AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (5.2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Association between lifestyle factors and thyroid function in young euthyroid adults

Elisa Merchan-Ramireza,( )Guillermo Sanchez-Delgadoa,bLucas Jurado-Fasolia,cFrancisco M Acostaa,d,eManuel Muñoz-Torresc,f,g,hJose M. Llamas-Elviraf,iJonatan R Ruiza( )
Sport and Health University Research Institute (iMUDS), Faculty of Sports Science, University of Granada, Granada 18016, Spain
Pennington Biomedical Research Center, Baton Rouge 70808, USA
Faculty of Medicine, University of Granada, Granada 18071, Spain
Turku PET Centre, University of Turku, Turku 20500, Finland
Turku PET Centre, Turku University Hospital, Turku 20520, Finland
Biosanitary Research Institute of Granada (Ibs. Granada), Granada 18012, Spain
CIBERFES, Instituto de Salud Carlos III, Madrid 28029, Spain
Endocrinology and Nutrition Service, University Hospital San Cecilio, Granada 18016, Spain
Nuclear Medicine Service, "Virgen de las Nieves" University Hospital, Granada 18014, Spain

Peer review under responsibility of Tsinghua University Press.

Show Author Information

Abstract

Purpose

The present work examines the associations of dietary habits, sedentarism, physical activity (PA) levels and sleep habits, with thyroid function in young euthyroid adults.

Methods

A total of 105 young euthyroid adults participated in this cross-sectional study. Thyroid function was determined in fasting conditions (> 6 h). Dietary habits were measured by a food frequency questionnaire and three non-consecutive 24 h recalls, and different dietary intake and patterns were then estimated. The time spent in sedentary, PA levels and sleep habits were objectively measured using a wrist-worn accelerometer.

Results

Energy and carbohydrate intake were positively associated with thyroid stimulating hormone (TSH) (β = 0.222; R2 = 0.102; P = 0.022 and β = 0.425; R2 = 0.129; P = 0.007, respectively) whereas fat intake was negatively associated with TSH (β = −0.428; R2 = 0.137; P = 0.004). Energy intake was also positively associated with free triiodothyronine (β = 0.277; R2 = 0.137; P = 0.004). Further, adherence to the Mediterranean diet was negatively related to TSH and free thyroxine (FT4) (β = −0.221; R2 = 0.113; P = 0.020 and β = −0.268; R2 = 0.071; P = 0.007, respectively). Vigorous-intensity and overall PA were negatively associated with FT4 (β = −0.227; R2 = 0.052; P = 0.022 and β = −0.204; R2 = 0.042; P = 0.041, respectively). In contrast, no associations were found between sleep parameters and thyroid function.

Conclusions

Lifestyle factors such as dietary intake and PA levels seems to be related to thyroid function even in young euthyroid adults.

Electronic Supplementary Material

Download File(s)
fshw-2024-9250022_ESM.pdf (283.6 KB)

References

[1]

R. Mullur, Y. Liu, G.A. Brent, Thyroid hormone regulation of metabolism, Physiol. Rev. 94 (2014) 355-382. https://doi.org/10.1152/physrev.00030.2013.

[2]

E.A. McAninch, A.C. Bianco, Thyroid hormone signaling in energy homeostasis and energy metabolism., Ann. N.Y. Acad. Sci. 1311 (2014) 77-87. https://doi.org/10.1111/nyas.12374.

[3]

G. de Pergola, A. Ciampolillo, S. Paolotti, et al., Free triiodothyronine and thyroid stimulating hormone are directly associated with waist circumference, independently of insulin resistance, metabolic parameters and blood pressure in overweight and obese women, Clin. Endocrinol. (Oxf) 67 (2007) 265-269. https://doi.org/10.1111/j.1365-2265.2007.02874.x.

[4]

E. Ortega, N. Pannacciulli, C. Bogardus, et al., Plasma concentrations of free triiodothyronine predict weight change in euthyroid Persons, Am. J. Clin. Nutr. 85 (2007) 440-445. https://doi.org/10.1093/ajcn/85.2.440.

