PDF (18.3 MB)
Collect
Submit Manuscript
Research Article | Open Access

2-O-β-D-Glucopyranosyl-L-ascorbic acid, an ascorbic acid derivative isolated from the fruits of Lycium barbarum L., ameliorates high fructose-induced neuroinfl ammation in mice: involvement of gut microbiota and leaky gut

Wei DongaYujia PengaGuijie ChenaZhiyong XieaWeiqi XuaWangting ZhouaJia MibLu LubYi SunaXiaoxiong Zenga()Youlong Caob()Yamei Yanb ()
College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
Institute of Wolfberry Engineering Technology, National Wolfberry Engineering Research Center, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China

Peer review under responsibility of Tsinghua University Press.

Show Author Information

Abstract

Western diet (rich in highly refined sugar and fat) can induce a range of metabolic dysfunctions in animals and humans, including neuroinflammation and cognitive function decline. Neuroinflammation and cognitive impairment, two critical pathological characteristics of Alzheimer’s disease, have been closely associated with microbial alteration via the gut-brain axis. Thus, the present study aimed to investigate the influence of 2-O-β-D-glucopyranosyl-L-ascorbic acid (AA-2βG) isolated from the fruits of Lycium barbarum on preventing the high-fructose diet (HFrD) induced neuroinflammation in mice. It was found that AA-2βG prevented HFrD-induced cognitive deficits. AA-2βG also predominantly enhanced the gut barrier integrity, decreased lipopolysaccharide entry into the circulation, which subsequently countered the activation of glial cells and neuroinflammatory response. These beneficial effects were transmissible by horizontal fecal microbiome transplantation, transferring from AA-2βG fed mice to HFrD fed mice. Additionally, AA-2βG exerted neuroprotective effects involving the enrichment of Lactobacillus and Akkermansia, potentially beneficial intestinal bacteria. The present study provided the evidence that AA-2βG could improve indices of cognition and neuroinflammmation via modulating gut dybiosis and preventing leaky gut. As a potential functional food ingredient, AA-2βG may be applied to attenuate neuroinflammation associated with Western-style diets.

Electronic Supplementary Material

Download File(s)
fshw-2024-9250020_ESM.pdf (1.4 MB)

References

[1]

K. Ray, Obesity: Metabolic effects of fructose., Nat. Rev. Endocrinol. 9 (2013) 627-627. http://doi.org/10.1038/nrendo.2013.187.

[2]

M. S. Spagnuolo, S. Iossa, L. Cigliano, Sweet but bitter: focus on fructose impact on brain function in rodent models, Nutrients 13 (2021) 1. http://doi.org/10.3390/nu13010001.

[3]

M. T. Heneka, M. J. Carson, J. El Khoury, et al., Neuroinflammation in Alzheimer’s disease, Lancet Neurol. 14 (2015) 388-405. http://doi.org/10.1016/S1474-4422(15)70016-5.

[4]

X. Qian, X. Song, X. Liu, et al., Inflammatory pathways in Alzheimer’s disease mediated by gut microbiota, Ageing Res. Rev. 68 (2021) 101317. http://doi.org/10.1016/j.arr.2021.101317.

[5]

G. Livingston, J. Huntley, A. Sommerlad, et al., Dementia prevention, intervention, and care: 2020 report of the Lancet Commission, Lancet 396 (2020) 413-446. http://doi.org/https://doi.org/10.1016/S0140-6736(20)30367-6.

[6]

J.F. Cryan, K.J. O’Riordan, C.S.M. Cowan, et al., The microbiota-gutbrain axis, Physiol. Rev. 99 (2019) 1877-2013. http://doi.org/10.1152/physrev.00018.2018.

[7]

M. Kim, Y. Kim, H. Choi, et al., Transfer of a healthy microbiota reduces amyloid and tau pathology in an Alzheimer’s disease animal model, Gut 69 (2020) 283-294. http://doi.org/10.1136/gutjnl-2018-317431.

[8]

E.E. Noble, T.M. Hsu, S.E. Kanoski, Gut to brain dysbiosis: mechanisms linking Western diet consumption, the microbiome, and cognitive impairment, Front. Behav. Neurosci. 11 (2017) 9. http://doi.org/10.3389/fnbeh.2017.00009.

[9]

G. Jamar, D.A. Ribeiro, L.P. Pisani, High-fat or high-sugar diets as trigger inflammation in the microbiota-gut-brain axis, Crit. Rev. Food Sci. 61 (2021)836-854. http://doi.org/10.1080/10408398.2020.1747046.

[10]

J. Li, R. Yu, L. Zhang, et al., Dietary fructose-induced gut dysbiosis promotes mouse hippocampal neuroinflammation: a benefit of short-chain fatty acids, Microbiome 7 (2019) 98. http://doi.org/10.1186/s40168-019-0713-7.

