AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (13.7 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Open Access

Protective mechanism of quercetin compounds against acrylamide-induced hepatotoxicity

Linzi Lia,1Xueying Leia,1Lin Chena,( )Ya MaaJun LuobXuebo LiuaXinglian XucGuanghong ZhoucXianchao Fenga( )
College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
Synergetic Innovation Center of Food Safety and Nutrition, Key Laboratory of Meat Processing and Quality Control, Ministry of Education, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China

1 These authors contributed equally.

Peer review under responsibility of Tsinghua University Press.

Show Author Information

Highlights

• Quercetin compounds can attenuate liver injury induced by AA, reduce venous congestion and inflammatory infiltration.

• Quercetin compounds attenuate AA induced liver oxidative stress by affecting ROS level.

• Akt/mTOR signaling pathway is activated to affect LC3 transformation and autophagy formation.

• Reverse the activity of caspase-9 and Caspase-3 and increase the ratio of Bax/Bcl-2.

• reverse the activation of IRE1-xbp1 pathway and increase the expression of CHOP protein.

Graphical Abstract

Abstract

Quercetin compounds have antioxidant, anti-inflammatory and anticancer pharmacological functions. Longterm exposure to acrylamide (AA) can cause liver injury and endanger human health. However, whether quercetin compounds can attenuate AA-induced liver injury and the specific mechanism are not clear. Here, we studied the mechanism and structure-activity relationship of quercetin compounds in reducing AA-induced hepatotoxicity in vivo and in vitro. In vivo studies found that quercetin-like compounds protect against AA-induced liver injury by reducing oxidative stress levels, activating the Akt/mTOR signaling pathway to attenuate autophagy, and improving mitochondrial apoptosis and endoplasmic reticulum stress-mediated apoptosis. In vitro studies found that quercetin compounds protected HepG2 cells from AA by attenuating the activation of AA-induced autophagy, lowering reactive oxygen species (ROS) levels by exerting antioxidant effects and thus attenuating oxidative stress, increasing mitochondrial membrane potential (MMP), and improving apoptosis-related proteins, thus attenuating AA-induced apoptosis. Furthermore, the conformational differences between quercetin compounds correlated with their protective capacity against AA-induced hepatotoxicity, with quercetin showing the best protective capacity due to its strongest antioxidant activity. In conclusion, quercetin compounds can protect against AA-induced liver injury through multiple pathways of oxidative stress, autophagy and apoptosis, and their protective capacity correlates with antioxidant activity.

References

[1]

National Toxicology Program, Toxicology and carcinogenesis studies of quercetin (CAS No. 117-39-5) in F344 rats (feed studies), Natl. Toxicol Program Tech. Rep. Ser. 409 (1992) 1-171.

[2]

L. Aguirre, M.P. Portillo, E. Hijona, et al., Effects of resveratrol and other polyphenols in hepatic steatosis, World J. Gastroenterol. 20(23) (2014) 7366-7380. http://dx.doi.org/10.3748/wjg.v20.i23.7366.

[3]

K. Ishige, D. Schubert, Y. Sagara, Flavonoids protect neuronal cells from oxidative stress by three distinct mechanisms, Free Radic. Biol. Med. 30(4) (2001) 433-446. http://dx.doi.org/10.1016/s0891-5849(00)00498-6.

[4]

L.G. Costa, L. Tait, R. de Laat, et al., Modulation of paraoxonase 2(PON2) in mouse brain by the polyphenol quercetin: a mechanism of neuroprotection?, Neurochem. Re.s 38(9) (2013) 1809-1818. http://dx.doi.org/10.1007/s11064-013-1085-1.

[5]

E. Marcolin, B. San-Miguel, D. Vallejo, et al., Quercetin treatment ameliorates inflammation and fibrosis in mice with nonalcoholic steatohepatitis, J. Nutr. 142(10) (2012) 1821-1828. http://dx.doi.org/10.3945/jn.112.165274.

[6]

Y.Y. Li, M. Chen, J. Wang, et al., Quercetin ameliorates autophagy in alcohol liver disease associated with lysosome through mTOR-TFEB pathway, Journal of Functional Foods 52 (2019) 177-185. http://dx.doi.org/10.1016/j.jff.2018.10.033.