[5]

M. Ghamari-Langroudi, K.R. Vella, D. Srisai, et al., Regulation of thyrotropin-releasing hormone-expressing neurons in paraventricular nucleus of the hypothalamus by signals of adiposity, Mol. Endocrinol. 24 (2010) 2366-2381. https://doi.org/10.1210/me.2010-0203.

[6]

L.J. Lartey, J.P. Werneck-de-Castro, I. O-Sullivan, et al., Coupling between nutrient availability and thyroid hormone activation, J. Biol. Chem. 290 (2015) 30551-30561. https://doi.org/10.1074/jbc.M115.665505.

[7]

J.T. O’Brian, D.E. Bybee, K.D. Burman, et al., Thyroid hormone homeostasis in states of relative caloric deprivation, Metabolism. 29 (1980) 721-727. https://doi.org/10.1016/0026-0495(80)90193-6.

[8]

A.G. Burger, M. Berger, K. Wimpfheimer, et al., Interrelationships between energy metabolism and thyroid hormone metabolism during starvation in the rat, Acta Endocrinol. (Copenh) 93 (1980) 322-331. https://doi.org/10.1530/acta.0.0930322.

[9]

J.E. Schebendach, N.H. Golden, M.S. Jacobson, et al., The metabolic responses to starvation and refeeding in adolescents with anorexia nervosa, Ann. N.Y. Acad. Sci. 817 (1997) 110-119. https://doi.org/10.1111/j.1749-6632.1997.tb48200.x.

[10]

A. Basolo, B. Begaye, T. Hollstein, et al., Effects of short-term fasting and different overfeeding diets on thyroid hormones in healthy humans, Thyroid. 29 (2019) 1209-1219. https://doi.org/10.1089/thy.2019.0237.

[11]

S. Iacovides, R.M. Meiring, The effect of a ketogenic diet versus a high-carbohydrate, low-fat diet on sleep, cognition, thyroid function, and cardiovascular health independent of weight loss: study protocol for a randomized controlled trial, Trials 19 (2018) 62. https://doi.org/10.1186/s13063-018-2462-5.

[12]

M.M. Jepson, P.C. Bates, D.J. Millward, The role of insulin and thyroid hormones in the regulation of muscle growth and protein turnover in response to dietary protein in the rat, Br. J. Nutr. 59 (1988) 397-415. https://doi.org/10.1079/bjn19880049.

[13]

R. Zupo, F. Castellana, F. Panza, et al., Adherence to a mediterranean diet and thyroid function in obesity: a cross-sectional apulian survey, Nutrients 12 (2020) 3173. https://doi.org/10.3390/nu12103173.

[14]

S.M. O’Kane, M.S. Mulhern, L.K. Pourshahidi, et al., Micronutrients, iodine status and concentrations of thyroid hormones: a systematic review, Nutr. Rev. 76 (2018) 418-431. https://doi.org/10.1093/nutrit/nuy008.

[15]

L. Schomburg, J. Köhrle, On the importance of selenium and iodine metabolism for thyroid hormone biosynthesis and human health, Mol. Nutr. Food Res. 52 (2008) 1235-1246. https://doi.org/10.1002/mnfr.200700465.

[16]

S.Y. Hess, The impact of common micronutrient deficiencies on iodine and thyroid metabolism: the evidence from human studies, Best Pract. Res. Clin. Endocrinol. Metab. 24 (2010) 117-132. https://doi.org/10.1016/j.beem.2009.08.012.

[17]

F. Ciloglu, I. Peker, A. Pehlivan, et al., Exercise intensity and its effects on thyroid hormones, Neuroendocrinol. Lett. 26 (2005) 830-834. http://www.ncbi.nlm.nih.gov/pubmed/16380698.

[18]
J.K.G. Dorina Ylli, L. Wartofsky, Exercise and thyroid function, in: Endocrinology of Physical Activity and Sport Second Ed., 2013, pp. 85-108. https://doi.org/10.1007/978-1-62703-314-5.
[19]

A.C. Hackney, A. Saeidi, The thyroid axis, prolactin, and exercise in humans, Curr. Opin. Endocr. Metab. Res. 9 (2019) 45-50. https://doi.org/10.1016/j.coemr.2019.06.012.

