720–735. https://doi.org/10.1016/j.isci.2019.10.064.

[94]

T.R. Hammond, C. Dufort, L. Dissing-Olesen, et al., Single-cell RNA sequencing of microglia throughout the mouse lifespan and in the injured brain reveals complex cell-state changes, Immunity 50 (2019) 253-271. https://doi.org/10.1016/j.immuni.2018.11.004.

[95]

B. Tepe, M.C. Hill, B.T. Pekarek, et al., Single-cell RNA-seq of mouse olfactory bulb reveals cellular heterogeneity and activity-dependent molecular census of adult-born neurons, Cell Rep. 25 (2018) 2689-2703. https://doi.org/10.1016/j.celrep.2018.11.034.

[96]

J. Kupari, M. Häring, E. Agirre, et al., An atlas of vagal sensory neurons and their molecular specialization, Cell Rep. 27 (2019) 2508-2523. https://doi.org/10.1016/j.celrep.2019.04.096.

[97]

Q. Li, Z. Cheng, L. Zhou, et al., Developmental heterogeneity of microglia and brain myeloid cells revealed by deep Single-cell RNA sequencing, Neuron 101 (2019) 207-223. https://doi.org/10.1016/j.neuron.2018.12.006.

[98]

N. Ochocka, P. Segit, K.A. Walentynowicz, et al., Single-cell RNA sequencing reveals functional heterogeneity of glioma-associated brain macrophages, Nat. Commun. 12 (2021) 1–14. https://doi.org/10.1038/s41467-021-21407-w.

[99]

J. Peng, A.L. Sheng, Q. Xiao, et al., Single-cell transcriptomes reveal molecular specializations of neuronal cell types in the developing cerebellum, J. Mol. Cell Biol. 11 (2019) 636–648. https://doi.org/10.1093/jmcb/mjy089.

[100]

E.M. Rueda, B.M. Hall, M.C. Hill, et al., The hippo pathway blocks mammalian retinal müller glial cell reprogramming, Cell Rep. 27 (2019) 1637-1649. https://doi.org/10.1016/j.celrep.2019.04.047.

[101]

L. Todd, I. Palazzo, L. Suarez, et al., Reactive microglia and IL1β/IL-1R1-signaling mediate neuroprotection in excitotoxin-damaged mouse retina, J. Neuroinflammation 16 (2019) 1–19. https://doi.org/10.1186/s12974-019-1505-5.

[102]

H. Van Hove, L. Martens, I. Scheyltjens, et al., A single-cell atlas of mouse brain macrophages reveals unique transcriptional identities shaped by ontogeny and tissue environment, Nat. Neurosci. 22 (2019) 1021–1035. https://doi.org/10.1038/s41593-019-0393-4.

[103]

J.C. Wester, V. Mahadevan, C.T. Rhodes, et al., Neocortical projection neurons instruct inhibitory interneuron circuit development in a lineagedependent manner, Neuron 102 (2019) 960-975. https://doi.org/10.1016/j.neuron.2019.03.036.

[104]

G. Xiong, B. Zhang, B. Song, et al., Single-cell RNA sequencing reveals adverse effects of paraquat on the fate commitment of murine neural stem cells, Sci. Total Environ. 785 (2021) 147386. https://doi.org/10.1016/j.scitotenv.2021.147386.

[105]

M.T. Dang, F. Mafra, M. Haldar, Isolation of myeloid cells from mouse brain tumors for single-cell RNA-seq analysis, STAR Protoc. 2 (2021) 100957. https://doi.org/10.1016/j.xpro.2021.100957.

[106]

H.S. Yang, K.D. Onos, K. Choi, et al., Natural genetic variation determines microglia heterogeneity in wild-derived mouse models of Alzheimer’s disease, Cell Rep. 34 (2021) 108739. https://doi.org/10.1016/j.celrep.2021.108739.

[107]

C.B. Avalos, R. Brugmann, S.G. Sprecher, Single cell transcriptome atlas of the drosophila larval brain, Elife. 8 (2019) 1–25. https://doi.org/10.7554/eLife.50354.