[7]

C.M. Liu, Y.L. Zheng, J. Lu, et al., Quercetin protects rat liver against leadinduced oxidative stress and apoptosis, Environ. Toxicol. Pharmacol. 29(2) (2010) 158-166. http://dx.doi.org/10.1016/j.etap.2009.12.006.

[8]

J. Rodriguez, J. Yanez, V. Vicente, et al., Effects of several flavonoids on the growth of B16F10 and SK-MEL-1 melanoma cell lines: relationship between structure and activity, Melanoma. Research 12(2) (2002) 99-107. http://dx.doi.org/10.1097/00008390-200204000-00001.

[9]

H. Chang, M.T. Mi, Y.Y. Gu, et al., Effects of flavonoids with different structures on proliferation of leukemia cell line HL-60, Chinese Journal of Cancer 26(12) (2007) 1309-1314.

[10]

P. Zhang, J.C. Mak, R.Y. Man, et al., Structure-activity relationships for anti-inflammatory effect of flavonoids, IUPHAR World Conference on the Pharmacology of Natural & Traditional Medicine, 2015.

[11]

W. Guo, X. Wei, S. Wu, et al., Antagonistic effect of flavonoids on NSC-741909-mediated antitumor activity via scavenging of reactive oxygen species, Eur. J. Pharmacol. 649(1/2/3) (2010) 51-58. http://dx.doi.org/10.1016/j.ejphar.2010.08.057.

[12]

E. Tareke, P. Rydberg, P. Karlsson, et al., Analysis of acrylamide, a carcinogen formed in heated foodstuffs, J. Agric. Food Chem. 50(17) (2002) 4998-5006. http://dx.doi.org/10.1021/jf020302f.

[13]

D.S. Mottram, B.L. Wedzicha, A.T. Dodson, Acrylamide is formed in the Maillard reaction, Nature 419(6906) (2002) 448-449. http://dx.doi.org/10.1038/419448a.

[14]

X. Shan, Y. Li, X. Meng, et al., Curcumin and (−)-epigallocatechin-3-gallate attenuate acrylamide-induced proliferation in HepG2 cells, Food Chem. Toxicol. 66 (2014) 194-202. http://dx.doi.org/10.1016/j.fct.2014.01.046.

[15]

Z. Liu, G. Song, C. Zou, et al., Acrylamide induces mitochondrial dysfunction and apoptosis in BV-2 microglial cells, Free Radic. Biol. Med. 84 (2015) 42-53. http://dx.doi.org/10.1016/j.freeradbiomed.2015.03.013.

[16]

J.E.J. Krige, I.J. Beckingham, ABC of diseases of liver, pancreas, and biliary system-liver abscesses and hydatid disease, British. Medical. Journal 322(7285) (2001) 537-540. http://dx.doi.org/10.1136/bmj.322.7285.537.

[17]

O.S. Erfan, H.M. Sonpol, M. Abd El-kader, Protective effect of rapamycin against acrylamide-induced hepatotoxicity: the associations between autophagy, apoptosis, and necroptosis, The Anatomical Record 304(9) (2021) 1984-1998. https://doi.org/10.1002/ar.24587.

[18]

G. Khiralla, Protective effect of selenium nanoparticles against acrylamideinduced hepatotoxicity in albino rats, Journal of Food and Dairy Sciences 10(10) (2019) 359-363. http://dx.doi.org/10.21608/jfds.2019.60768.

[19]

H.S. Shin, M.C. Pyo, H.S. Bae, et al., Hepatotoxicity of ochratoxin A, benzo [a] pyrene and acrylamide, alone and in combination with HepG2 cell through phase Ⅰ and phase Ⅱ pathway, FASEB Journal 32(1) (2018) 665.7. https://doi.org/10.1096/fasebj.2018.32.1_supplement.665.7.

[20]

A. Sen, O. Ozgun, E. Arinc, et al., Diverse action of acrylamide on cytochrome P450 and glutathione S-transferase isozyme activities, mRNA levels and protein levels in human hepatocarcinoma cells, Cell Biol. Toxicol. 28(3) (2012) 175-186. http://dx.doi.org/10.1007/s10565-012-9214-1.