[20]

J.C. Pereira, M.L. Andersen, The role of thyroid hormone in sleep deprivation, Med. Hypotheses. 82 (2014) 350-355. https://doi.org/10.1016/j.mehy.2014.01.003.

[21]

H. Kuhs, D. Farber, R. Tolle, Serum prolactin, growth hormone, total corticoids, thyroid hormones and thyrotropine during serial therapeutic sleep deprivation, Biol. Psychiatry. 39 (1996) 857-864. https://doi.org/10.1016/0006-3223(95)00240-5.

[22]

G. Brabant, K. Prank, U. Ranft, et al., Physiological regulation of circadian and pulsatile thyrotropin secretion in normal man and woman, J. Clin. Endocrinol. Metab. 70 (1990) 403-409. https://doi.org/10.1210/jcem-70-2-403.

[23]

D.C. Parker, L.G. Rossman, A.E. Pekary, et al., Effect of 64-hour sleep deprivation on the circadian waveform of thyrotropin (TSH): further evidence of sleep-related inhibition of TSH release, J. Clin. Endocrinol. Metab. 64 (1987) 157-161. https://doi.org/10.1210/jcem-64-1-157.

[24]

E. van Cauter, E. Tasali, Endocrine Physiology in Relation to Sleep and Sleep Disturbances, Principles and Practice of Sleep Medicine Fifth Ed., Elsevier, 2010, pp. 291-311. https://doi.org/10.1016/B978-1-4160-6645-3.00026-8.

[25]

G. Sanchez-Delgado, B. Martinez-Tellez, J. Olza, et al., Activating brown adipose tissue through exercise (ACTIBATE) in young adults: rationale, design and methodology, Contemp. Clin. Trials. 45 (2015) 416-425. https://doi.org/10.1016/j.cct.2015.11.004.

[26]

M. Laclaustra, B. Moreno-Franco, J.M. Lou-Bonafonte, et al., Impaired sensitivity to thyroid hormones is associated with diabetes and metabolic syndrome, Diabetes Care 42 (2019) 303-310. https://doi.org/10.2337/dc18-1410.

[27]
A.R. Ruiz-Lopez MD, Guía para estudios dietéticos: álbum fotográfico de alimentos, 2010.
[28]

J.H. Ledikwe, H.M. Blanck, L.K. Khan, et al., Dietary energy density determined by eight calculation methods in a nationally representative united states population, J. Nutr. 135 (2005) 273-278. https://doi.org/10.1093/jn/135.2.273.

[29]

N.T. Gregersen, A. Flint, C. Bitz, et al., Reproducibility and power of ad libitum energy intake assessed by repeated single meals, Am. J. Clin. Nutr. 87 (2008) 1277-1281. https://doi.org/10.1093/ajcn/87.5.1277.

[30]

J. Vioque, E.M. Navarrete-Muñoz, D. Gimenez-Monzó, et al., Reproducibility and validity of a food frequency questionnaire among pregnant women in a Mediterranean area, Nutr. J. 12 (2013) 26. https://doi.org/10.1186/1475-2891-12-26.

[31]

A. Trichopoulou, T. Costacou, C. Bamia, et al., Adherence to a Mediterranean diet and survival in a Greek population, N. Engl. J. Med. 348 (2003) 2599-608.

[32]

M. Gerber, Qualitative methods to evaluate Mediterranean diet in adults, Public Health Nutr. 9 (2006) 147-151. https://doi.org/10.1079/phn2005937.

[33]

M.A. Martínez-González, E. Fernández-Jarne, M. Serrano-Martínez, et al., Mediterranean diet and reduction in the risk of a first acute myocardial infarction: an operational healthy dietary score, Eur. J. Nutr. 41 (2002) 153-160. https://doi.org/10.1007/s00394-002-0370-6.

[34]

T.T. Fung, S.E. Chiuve, M.L. McCullough, et al., Adherence to a DASH-style diet and risk of coronary heart disease and stroke in women, Arch. Intern. Med. 168 (2008) 713-720. https://doi.org/10.1001/archinte.168.7.713.

