AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (3.7 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Microbial phenolic metabolites 3-(3’,4’-dihydroxyphenyl)propanoic acid and 3’,4’-dihydroxyphenylacetic acid prevent obesity in mice fed high-fat diet

Wanbing Chena,b,c,d,1Ruonan Liua,b,c,d,1Xiaoling ZhueQun Lua,b,c,dHong Yanga,bRui Liua,b,c,d( )
College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430000, China
Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of education, Wuhan 430000, China
Wuhan Engineering Research Center of Bee Products on Quality and Safety Control, Wuhan 430000, China
Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture and Rural Affairs, Wuhan 430000, China
Hubei Provincial Institute for Food Supervision and Test, Wuhan 430070, China

1 Wanbing Chen and Ruonan Liu contributed equally to this work and are both fi rst author.

Peer review under responsibility of Tsinghua University Press.

Show Author Information

Abstract

Obesity is associated with numerous metabolic disorders, and dietary polyphenols have been confirmed to have beneficial effects on the metabolism in obesity. However, the effect of 3-(3’,4’-dihydroxyphenyl)propanoic acid (DHPA) and 3’,4’-dihydroxyphenylacetic acid (DHAA), two main metabolites of dietary polyphenols, on obesity remains poorly understood. In this study, DHPA and DHAA were found to alleviate obesity, as well as regulate insulin resistance, lipid metabolism, and oxidative stress response in high-fat diet (HFD)mice. Surprisingly, the 16S rRNA sequencing and UHPLC-Q-TOF/MS demonstrated that DHPA and DHAA only slightly disturbed the intestinal microbiome, but significantly altered the urine metabolome of HFD mice mainly by regulating pentose and glucuronate interconversion, tyrosine metabolism, pentose phosphate and tricarboxylic acid (TCA) cycle as indicated by metabolic pathway analysis based on Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Correlation analysis revealed that the differential metabolites are strongly associated with body weight, blood glucose, insulin level, and superoxide dismutase (SOD) enzyme activity. Our results revealed that DHPA and DHAA exert their anti-obesity effect by regulating important metabolites in the glucose, lipid and tyrosine metabolism pathways.

References

[1]

J.Y. Xia, D.M. Lloyd-Jones, S.S. Khan, Association of body mass index with mortality in cardiovascular disease: new insights into the obesity paradox from multiple perspectives, Trends Cardiovasc. Med. 29 (2019) 220-225. https://doi.org/10.1016/j.tcm.2018.08.006.

[2]

L.W. Amp, W.J. Circulation, Correction to: heart disease and stroke statistics—2018 update: a report from the american heart association, Circulation 137 (2018) e493. https://doi.org/10.1161/CIR.0000000000000558.

[3]

M. Rosenbaum, R. Knight, R.L. Leibel, et al., The gut microbiota in human energy homeostasis and obesity, Trends Endocrinol. Metab. Sep. 26 (2015) 493-501. https://doi.org/10.1016/j.tem.2015.07.002.

[4]

S. Moossavi, F. Bishehsari, Microbes: possible link between modern lifestyle transition and the rise of metabolic syndrome, Obes. Rev. 20 (2019) 407-419. https://doi.org/10.1111/obr.12784.

[5]

A.M. de Oliveira, A.F.S. de Freitas, M.D.S. Costa, et al., Pilosocereus gounellei (Cactaceae) stem extract decreases insulin resistance, inflammation, oxidative stress, and cardio-metabolic risk in diet-induced obese mice, J. Ethnopharmacol. 265 (2021) 113327. https://doi.org/10.1016/j.jep.2020.113327.

[6]

M. Werdermann, I. Berger, L.D. Scriba, et al., Insulin and obesity transforms hypothalamic-pituitary-adrenal axis stemness and function in a hyperactive state, Mol. Metab. 43 (2020) 101112. https://doi.org/10.1016/j.molmet.2020.101112.

[7]

N.M. Hasan, K.F. Johnson, J. Yin, et al., Intestinal stem cell derived enteroids from morbidly obese patients preserve obesity-related phenotypes: elevated glucose absorption and gluconeogenesis, Mol. Metab. 44 (2021) 101129. https://doi.org/10.1016/j.molmet.2020.101129.

[8]

M.H. Abu Bakar, M.R. Sarmidi, K.K. Cheng, et al., Metabolomics-the complementary field in systems biology: a review on obesity and type 2 diabetes, Mol. Biosyst. 11 (2015) 1742-1774. https://doi.org/doi:10.1039/c5mb00158g.