[21]

X. Zhang, J. Cao, L. Jiang, et al., Protective effect of hydroxytyrosol against acrylamide-induced cytotoxicity and DNA damage in HepG2 cells, Mutat. Res. 664(1/2) (2009) 64-68. http://dx.doi.org/10.1016/j.mrfmmm.2009.02.013.

[22]

J. Cao, Y. Liu, L. Jia, et al., Curcumin attenuates acrylamide-induced cytotoxicity and genotoxicity in HepG2 cells by ROS scavenging, J. Agric. Food Chem. 56(24) (2008) 12059-12063. http://dx.doi.org/10.1021/jf8026827.

[23]

E. Seydi, M. Rajabi, A. Salimi, et al., Involvement of mitochondrialmediated caspase-3 activation and lysosomal labilization in acrylamideinduced liver toxicity, Toxicological and Environmental Chemistry 97(5) (2015) 563-575. http://dx.doi.org/10.1080/02772248.2015.1047671.

[24]

D. Song, C. Xu, A.L. Holck, et al., Acrylamide inhibits autophagy, induces apoptosis and alters cellular metabolic profiles, Ecotoxicol. Environ. Saf. 208 (2021) 111543. http://dx.doi.org/10.1016/j.ecoenv.2020.111543.

[25]

G. Song, Z. Liu, L. Wang, et al., Protective effects of lipoic acid against acrylamide-induced neurotoxicity: involvement of mitochondrial energy metabolism and autophagy, Food Funct. 8(12) (2017) 4657-4667. http://dx.doi.org/10.1039/c7fo01429e.

[26]

W. Chen, P. Zou, Z. Zhao, et al., Selective killing of gastric cancer cells by a small molecule via targeting TrxR1 and ROS-mediated ER stress activation, Oncotarget 7(13) (2016) 16593-16609. http://dx.doi.org/10.18632/oncotarget.7565.

[27]

M.C. Maiuri, E. Zalckvar, A. Kimchi, et al., Self-eating and self-killing: crosstalk between autophagy and apoptosis, Nature Reviews Molecular Cell Biology 8(9) (2007) 741-752. http://dx.doi.org/10.1038/nrm2239.

[28]

M. Schieber, N.S. Chandel, ROS function in redox signaling and oxidative stress, Curr. Biol. 24(10) (2014) R453-462. http://dx.doi.org/10.1016/j.cub.2014.03.034.

[29]

Y. Lei, Q. Xu, B. Zeng, et al., Ang-(1-7) protects cardiomyocytes against HG-induced injuries through inhibiting ROS-activated leptin-p38 MAPK/ERK1/2 pathways but not leptin-JNK pathway In vitro, J. Diabetes Investig 10 (2016). http://dx.doi.org/10.1111/jdi.12603.

[30]

J.D. Farkas, P. Farkas, Basic Skills in Interpreting Laboratory Data, ASHP (2009) 235.

[31]

A.W. Boots, G.R. Haenen, A. Bast, Health effects of quercetin: from antioxidant to nutraceutical, Eur. J. Pharmacol. 585(2/3) (2008) 325-337. http://dx.doi.org/10.1016/j.ejphar.2008.03.008.

[32]

I. Erlund, Review of the flavonoids quercetin, hesperetin, and naringenin. dietary sources, bioactivities, bioavailability, and epidemiology, Nutrition Research 24(10) (2004) 851-874. https://doi.org/10.1016/j.nutres.2004.07.005.

[33]

S. Zargar, N.J. Siddiqi, S. Ansar, et al., Therapeutic role of quercetin on oxidative damage induced by acrylamide in rat brain, Pharm. Biol. 54(9) (2016) 1763-1767. http://dx.doi.org/10.3109/13880209.2015.1127977.

[34]

S. Ansar, N.J. Siddiqi, S. Zargar, et al., Hepatoprotective effect of quercetin supplementation against acrylamide-induced DNA damage in wistar rats, BMC Complement Altern. Med. 16(1) (2016) 327. http://dx.doi.org/10.1186/s12906-016-1322-7.