[35]

R.E. Patterson, P.S. Haines, B. Popkin, Diet quality index: capturing a multidimensional behavior, J. Am. Diet. Assoc. 94 (1994) 57-64.

[36]

N. Shivappa, S.E. Steck, T.G. Hurley, et al., Designing and developing a literature-derived, population-based dietary inflammatory index, Public Health Nutr. 17 (2014) 1689-1696. https://doi.org/10.1017/S1368980013002115.

[37]

J.H. Migueles, C. Cadenas-Sanchez, U. Ekelund, et al., Accelerometer data collection and processing criteria to assess physical activity and other outcomes: a systematic review and practical considerations, Sports Med. 47 (2017) 1821-1845. https://doi.org/10.1007/s40279-017-0716-0.

[38]

F.M. Acosta, B. Martinez-Tellez, G. Sanchez-Delgado, et al., Association of objectively measured physical activity with brown adipose tissue volume and activity in young adults, J. Clin. Endocrinol. Metab. 104 (2019) 223-233. https://doi.org/10.1210/jc.2018-01312.

[39]

M. Hildebrand, V.T. van Hees, B.H. Hansen, et al., Age group comparability of raw accelerometer output from wrist- and hip-worn monitors, Med. Sci. Sports Exerc. 46 (2014) 1816-1824. https://doi.org/10.1249/MSS.0000000000000289.

[40]

M. Hildebrand, B.H. Hansen, V.T. van Hees, et al., Evaluation of raw acceleration sedentary thresholds in children and adults, Scand. J. Med. Sci. Sports 27 (2017) 1814-1823. https://doi.org/10.1111/sms.12795.

[41]

V.T. van Hees, S. Sabia, K.N. Anderson, et al., A novel, open access method to assess sleep duration using a wrist-worn accelerometer, PLoS One 10 (2015) e0142533. https://doi.org/10.1371/journal.pone.0142533.

[42]

D. Shrivastava, S. Jung, M. Saadat, et al., How to interpret the results of a sleep study, J. Community Hosp. Intern. Med. Perspect. 4 (2014) 24983. https://doi.org/10.3402/jchimp.v4.24983.

[43]

F.M. Acosta, G. Sanchez-Delgado, B. Martinez-Tellez, et al., Sleep duration and quality are not associated with brown adipose tissue volume or activity—as determined by 18F-FDG uptake, in young, sedentary adults, Sleep 42 (2019) zsz177. https://doi.org/10.1093/sleep/zsz177.

[44]

D.J. Buysse, C.F. 3rd Reynolds, T.H. Monk, et al., The pittsburgh sleep quality index: a new instrument for psychiatric practice and research, Psychiatry Res. 28 (1989) 193-213. https://doi.org/10.1016/0165-1781(89)90047-4.

[45]

K. Wu, Y. Zhou, S. Ke, et al., Lifestyle is associated with thyroid function in subclinical hypothyroidism: a cross-sectional study, BMC Endocr. Disord. 21 (2021) 112. https://doi.org/10.1186/s12902-021-00772-z.

[46]

A. Tanriverdi, B. Ozcan Kahraman, I. Ozsoy, et al., Physical activity in women with subclinical hypothyroidism, J. Endocrinol. Invest. 42 (2019) 779-785. https://doi.org/10.1007/s40618-018-0981-2.

[47]

A. Boelen, W.M. Wiersinga, E. Fliers, Fasting-induced changes in the hypothalamus-pituitary-thyroid axis, Thyroid. 18 (2008) 123-129. https://doi.org/10.1089/thy.2007.0253.

[48]

J. Unger, Fasting induces a decrease in serum thyroglobulin in normal subjects, J. Clin. Endocrinol. Metab. 67 (1988) 1309-1311. https://doi.org/10.1210/jcem-67-6-1309.

[49]

J. Trabulsi, D.A. Schoeller, Evaluation of dietary assessment instruments against doubly labeled water, a biomarker of habitual energy intake, Am. J. Physiol. Endocrinol. Metab. 281 (2001) E891-899. https://doi.org/10.1152/ajpendo.2001.281.5.E891.