[9]

L. Men, Z. Pi, Y. Zhou, et al., Urine metabolomics of high-fat diet induced obesity using UHPLC-Q-TOF-MS, J. Pharm. Biomed. Anal. 132 (2017) 258-266. https://doi.org/10.1016/j.jpba.2016.10.012.

[10]

M. Chen, B. Lu, Y. Li, et al., Metabolomics insights into the modulatory effects of long-term compound polysaccharide intake in high-fat dietinduced obese rats, Nutr. Metab. (Lond) 15 (2018) 8. https://doi.org/10.1186/s12986-018-0246-2.

[11]

L. Wang, B. Zeng, Z. Liu, et al., Green tea polyphenols modulate colonic microbiota diversity and lipid metabolism in high-fat diet treated HFA mice, J. Food Sci. 83 (2018) 864-873. https://doi.org/10.1111/1750-3841.14058.

[12]

M. Mahmoudi, K. Charradi, F. Limam, et al., Grape seed and skin extract as an adjunct to xenical therapy reduces obesity, brain lipotoxicity and oxidative stress in high fat diet fed rats, Obes. Res. Clin. Pract. 12 (2018) 115-126. https://doi.org/10.1016/j.orcp.2016.04.006.

[13]

C.D. Kay, G. Pereira-Caro, I.A. Ludwig, et al., Anthocyanins and flavanones are more bioavailable than previously perceived: a review of recent evidence, Annu. Rev. Food Sci. Technol. 8 (2017) 155-180. https://doi.org/10.1146/annurev-food-030216-025636.

[14]

R.Y. Gan, H.B. Li, Z.Q. Sui, et al., Absorption, metabolism, anti-cancer effect and molecular targets of epigallocatechin gallate (EGCG): an updated review, Crit. Rev. Food Sci. Nutr. 58 (2018) 924-941. https://doi.org/10.1080/10408398.2016.1231168.

[15]

W. Chen, X. Zhu, Q. Lu, et al., C-ring cleavage metabolites of catechin and epicatechin enhanced antioxidant activities through intestinal microbiota, Food Res. Int. 135 (2020) 109271. https://doi.org/10.1016/j.foodres.2020.109271.

[16]

G. Borges, J.I. Ottaviani, J.J.J. van der Hooft, et al., Absorption, metabolism, distribution and excretion of (−)-epicatechin: a review of recent findings, Mol. Aspects. Med. 61 (2017) 18-30. https://doi.org/10.1016/j.mam.2017.11.002.

[17]

G.V. Slot, H.U. Humpf, Degradation and metabolism of catechin, epigallocatechin-3-gallate (EGCG), and related compounds by the intestinal microbiota in the pig cecum model, J. Agric. Food Chem. 57 (2009) 8041-8048. https://doi.org/10.1021/jf900458e.

[18]

G. Pereira-Caro, S. Gaillet, J.L. Ordóñez, et al., Bioavailability of red wine and grape seed proanthocyanidins in rats, Food Funct. 11 (2020) 3986-4001. https://doi.org/10.1039/d0fo00350f.

[19]

V. Agullo, D. Villano, C. Garcia-Viguera, et al., Anthocyanin metabolites in human urine after the intake of new functional beverages, Molecules 25(2020) 371. https://doi.org/10.3390/molecules25020371.

[20]

L. Duan, C. Zhang, Y. Zhao, et al., Comparison of bioactive phenolic compounds and antioxidant activities of different parts of Taraxacum mongolicum, Molecules 25 (2020) 3260. https://doi.org/10.3390/molecules25143260.

[21]

I. Gil-Sánchez, C. Cueva, M. Sanz-Buenhombre, et al., Dynamic gastrointestinal digestion of grape pomace extracts: bioaccessible phenolic metabolites and impact on human gut microbiota, J. Food Compos. Anal. 68(2018) 41-52. https://doi.org/10.1016/j.jfca.2017.05.005.

[22]

J. Taile, A. Arcambal, P. Clerc, et al., Medicinal plant polyphenols attenuate oxidative stress and improve inflammatory and vasoactive markers in cerebral endothelial cells during hyperglycemic condition, Antioxidants (Basel) 9 (2020) 573. https://doi.org/10.3390/antiox9070573.

[23]

L.M. Harms, A. Scalbert, R. Zamora-Ros, et al., Plasma polyphenols associated with lower high-sensitivity C-reactive protein concentrations: a cross-sectional study within the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort, Br. J. Nutr. 123 (2020) 198-208. https://doi.org/10.1017/S0007114519002538.