[35]

C. Uthra, S. Shrivastava, A. Jaswal, et al., Therapeutic potential of quercetin against acrylamide induced toxicity in rats, Biomed. Pharmacother 86 (2017) 705-714. http://dx.doi.org/10.1016/j.biopha.2016.12.065.

[36]

S. Gedik, M.E. Erdemli, M. Gul, et al., Hepatoprotective effects of crocin on biochemical and histopathological alterations following acrylamide-induced liver injury in Wistar rats, Biomed. Pharmacother 95 (2017) 764-770. http://dx.doi.org/10.1016/j.biopha.2017.08.139.

[37]

L. Li, H.Y. Sun, W. Liu, et al., Silymarin protects against acrylamideinduced neurotoxicity via Nrf2 signalling in PC12 cells, Food Chem. Toxicol. 102 (2017) 93-101. http://dx.doi.org/10.1016/j.fct.2017.01.021.

[38]

A. Rahal, A. Kumar, V. Singh, et al., Oxidative stress, prooxidants, and antioxidants: the interplay, Biomed. Res. Int. 2014 (2014) 761264. http://dx.doi.org/10.1155/2014/761264.

[39]

M. Zhao, F.S. Lewis Wang, X. Hu, et al., Acrylamide-induced neurotoxicity in primary astrocytes and microglia: roles of the Nrf2-ARE and NF-kappaB pathways, Food Chem. Toxicol. 106(Pt A) (2017) 25-35. http://dx.doi.org/10.1016/j.fct.2017.05.007.

[40]

J.X. Zhang, W.B. Yue, Y.S. Ren, et al., Enhanced role of elaidic acid on acrylamide-induced oxidative stress in epididymis and epididymal sperm that contributed to the impairment of spermatogenesis in mice, Toxicology and Industrial Health 26(8) (2010) 469-477. http://dx.doi.org/10.1177/0748233710373084.

[41]

M.Y. Zhao, P.P. Wang, Y.C. Zhu, et al., Blueberry anthocyanins extract inhibits acrylamide-induced diverse toxicity in mice by preventing oxidative stress and cytochrome P450 2E1 activation, Journal of Functional Foods 14 (2015) 95-101. http://dx.doi.org/10.1016/j.jff.2015.01.035.

[42]

X.Y. Xia, Z. Zhang, C. Zheng, et al., Ameliorative effects of canolol against acrylamide toxicity in PC12 cells through modulating MAPKs pathway and autophagy, Journal of Functional Foods 75 (2020) 104257. http://dx.doi.org/10.1016/j.jff.2020.104257.

[43]

S. Kucukler, C. Caglayan, E. Darendelioglu, et al., Morin attenuates acrylamide-induced testicular toxicity in rats by regulating the NF-kappaB, Bax/Bcl-2 and PI3K/Akt/mTOR signaling pathways, Life Sci. 261 (2020) 118301. http://dx.doi.org/10.1016/j.lfs.2020.118301.

[44]

R.W. Johnstone, A.A. Ruefli, S.W. Lowe, Apoptosis: a link between cancer genetics and chemotherapy, Cell 108(2) (2002) 153-164. http://dx.doi.org/10.1016/S0092-8674(02)00625-6.

[45]

J.G. Lee, Y.S. Wang, C.C. Chou, Acrylamide-induced apoptosis in rat primary astrocytes and human astrocytoma cell lines, Toxicol In vitro 28(4) (2014) 562-570. http://dx.doi.org/10.1016/j.tiv.2014.01.005.

[46]

Y. Komoike, M. Matsuoka, Endoplasmic reticulum stress-mediated neuronal apoptosis by acrylamide exposure, Toxicol. Appl. Pharmacol. 310 (2016) 68-77. http://dx.doi.org/10.1016/j.taap.2016.09.005

[47]

N.M. Al-Rasheed, L.M. Fadda, H.A. Attia, et al., Quercetin inhibits sodium nitrite-induced inflammation and apoptosis in different rats organs by suppressing Bax, HIF1-alpha, TGF-beta, Smad-2, and AKT pathways, J. Biochem. Mol. Toxicol. 31(5) (2017) e21883. http://dx.doi.org/10.1002/jbt.21883.