[11]

L. Tarassishin, H.S. Suh, S.C. Lee, LPS and IL-1 differentially activate mouse and human astrocytes: role of CD14, Glia 62 (2014) 999-1013. http://doi.org/10.1002/glia.22657.

[12]

H. Amagase, N.R. Farnsworth, A review of botanical characteristics, phytochemistry, clinical relevance in efficacy and safety of Lycium barbarum fruit (Goji), Food Res. Int. 44 (2011) 1702-1717. http://doi.org/10.1016/j.foodres.2011.03.027.

[13]

X. Xing, F. Liu, J. Xiao, et al., Neuro-protective mechanisms of Lycium barbarum, Neuromol. Med. 18 (2016) 253-263. http://doi.org/10.1007/s12017-016-8393-y.

[14]

Y. Toyoda-Ono, M. Maeda, M. Nakao, et al., 2-O-(β-D-glucopyranosyl) ascorbic acid, a novel ascorbic acid analogue isolated from Lycium fruit, J. Agric. Food Chem. 52 (2004) 2092-2096. http://doi.org/10.1021/jf035445w.

[15]

K. Huang, Y. Yan, D. Chen, et al., Ascorbic acid derivative 2-O-β-Dglucopyranosyl-L-ascorbic acid from the fruit of Lycium barbarum modulates microbiota in the small intestine and colon and exerts an immunomodulatory effect on cyclophosphamide-treated BALB/c mice, J. Agric. Food Chem. 68 (2020) 11128-11143. http://doi.org/10.1021/acs.jafc.0c04253.

[16]

S. Wang, X. Liu, M. Ding, et al., 2-O-β-D-glucopyranosyl-L-ascorbic acid, a novel vitamin C derivative from Lycium barbarum, prevents oxidative stress, Redox Biol. 24 (2019) 101173. http://doi.org/10.1016/j.redox.2019.101173.

[17]

Z. Zhang, X. Liu, T. Wu, et al., Selective suppression of cervical cancer Hela cells by 2-O-β-D-glucopyranosyl-L-ascorbic acid isolated from the fruit of Lycium barbarum L., Cell Biol. Toxicol. 27 (2011) 107-121. http://doi.org/10.1007/s10565-010-9174-2.

[18]

K. Huang, W. Dong, W. Liu, et al., 2-O-β-D-glucopyranosyl-L-ascorbic acid, an ascorbic acid derivative isolated from the fruits of Lycium Barbarum L., modulates gut microbiota and palliates colitis in dextran sodium sulfateinduced colitis in mice, J. Agric. Food Chem. 67 (2019) 11408-11419. http://doi.org/10.1021/acs.jafc.9b04411.

[19]

C. Chang, C. Lin, C. Lu, et al., Ganoderma lucidum reduces obesity in mice by modulating the composition of the gut microbiota, Nat. Commun. 6 (2015)7489. http://doi.org/10.1038/ncomms8489.

[20]

J. Liu, Y. Wang, Z. Wang, et al., 5-Heptadecylresorcinol, a biomarker for whole grain rye consumption, ameliorates cognitive impairments and neuroinflammation in APP/PS1 transgenic mice, Mol. Nutr. Food Res. 64 (2020) 1901218. http://doi.org/10.1002/mnfr.201901218.

[21]

W. Dong, K. Huang, Y. Yan, et al., Long-term consumption of 2-O-β-D-glucopyranosyl-L-ascorbic acid from the fruits of Lycium barbarum modulates gut microbiota in C57BL/6 mice, J. Agric. Food Chem. 68 (2020)8863-8874. http://doi.org/10.1021/acs.jafc.0c04007.

[22]

K. Rahman, C. Desai, S.S. Iyer, et al., Loss of junctional adhesion molecule a promotes severe steatohepatitis in mice on a diet high in saturated fat, fructose, and cholesterol, Gastroenterology 151 (2016) 733-746. http://doi.org/10.1053/j.gastro.2016.06.022.

[23]

C.T. Capaldo, D.N. Powell, D. Kalman, Layered defense: how mucus and tight junctions seal the intestinal barrier, J. Mol. Med. 95 (2017) 927-934. http://doi.org/10.1007/s00109-017-1557-x.

[24]

H. Kayama, R. Okumura, K. Takeda, Interaction between the microbiota, epithelia, and immune cells in the intestine, Annu. Rev. Immunol. 38 (2020)23-48. http://doi.org/10.1146/annurev-immunol-070119-115104.