[108]

T.H. Nguyen, R. Vicidomini, S.D. Choudhury, et al., Single-cell RNA sequencing analysis of the drosophila larval ventral cord, Curr. Protoc. 1(2021) 1–27. https://doi.org/10.1002/cpz1.38.

[109]

S. Yu, J. He, Stochastic cell-cycle entry and cell-state-dependent fate outputs of injury-reactivated tectal radial glia in zebrafish, Elife. 8 (2019) 1–27. https://doi.org/10.7554/eLife.48660.

[110]

Z.Y. Wang, A. Keogh, A. Waldt, et al., Single-cell and bulk transcriptomics of the liver reveals potential targets of NASH with fibrosis, Sci. Rep. 11(2021) 1–15. https://doi.org/10.1038/s41598-021-98806-y.

[111]

T. Kimura, Y. Kato, Y. Ozawa, et al., Immunomodulatory activity of lenvatinib contributes to antitumor activity in the Hepa1-6 hepatocellular carcinoma model, Cancer Sci. 109 (2018) 3993–4002. https://doi.org/10.1111/cas.13806.

[112]

O. Krenkel, J. Hundertmark, A.T. Abdallah, et al., Myeloid cells in liver and bone marrow acquire a functionally distinct inflammatory phenotype during obesity-related steatohepatitis, Gut 69 (2020) 551–563. https://doi.org/10.1136/gutjnl-2019-318382.

[113]

L. Planas-Paz, T. Sun, M. Pikiolek, et al., Signaling in biliary epithelial cells promotes a ductular reaction in response to liver injury, Cell Stem Cell 25(2019) 39-53. e10. https://doi.org/10.1016/j.stem.2019.04.005.

[114]

Q. Su, S.Y. Kim, F. Adewale, et al., Single-cell RNA transcriptome landscape of hepatocytes and non-parenchymal cells in healthy and NAFLD mouse liver, IScience 24 (2021). https://doi.org/10.1016/j.isci.2021.103233.

[115]

X. Xiong, H. Kuang, S. Ansari, et al., Landscape of intercellular crosstalk in healthy and NASH liver revealed by single-cell secretome gene analysis, Mol. Cell 75 (2019) 644-660. https://doi.org/10.1016/j.molcel.2019.07.028.

[116]

W. Yang, H. He, T. Wang, et al., Single-cell transcriptomic analysis reveals a hepatic stellate cell–activation roadmap and myofibroblast origin during liver fibrosis in mice, Hepatology 74 (2021) 2774–2790. https://doi.org/10.1002/hep.31987.

[117]

A. Arazi, D.A. Rao, C.C. Berthier, et al., The immune cell landscape in kidneys of patients with lupus nephritis, Nat. Immunol. 20 (2019) 902–914. https://doi.org/10.1038/s41590-019-0398-x.

[118]

B. Zhang, H. Li, L. Zhu, X. He, et al., Single-cell transcriptomics uncovers potential marker genes of ochratoxin A–sensitive renal cells in an acute toxicity rat model, Cell Biol. Toxicol. 37 (2021) 7–13. https://doi.org/10.1007/s10565-020-09531-7.

[119]

K. Parikh, A. Antanaviciute, D. Fawkner-Corbett, et al., Colonic epithelial cell diversity in health and inflammatory bowel disease, Nature 567 (2019) 49–55. https://doi.org/10.1038/s41586-019-0992-y.

[120]

A. Aliluev, S. Tritschler, M. Sterr, et al., Diet-induced alteration of intestinal stem cell function underlies obesity and prediabetes in mice, Nat. Metab. 3(2021) 1202–1216. https://doi.org/10.1038/s42255-021-00458-9.

[121]

C.W. Cheng, M. Biton, A.L. Haber, et al., Ketone body signaling mediates intestinal stem cell homeostasis and adaptation to diet, Cell 178 (2019) 1115-1131. https://doi.org/10.1016/j.cell.2019.07.048.

[122]

M.D. Mana, A.M. Hussey, C.N. Tzouanas, et al., High-fat diet-activated fatty acid oxidation mediates intestinal stemness and tumorigenicity, Cell Rep. 35 (2021) 109212. https://doi.org/10.1016/j.celrep.2021.109212.