[48]

M. Boussabbeh, A. Prola, I. Ben Salem, et al., Crocin and quercetin prevent PAT-induced apoptosis in mammalian cells: involvement of ROS-mediated ER stress pathway, Environ. Toxicol. 31(12) (2016) 1851-1858. http://dx.doi.org/10.1002/tox.22185.

[49]

I. Ben Salem, A. Prola, M. Boussabbeh, et al., Activation of ER stress and apoptosis by alpha-and beta-zearalenol in HCT116 cells, protective role of quercetin, Neurotoxicology 53 (2016) 334-342. http://dx.doi.org/10.1016/j.neuro.2015.11.004.

[50]

L. Jiang, J. Cao, Y. An, et al., Genotoxicity of acrylamide in human hepatoma G2 (HepG2) cells, Toxicol In vitro 21(8) (2007) 1486-1492. http://dx.doi.org/10.1016/j.tiv.2007.06.011.

[51]

M. Alia, S. Ramos, R. Mateos, et al., Quercetin protects human hepatoma HepG2 against oxidative stress induced by tert-butyl hydroperoxide, Toxicol. Appl. Pharmacol. 212(2) (2006) 110-118. http://dx.doi.org/10.1016/j.taap.2005.07.014.

[52]

S. Li, Z. Song, T. Liu, et al., Polysaccharide from Ostrea rivularis attenuates reproductive oxidative stress damage via activating Keap1-Nrf2/ARE pathway, Carbohydr. Polym. 186 (2018) 321-331. http://dx.doi.org/10.1016/j.carbpol.2018.01.075.

[53]

K. Bhui, S. Tyagi, B. Prakash, et al., Pineapple bromelain induces autophagy, facilitating apoptotic response in mammary carcinoma cells, Biofactors 36(6) (2010) 474-482. http://dx.doi.org/10.1002/biof.121.

[54]

B. Inbal, S. Bialik, I. Sabanay, et al., DAP kinase and DRP-1 mediate membrane blebbing and the formation of autophagic vesicles during programmed cell death, J. Cell Biol. 157(3) (2002) 455-468. http://dx.doi.org/10.1083/jcb.200109094.

[55]

M.M. Li, J. Tan, Y.Y. Miao, et al., The dual role of autophagy under hypoxiainvolvement of interaction between autophagy and apoptosis, Apoptosis. 20(6) (2015) 769-777. http://dx.doi.org/10.1007/s10495-015-1110-8.

[56]

J. Zhang, Q. Cai, M. Jiang, et al., Mesencephalic astrocyte-derived neurotrophic factor alleviated 6-OHDA-induced cell damage via ROSAMPK/mTOR mediated autophagic inhibition, Exp. Gerontol. 89 (2017) 45-56. http://dx.doi.org/10.1016/j.exger.2017.01.010.

[57]

J. Kim, T.G. Choi, Y. Ding, et al., Overexpressed cyclophilin B suppresses apoptosis associated with ROS and Ca2+ homeostasis after ER stress, J. Cell Sci. 121(Pt 21) (2008) 3636-3648. http://dx.doi.org/10.1242/jcs.028654.

[58]

K.X. Wen, C.Z. Wang, X.B. Yan, et al., Research progress of flavonoids biological activity, Pratacultural Science 6 (2010) 115-122. https://doi.org/10.3724/SP.J.1142.2010.40491.

[59]

X.H. Zeng, K.W. Wing, Y. Jiang, et al., Inhibition of acrylamide formation by vitamins in model reactions and fried potato strips, Food Chemistry 116(1) (2009) 34-39. https://doi.org/10.1016/j.foodchem.2009.01.093.

Food Science and Human Wellness
Pages 225-240
Cite this article:
Li L, Lei X, Chen L, et al. Protective mechanism of quercetin compounds against acrylamide-induced hepatotoxicity. Food Science and Human Wellness, 2024, 13(1): 225-240. https://doi.org/10.26599/FSHW.2022.9250019

1384

Views

293

Downloads

4

Crossref

3

Web of Science

2

Scopus

0

CSCD

Altmetrics

Received: 30 January 2022
Revised: 15 March 2022
Accepted: 30 April 2022
Published: 01 June 2023
© 2024 Beijing Academy of Food Sciences. Publishing services by Tsinghua University Press.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return