[24]

W. Chen, L. Zhang, L. Zhao, et al., Metabolomic profiles of A-type procyanidin dimer and trimer with gut microbiota in vitro, J. Funct. Foods 85 (2021) 104637. https://doi.org/10.1016/j.jff.2021.104637.

[25]

J. Yang, I. Martínez, J. Walter, et al., In vitro characterization of the impact of selected dietary fibers on fecal microbiota composition and short chain fatty acid production, Anaerobe 23 (2013) 74-81. https://doi.org/10.1016/j.anaerobe.2013.06.012.

[26]

J. Zhang, Y. Zhao, D. Ren, et al., Effect of okra fruit powder supplementation on metabolic syndrome and gut microbiota diversity in high fat diet-induced obese mice, Food Res. Int. 130 (2020) 108929. https://doi.org/10.1016/j.foodres.2019.108929.

[27]

S.H. Duncan, G.E. Lobley, G. Holtrop, et al., Human colonic microbiota associated with diet, obesity and weight loss, Int. J. Obes. (Lond) 32 (2008) 1720-1724. https://doi.org/10.1038/ijo.2008.155.

[28]

R.E. Ley, P.J. Turnbaugh, S. Klein, et al., Human gut microbes associated with obesity, Nature 444 (2006) 1022-1023. https://doi.org/10.1038/4441022a.

[29]

F. Castello, G. Costabile, L. Bresciani, et al., Bioavailability and pharmacokinetic profile of grape pomace phenolic compounds in humans, Arch. Biochem. Biophys. 646 (2018) 1-9. https://doi.org/10.1016/j.abb.2018.03.021.

[30]

A. Serra, A. Macia, M.P. Romero, et al., Metabolic pathways of the colonic metabolism of flavonoids (flavonols, flavones and flavanones) and phenolic acids, Food Chem. 130 (2012) 383-393. https://doi.org/10.1016/j.foodchem.2011.07.055.

[31]

A. Rodriguez-Mateos, D. Vauzour, C.G Krueger, et al., Bioavailability, bioactivity and impact on health of dietary flavonoids and related compounds: an update, Arch. Toxicol. 88 (2014) 1803-1853. https://doi.org/10.1007/s00204-014-1330-7.

[32]

M. de Ligt, M. Bergman, R.M. Fuentes, et al., No effect of resveratrol supplementation after 6 months on insulin sensitivity in overweight adults: a randomized trial, Am. J. Clin. Nutr. 112 (2020) 1029-1038. https://doi.org/10.1093/ajcn/nqaa125.

[33]

R. Khlifi, Z. Dhaouefi, I.B. Toumia, et al., Erica multiflora extract rich in quercetin-3-O-glucoside and kaempferol-3-O-glucoside alleviates high fat and fructose diet-induced fatty liver disease by modulating metabolic and inflammatory pathways in Wistar rats, J. Nutr. Biochem. 86 (2020) 108490. https://doi.org/10.1016/j.jnutbio.2020.108490.

[34]

S. Francque, G. Szabo, M.F. Abdelmalek, et al., Nonalcoholic steatohepatitis: the role of peroxisome proliferator-activated receptors, Nat. Rev. Gastroenterol. Hepatol. 18 (2020) 24-39. https://doi.org/10.1038/s41575-020-00366-5.

[35]

S.M. Sparks, C. Aquino, P. Banker, et al., Exploration of phenylpropanoic acids as agonists of the free fatty acid receptor 4 (FFA4): identification of an orally efficacious FFA4 agonist, Bioorg. Med. Chem. Lett. 27 (2017) 1278-1283. https://doi.org/10.1016/j.bmcl.2017.01.034.

[36]

Y. Yang, T. Li, W. Li, et al., Effect of 4-hydroxyphenylacetic acid on M1 macrophage polarization and the formation of macrophage-derived foam cells, Food and Machinery 12 (2020) 2-6. https://doi.org/10.13652/j.issn.1003-5788.2020.12.001.

[37]

L. Zhao, F. Zhang, X. Ding, et al., Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes, Science 359 (2018) 1151-1156. https://doi.org/10.1126/science.aao5774.

[38]

Z. Cheng, F. Almeida, Mitochondrial alteration in type 2 diabetes and obesity: an epigenetic link, Cell Cycle 13 (2014) 890-897. https://doi.org/10.4161/cc.28189.