[123]

J. Yu, L. Chen, W. Gu, et al., Heterogeneity effects of nanoplastics and lead on zebrafish intestinal cells identified by single-cell sequencing, Chemosphere 289 (2022) 133133. https://doi.org/10.1016/j.chemosphere.2021.133133.

[124]

N. Bossel Ben-Moshe, S. Hen-Avivi, N. Levitin, et al., Predicting bacterial infection outcomes using single cell RNA-sequencing analysis of human immune cells, Nat. Commun. 10 (2019) 1–16. https://doi.org/10.1038/s41467-019-11257-y.

[125]

M. Cella, R. Gamini, C. Sécca, et al., Subsets of ILC3-ILC1-like cells generate a diversity spectrum of innate lymphoid cells in human mucosal tissues, Nat. Immunol. 20 (2019) 980–991. https://doi.org/10.1038/s41590-019-0425-y.

[126]

M. Gutierrez-Arcelus, N. Teslovich, A.R. Mola, et al., Lymphocyte innateness defined by transcriptional states reflects a balance between proliferation and effector functions, Nat. Commun. 10 (2019). https://doi.org/10.1038/s41467-019-08604-4.

[127]

G. Pizzolato, H. Kaminski, M. Tosolini, et al., Single-cell RNA sequencing unveils the shared and the distinct cytotoxic hallmarks of human TCRVδ1 and TCRVδ2 γδ T lymphocytes, Proc. Natl. Acad. Sci. U.S.A. 116 (2019) 11906–11915. https://doi.org/10.1073/pnas.1818488116.

[128]

A. Takeda, M. Hollmén, D. Dermadi, et al., Single-cell survey of human lymphatics unveils marked endothelial cell heterogeneity and mechanisms of homing for neutrophils, Immunity 51 (2019) 561-572. https://doi.org/10.1016/j.immuni.2019.06.027.

[129]

M. Balzano, M. De Grandis, T.P. Vu Manh, et al., Nidogen-1 contributes to the interaction network involved in pro-B cell retention in the peri-sinusoidal hematopoietic stem cell niche, Cell Rep. 26 (2019) 3257-3271. https://doi.org/10.1016/j.celrep.2019.02.065.

[130]

A.P. Croft, J. Campos, K. Jansen, et al., Distinct fibroblast subsets drive inflammation and damage in arthritis, Nature 570 (2019) 246–251. https://doi.org/10.1038/s41586-019-1263-7.

[131]

S. Culemann, A. Grüneboom, J.Á. Nicolás-Ávila, et al., Locally renewing resident synovial macrophages provide a protective barrier for the joint, Nature 572 (2019) 670–675. https://doi.org/10.1038/s41586-019-1471-1.

[132]

M.W. Dahlgren, S.W. Jones, K.M. Cautivo, et al., Adventitial stromal cells define group 2 innate lymphoid cell tissue niches, Immunity 50 (2019) 707-722. https://doi.org/10.1016/j.immuni.2019.02.002.

[133]

U. Gowthaman, J.S. Chen, B. Zhang, et al., Identification of a T follicular helper cell subset that drives anaphylactic IgE, Science 365 (2019). https://doi.org/10.1126/science.aaw6433.

[134]

C. Harly, D. Kenney, G. Ren, et al., The transcription factor TCF-1 enforces commitment to the innate lymphoid cell lineage, Nat. Immunol. 20 (2019) 1150–1160. https://doi.org/10.1038/s41590-019-0445-7.

[135]

S. Hemmers, M. Schizas, E. Azizi, et al., IL-2 production by self-reactive CD4 thymocytes scales regulatory T cell generation in the thymus, J. Exp. Med. 216 (2019) 2466–2478. https://doi.org/10.1084/jem.20190993.

[136]

C. Liu, M. Chikina, R. Deshpande, et al., Treg cells promote the SREBP1-dependent metabolic fitness of tumorpromoting macrophages via repression of CD8+ T cell-derived interferon-γ, Immunity 51 (2019) 381-397. e6. https://doi.org/10.1016/j.immuni.2019.06.017.