[50]

E.J. Danforth, E.S. Horton, M. O’Connell, et al., Dietary-induced alterations in thyroid hormone metabolism during overnutrition, J. Clin. Invest. 64 (1979) 1336-1347. https://doi.org/10.1172/JCI109590.

[51]

M.H. Otten, G. Hennemann, R. Docter, et al., The role of dietary fat in peripheral thyroid hormone metabolism, Metabolism 29 (1980) 930-935. https://doi.org/10.1016/0026-0495(80)90035-9.

[52]

J.C. Peters, Dietary fat and body weight control, Lipids 38 (2003) 123-127. https://doi.org/10.1007/s11745-003-1041-9.

[53]

B.M. Tannenbaum, D.N. Brindley, G.S. Tannenbaum, et al., High-fat feeding alters both basal and stress-induced hypothalamic-pituitary-adrenal activity in the rat, Am. J. Physiol. 273 (1997) E1168-1177. https://doi.org/10.1152/ajpendo.1997.273.6.E1168.

[54]

U. Westgren, B. Ahrén, A. Burger, et al., Stimulation of peripheral T3 formation by oral but not by intravenous glucose administration in fasted subjects, Acta Endocrinol. (Copenh) 85 (1977) 526-530. https://doi.org/10.1530/acta.0.0850526.

[55]

X. Zhang, W. Chen, S. Shao, et al., A high-fat diet rich in saturated and mono-unsaturated fatty acids induces disturbance of thyroid lipid profile and hypothyroxinemia in male rats, Mol. Nutr. Food Res. 62 (2018) 1-28. https://doi.org/10.1002/mnfr.201700599.

[56]

F. Azizi, Effect of dietary composition on fasting-induced changes in serum thyroid hormones and thyrotropin, Metabolism 27 (1978) 935-942. https://doi.org/10.1016/0026-0495(78)90137-3.

[57]

J. DeHaven, R. Sherwin, R. Hendler, et al., Nitrogen and sodium balance and sympathetic-nervous-system activity in obese subjects treated with a low-calorie protein or mixed diet, N. Engl. J. Med. 302 (1980) 477-482. https://doi.org/10.1056/NEJM198002283020901.

[58]

M. Franquesa, G. Pujol-Busquets, E. García-Fernández, et al., Mediterranean diet and cardiodiabesity: a systematic review through evidence-based answers to key clinical questions, Nutrients 11 (2019) 655. https://doi.org/10.3390/nu11030655.

[59]

M.P. Rayman, Multiple nutritional factors and thyroid disease, with particular reference to autoimmune thyroid disease, Proc. Nutr. Soc. 78 (2019) 34-44. https://doi.org/10.1017/S0029665118001192.

[60]

M.B. Zimmermann, M. Andersson, Assessment of iodine nutrition in populations: past, present, and future, Nutr. Rev. 70 (2012) 553-570. https://doi.org/10.1111/j.1753-4887.2012.00528.x.

[61]

O.H. Roa Dueñas, C. Koolhaas, T. Voortman, et al., Thyroid function and physical activity: a population-based cohort study, Thyroid. 31 (2020) 870-875. https://doi.org/10.1089/thy.2020.0517.

[62]

W. Kim, J. Lee, J. Ha, et al., Association between sleep duration and subclinical thyroid dysfunction based on nationally representative data, J. Clin. Med. 8 (2019) 2010. https://doi.org/10.3390/jcm8112010.

[63]

K. Ikegami, S. Refetoff, E. van Cauter, et al., Interconnection between circadian clocks and thyroid function, Nat. Rev. Endocrinol. 15 (2019) 590-600. https://doi.org/10.1038/s41574-019-0237-z.

Food Science and Human Wellness
Pages 265-275
Cite this article:
Merchan-Ramirez E, Sanchez-Delgado G, Jurado-Fasoli L, et al. Association between lifestyle factors and thyroid function in young euthyroid adults. Food Science and Human Wellness, 2024, 13(1): 265-275. https://doi.org/10.26599/FSHW.2022.9250022

1462

Views

149

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 21 February 2022
Revised: 10 March 2022
Accepted: 10 May 2022
Published: 01 June 2023
© 2024 Beijing Academy of Food Sciences. Publishing services by Tsinghua University Press.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return