[25]

R. Zhang, R.G. Miller, R. Gascon, et al., Circulating endotoxin and systemic immune activation in sporadic amyotrophic lateral sclerosis(sALS), J. Neuroimmunol. 206 (2009) 121-124. http://doi.org/10.1016/j.jneuroim.2008.09.017.

[26]

R. Yu, S. Wen, Q. Wang, et al., Mulberroside A repairs high fructose diet-induced damage of intestinal epithelial and blood-brain barriers in mice: a potential for preventing hippocampal neuroinflammatory injury, J. Neurochem. 157 (2021) 1979-1991. http://doi.org/10.1111/jnc.15242.

[27]

S. Sil, T. Ghosh, P. Gupta, et al., Dual role of vitamin C on the neuroinflammation mediated neurodegeneration and memory impairments in colchicine induced rat model of Alzheimer disease, J. Mol. Neurosci. 60 (2016) 421-435. http://doi.org/10.1007/s12031-016-0817-5.

[28]

C.C. Portugal, R. Socodato, T. Canedo, et al., Caveolin-1-mediated internalization of the vitamin C transporter SVCT2 in microglia triggers an inflammatory phenotype, Sci. Signal 10 (2017) eaal2005. http://doi.org/10.1126/scisignal.aal2005.

[29]

H. Ji, L. Shen, Probiotics as potential therapeutic options for Alzheimer’s disease, Appl. Microbiol. Biot. 105 (2021) 7721-7730. http://doi.org/10.1007/s00253-021-11607-1.

[30]

E. Akbari, Z. Asemi, R. Daneshvar Kakhaki, et al., Effect of probiotic supplementation on cognitive function and metabolic status in Alzheimer’s disease: a randomized, double-blind and controlled trial, Front. Aging Neurosci. 8 (2016) 256. http://doi.org/10.3389/fnagi.2016.00256.

[31]

T. Harach, N. Marungruang, N. Duthilleul, et al., Reduction of Aβ amyloid pathology in APPPS1 transgenic mice in the absence of gut microbiota, Sci. Rep. 7 (2017) 41802. http://doi.org/10.1038/srep41802.

[32]

M.C. Dao, A. Everard, J. Aron-Wisnewsky, et al., Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology, Gut 65 (2016) 426-436. http://doi.org/10.1136/gutjnl-2014-308778.

[33]

C. Grander, T. E. Adolph, V. Wieser, et al., Recovery of ethanol-induced Akkermansia muciniphila depletion ameliorates alcoholic liver disease, Gut 67 (2018) 891-901. http://doi.org/10.1136/gutjnl-2016-313432.

[34]

H. Plovier, A. Everard, C. Druart, et al., A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice, Nat. Med. 23 (2017) 107-113. http://doi.org/10.1038/nm.4236.

[35]

Y. Yang, Z. Zhong, B. Wang, et al., Early-life high-fat diet-induced obesity programs hippocampal development and cognitive functions via regulation of gut commensal Akkermansia muciniphila, Neuropsychopharmacology 44 (2019) 2054-2064. http://doi.org/10.1038/s41386-019-0437-1.

[36]

B.J. Parker, P.A. Wearsch, A.C.M. Veloo, et al., The genus Alistipes: gut bacteria with emerging implications to inflammation, cancer, and mental health, Front. Immunol. 11 (2020) 906. http://doi.org/10.3389/fimmu.2020.00906.

[37]

P.A. Bron, M. Kleerebezem, R. Brummer, et al., Can probiotics modulate human disease by impacting intestinal barrier function?, Brit. J. Nutr. 117 (2017) 93-107. http://doi.org/10.1017/S0007114516004037.

[38]

Y. Ni, X. Yang, L. Zheng, et al., Lactobacillus and Bifidobacterium improves physiological function and cognitive ability in aged mice by the regulation of gut microbiota, Mol. Nutr. Food Res. 63 (2019) 1900603. http://doi.org/10.1002/mnfr.201900603.

[39]

Z. Ou, L. Deng, Z. Lu, et al., Protective effects of Akkermansia muciniphila on cognitive deficits and amyloid pathology in a mouse model of Alzheimer’s disease, Nutr. Diabetes 10 (2020) 12. http://doi.org/10.1038/s41387-020-0115-8.

Food Science and Human Wellness
Pages 241-253
Cite this article:
Dong W, Peng Y, Chen G, et al. 2-O-β-D-Glucopyranosyl-L-ascorbic acid, an ascorbic acid derivative isolated from the fruits of Lycium barbarum L., ameliorates high fructose-induced neuroinfl ammation in mice: involvement of gut microbiota and leaky gut. Food Science and Human Wellness, 2024, 13(1): 241-253. https://doi.org/10.26599/FSHW.2022.9250020
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return