[137]

P. Lo, Y. Yao, Q. Zhou, Single-cell RNA-seq reveals obesity-induced alterations in the brca1-mutated mammary gland microenvironment, Cancers (Basel). 12 (2020) 2235. https://doi.org/10.3390/cancers12082235.

[138]

H. Nagashima, T. Mahlakõiv, H. Shih, et al., Neuropeptide CGRP limits group 2 innate lymphoid cell responses and constrains type 2 inflammation, Immunity 51 (2019) 682-695. https://doi.org/10.1016/j.immuni.2019.06.009.

[139]

J. Schulthess, S. Pandey, M. Capitani, et al., The short chain fatty acid butyrate imprints an antimicrobial program in macrophages, Immunity 50(2019) 432-445. e7. https://doi.org/10.1016/j.immuni.2018.12.018.

[140]

C. Yao, H.W. Sun, N.E. Lacey, et al., Single-cell RNA-seq reveals TOX as a key regulator of CD8+ T cell persistence in chronic infection, Nat. Immunol. 20 (2019) 890–901. https://doi.org/10.1038/s41590-019-0403-4.

[141]

N. Baryawno, D. Przybylski, M.S. Kowalczyk, et al., A cellular taxonomy of the bone marrow stroma in homeostasis and leukemia, Cell 177 (2019) 1915-1932. e16. https://doi.org/10.1016/j.cell.2019.04.040.

[142]

S. Ma, S. Sun, L. Geng, et al., Caloric restriction reprograms the single-cell transcriptional landscape of rattus norvegicus aging, Cell 180 (2020) 984-1001. https://doi.org/10.1016/j.cell.2020.02.008.

[143]

C. Neftel, J. Laffy, M.G. Filbin, et al., An integrative model of cellular states, plasticity, and genetics for glioblastoma, Cell 178 (2019) 835-849. https://doi.org/10.1016/j.cell.2019.06.024.

[144]

L. Wang, S. Mo, X. Li, et al., Single-cell RNA-seq reveals the immune escape and drug resistance mechanisms of mantle cell lymphoma, Cancer Biol. Med. 17 (2020) 726–739. https://doi.org/10.20892/j.issn.2095-3941.2020.0073.

[145]

C. Ye, Q. Zhou, Y. Hong, et al., Role of alternative polyadenylation dynamics in acute myeloid leukaemia at single-cell resolution, RNA Biol. 16(2019) 785–797. https://doi.org/10.1080/15476286.2019.1586139.

[146]

P. Zhang, M. Yang, Y. Zhang, et al., Dissecting the single-cell transcriptome network underlying gastric premalignant lesions and early gastric cancer, Cell Rep. 27 (2019) 1934-1947. https://doi.org/10.1016/j.celrep.2019.04.052.

[147]

S. Kurtulus, A. Madi, G. Escobar, et al., Checkpoint blockade immunotherapy induces dynamic changes in PD-1 - CD8+ tumorinfiltrating T cells, Immunity 50 (2019) 181-194. https://doi.org/10.1016/j.immuni.2018.11.014.

[148]

N.K. Lytle, L.P. Ferguson, N. Rajbhandari, et al., A multiscale map of the stem cell state in pancreatic adenocarcinoma, Cell 177 (2019) 572-586. https://doi.org/10.1016/j.cell.2019.03.010.

[149]

M.C. Vladoiu, I. El-Hamamy, L.K. Donovan, et al., Childhood cerebellar tumours mirror conserved fetal transcriptional programs, Nature 572 (2019) 67–73. https://doi.org/10.1038/s41586-019-1158-7.

[150]

J.L. Benci, L.R. Johnson, R. Choa, et al., Opposing functions of interferon coordinate adaptive and innate immune responses to cancer immune checkpoint blockade, Cell 178 (2019) 933-948. https://doi.org/10.1016/j.cell.2019.07.019.

[151]

S.P. Arlauckas, S.B. Garren, C.S. Garris, et al., Arg1 expression defines immunosuppressive subsets of tumor-associated macrophages, Theranostics 8 (2018) 5842–5854. https://doi.org/10.7150/thno.26888.