[39]

K. Sharma, Obesity and diabetic kidney disease: role of oxidant stress and redox balance, Antioxid. Redox. Signal 25 (2016) 208-216. https://doi.org/10.1089/ars.2016.6696.

[40]

N. Alkhouri, L.J. Dixon, A.E. Feldstein, Lipotoxicity in nonalcoholic fatty liver disease: not all lipids are created equal, Expert. Rev. Gastroenterol. Hepatol. 3 (2009) 445-451. https://doi.org/10.1586/egh.09.32.

[41]

D. Álvarez-Cilleros, M. Á. Martín, L. Goya, et al., (−)-Epicatechin and the colonic metabolite 3,4-dihydroxyphenylacetic acid protect renal proximal tubular cell against high glucose-induced oxidative stress by modulating NOX-4/SIRT-1 signalling, J. Funct. Foods 46 (2018) 19-28. https://doi.org/10.1016/j.jff.2018.04.051.

[42]

P. Wang, J. Gao, W. Ke, et al., Resveratrol reduces obesity in high-fat diet-fed mice via modulating the composition and metabolic function of the gut microbiota, Free Radic. Biol. Med. 156 (2020) 83-98. https://doi.org/10.1016/j.freeradbiomed.2020.04.013.

[43]

C. Yang, Z. Xu, Q. Deng, et al., Beneficial effects of flaxseed polysaccharides on metabolic syndrome via gut microbiota in high-fat diet fed mice, Food Res. Int. 131 (2020) 108994. https://doi.org/10.1016/j.foodres.2020.108994.

[44]

Y. Konishi, S. Kobayashi, Transepithelial transport of chlorogenic acid, caffeic acid, and their colonic metabolites in intestinal Caco-2 cell monolayers, J. Agric. Food Chem. 52 (2004) 2518-2526. https://doi.org/10.1021/jf035407c.

[45]

S. Sadeghi Ekbatan, M. Iskandar, L. Sleno, et al., Absorption and metabolism of phenolics from digests of polyphenol-rich potato extracts using the Caco-2/HepG2 co-culture system, Foods 7 (2018). https://doi.org/10.3390/foods7010008.

[46]

G. Pereira-Caro, M.N. Clifford, T. Polyviou, et al., Plasma pharmacokinetics of (poly)phenol metabolites and catabolites after ingestion of orange juice by endurance trained men, Free Radic. Biol. Med. 160 (2020) 784-795. https://doi.org/10.1016/j.freeradbiomed.2020.09.007.

[47]

Q. Nie, H. Chen, J. Hu, et al., Arabinoxylan attenuates type 2 diabetes by improvement of carbohydrate, lipid, and amino acid metabolism, Mol. Nutr. Food Res. 62 (2018) e1800222. https://doi.org/10.1002/mnfr.201800222.

[48]

L. Li, Y. Wang, J. Yuan, et al., Undaria pinnatifida improves obesity-related outcomes in association with gut microbiota and metabolomics modulation in high-fat diet-fed mice, Appl. Microbiol. Biotechnol. 104 (2020) 10217-10231. https://doi.org/10.1007/s00253-020-10954-9.

[49]

Y. Liu, Y. Luo, X. Wang, et al., Gut microbiome and metabolome response of Pu-erh tea on metabolism disorder induced by chronic alcohol consumption, J. Agric. Food Chem. 68 (2020) 6615-6627. https://doi.org/10.1021/acs.jafc.0c01947.

[50]

M. Monagas, M. Urpi-Sarda, F. Sanchez-Patan, et al., Insights into the metabolism and microbial biotransformation of dietary flavan-3-ols and the bioactivity of their metabolites, Food Funct. 1 (2010) 233-253. https://doi.org/10.1039/c0fo00132e.

[51]

S. Masumoto, S. Aoki, T. Miura, et al., Flavan-3-ol/procyanidin metabolomics in rat urine using HPLC-quadrupole TOF/MS, Mol. Nutr. Food Res. 62 (2018) e1700867. https://doi.org/10.1002/mnfr.201700867.

[52]

S.J. Moon, W. Dong, G.N. Stephanopoulos, et al., Oxidative pentose phosphate pathway and glucose anaplerosis support maintenance of mitochondrial NADPH pool under mitochondrial oxidative stress, Bioeng. Transl. Med. 5 (2020) e10184. https://doi.org/10.1002/btm2.10184.

[53]

K.C. Patra, N. Hay, The pentose phosphate pathway and cancer, Trends Biochem. Sci. 39 (2014) 347-354. https://doi.org/10.1016/j.tibs.2014.06.005.