[152]

H.J. Chen, A. Poran, A.M. Unni, et al., Generation of pulmonary neuroendocrine cells and SCLC-like tumors from human embryonic stem cells, J. Exp. Med. 216 (2019) 674–687. https://doi.org/10.1084/jem.20181155.

[153]

S.P. Kubli, L. Vornholz, G. Duncan, et al., Fcmr regulates mononuclear phagocyte control of anti-tumor immunity, Nat. Commun. 10 (2019). https://doi.org/10.1038/s41467-019-10619-w.

[154]

Y. Li, X. Ma, Z. Chen, H. Wu, et al., B1 oligomerization regulates PML nuclear body biogenesis and leukemogenesis, Nat. Commun. 10 (2019). https://doi.org/10.1038/s41467-019-11746-0.

[155]

D.N. Debruyne, R. Dries, S. Sengupta, et al., BORIS promotes chromatin regulatory interactions in treatment-resistant cancer cells, Nature 572 (2019) 676–680. https://doi.org/10.1038/s41586-019-1472-0.

[156]

M.B. Dong, G. Wang, R.D. Chow, et al., Systematic immunotherapy target discovery using genome-scale in vivo CRISPR screens in CD8 T cells, Cell 178 (2019) 1189-1204. https://doi.org/10.1016/j.cell.2019.07.044.

[157]

K. Grosselin, A. Durand, J. Marsolier, et al., High-throughput single-cell ChIP-seq identifies heterogeneity of chromatin states in breast cancer, Nat. Genet. 51 (2019) 1060–1066. https://doi.org/10.1038/s41588-019-0424-9.

[158]

V. Hovestadt, K.S. Smith, L. Bihannic, et al., Resolving medulloblastoma cellular architecture by single-cell genomics, Nature 572 (2019) 74–79. https://doi.org/10.1038/s41586-019-1434-6.

[159]

H. Liu, J. Golji, L.K. Brodeur, et al., Tumor-derived IFN triggers chronic pathway agonism and sensitivity to ADAR loss, Nat. Med. 25 (2019) 95–102. https://doi.org/10.1038/s41591-018-0302-5.

[160]

C.C. Bell, K.A. Fennell, Y.C. Chan, et al., Targeting enhancer switching overcomes non-genetic drug resistance in acute myeloid leukaemia, Nat. Commun. 10 (2019) 1–15. https://doi.org/10.1038/s41467-019-10652-9.

[161]

J.V. McCann, L. Xiao, D.J. Kim, et al., Endothelial miR-30c suppresses tumor growth via inhibition of TGF-β-induced Serpine1, J. Clin. Invest. 129(2019) 1654–1670. https://doi.org/10.1172/JCI123106.

[162]

D. Merino, T.S. Weber, A. Serrano, et al., Barcoding reveals complex clonal behavior in patient-derived xenografts of metastatic triple negative breast cancer, Nat. Commun. 10 (2019). https://doi.org/10.1038/s41467-019-08595-2.

[163]

R.M. Zemek, E. De Jong, W.L. Chin, et al., Sensitization to immune checkpoint blockade through activation of a STAT1/NK axis in the tumor microenvironment, Sci. Transl. Med. 11 (2019). https://doi.org/10.1126/scitranslmed.aav7816.

[164]

G. Liu, Y. Li, T. Zhang, et al., Single-cell RNA sequencing reveals sexually dimorphic transcriptome and type 2 diabetes genes in mouse islet β cells, Genomics. Proteomics Bioinformatics 19 (2021) 408–422. https://doi.org/10.1016/j.gpb.2021.07.004.

Food Science and Human Wellness
Pages 75-89
Cite this article:
Wang X, Cheng X, Liu H, et al. Food nutrition and toxicology targeting on specific organs in the era ofsingle-cell sequencing. Food Science and Human Wellness, 2024, 13(1): 75-89. https://doi.org/10.26599/FSHW.2022.9250006

2819

Views

316

Downloads

3

Crossref

1

Web of Science

2

Scopus

0

CSCD

Altmetrics

Received: 22 July 2022
Revised: 21 August 2022
Accepted: 22 July 2022
Published: 01 June 2023
© 2024 Beijing Academy of Food Sciences. Publishing services by Tsinghua University Press.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return