[54]

Z. Zhu, T. Umehara, N. Tsujita, et al., Itaconate regulates the glycolysis/pentose phosphate pathway transition to maintain boar sperm linear motility by regulating redox homeostasis, Free Radic. Biol. Med. 159 (2020) 44-53. https://doi.org/10.1016/j.freeradbiomed.2020.07.008.

[55]

P. Koivunen, M. Hirsila, A.M. Remes, et al., Inhibition of hypoxia-inducible factor (HIF) hydroxylases by citric acid cycle intermediates: possible links between cell metabolism and stabilization of HIF, J. Biol. Chem. 282 (2007) 4524-4532. https://doi.org/10.1074/jbc.M610415200.

[56]

D. Dodd, M.H. Spitzer, W. van Treuren, et al., A gut bacterial pathway metabolizes aromatic amino acids into nine circulating metabolites, Nature 551 (2017) 648-652. https://doi.org/10.1038/nature24661.

[57]

A. Agus, J. Planchais, H. Sokol, Gut microbiota regulation of tryptophan metabolism in health and disease, Cell Host. Microbe. 23 (2018) 716-724. https://doi.org/10.1016/j.chom.2018.05.003.

[58]

M. Arnoriaga-Rodriguez, J. Mayneris-Perxachs, A. Burokas, et al., Obesity impairs short-term and working memory through gut microbial metabolism of aromatic amino acids, Cell Metab. 32 (2020) 548-560 e547. https://doi.org/10.1016/j.cmet.2020.09.002.

[59]

Y. Yao, H. Chen, L. Yan, et al., Berberine alleviates type 2 diabetic symptoms by altering gut microbiota and reducing aromatic amino acids, Biomed. Pharmacother. 131 (2020) 110669. https://doi.org/10.1016/j.biopha.2020.110669.

[60]

A.P. Okekunle, X. Wu, R. Feng, et al., Higher intakes of energy-adjusted dietary amino acids are inversely associated with obesity risk, Amino Acids 51 (2019) 373-382. https://doi.org/10.1007/s00726-018-2672-x.

[61]

S. Bel-Serrat, T. Mouratidou, I. Huybrechts, et al., The role of dietary fat on the association between dietary amino acids and serum lipid profile in European adolescents participating in the HELENA study, Eur. J. Clin. Nutr. 68 (2014) 464-473. https://doi.org/10.1038/ejcn.2013.284.

[62]

H.M. Roager, T.R. Licht, Microbial tryptophan catabolites in health and disease, Nat. Commun. 9 (2018) 3294. https://doi.org/10.1038/s41467-018-05470-4.

[63]

X. Li, Z.H. Zhang, H.M. Zabed, et al., An insight into the roles of dietary tryptophan and its metabolites in intestinal inflammation and inflammatory bowel disease, Mol. Nutr. Food Res. 65 (2021) e2000461. https://doi.org/10.1002/mnfr.202000461.

[64]

W. Di, J. Lv, S. Jiang, et al., PGC-1: the energetic regulator in cardiac metabolism, Curr. Issues. Mol. Biol. 28 (2018) 29-46. https://doi.org/10.21775/cimb.028.029.

[65]

B. Gross, M. Pawlak, P. Lefebvre, et al., PPARs in obesity-induced T2DM, dyslipidaemia and NAFLD, Nat. Rev. Endocrinol. 13 (2017) 36-49. https://doi.org/10.1038/nrendo.2016.135.

[66]

T. Wood Dos Santos, Q. Cristina Pereira, L. Teixeira, et al., Effects of polyphenols on thermogenesis and mitochondrial biogenesis, Int. J. Mol. Sci. 19 (2018) 2757. https://doi.org/10.3390/ijms19092757.

Food Science and Human Wellness
Pages 327-338
Cite this article:
Chen W, Liu R, Zhu X, et al. Microbial phenolic metabolites 3-(3’,4’-dihydroxyphenyl)propanoic acid and 3’,4’-dihydroxyphenylacetic acid prevent obesity in mice fed high-fat diet. Food Science and Human Wellness, 2024, 13(1): 327-338. https://doi.org/10.26599/FSHW.2022.9250027

2125

Views

396

Downloads

7

Crossref

6

Web of Science

8

Scopus

0

CSCD

Altmetrics

Received: 28 March 2022
Revised: 05 May 2022
Accepted: 22 June 2022
Published: 01 June 2023
© 2024 Beijing Academy of Food Sciences. Publishing services by Tsinghua University Press.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return