AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (5.7 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Structure and immunomodulatory activity of Lentinus edodes polysaccharides modified by probiotic fermentation

Jingjing Lianga,1Meina Zhanga,1Xiaohan Lia,Yuan YuebXiaowei WangaMengzhen HanaTianli YueaZhouli WangaZhenpeng Gaoa( )
College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
Xi’an GaoXin No.1 High School, Xi'an 710065, China

1 These two authors contributed equally to this work.

Peer review under responsibility of Tsinghua University Press.

Show Author Information

Abstract

Plant-based fermentations provide an untapped source for novel biotechnological applications. In this study, a probiotic named Lactobacillus fermentum 21828 was introduced to ferment Lentinus edodes. Polysaccharides were extracted from fermented and non-fermented L. edodes and purified via DEAE-52 and Sephadex G-100. The components designated F-LEP-2a and NF-LEP-2a were analyzed by FT-IR, HPGPC, HPAEC, SEM, GC-MS and NMR. The results revealed that probiotic fermentation increased the molecular weight from 1.16 × 104 Da to 1.87 × 104 Da and altered the proportions of glucose, galactose and mannose, in which glucose increased from 45.94% to 48.16%. Methylation analysis and NMR spectra indicated that F-LEP-2a and NF-LEP-2a had similar linkage patterns. Furthermore, their immunomodulatory activities were evaluated with immunosuppressive mice. NF-LEP and F-LEP improved immune organ indices, immunoglobulin (IgG and IgM) and cytokines concentrations;restored the antioxidation capacity of liver;and maintained the balance of gut microbiota. F-LEP displayed better moderating effects on the spleen index, immunoglobulin, cytokines and the diversity of gut microbiota than NF-LEP (200, 400 mg/kg). Our study provides an efficient and environment-friendly way for the structural modification of polysaccharides, which helps to enhance their biological activity and promote their wide application in food, medicine and other fields.

References

[1]

A. Papetti, C. Signoretto, D.A. Spratt, et al., Components in Lentinus edodes mushroom with anti-biofilm activity directed against bacteria involved in caries and gingivitis, Food Funct. 9 (2018) 3489-3499. https://doi.org/10.1039/c7fo01727h.

[2]

M. Zhang, X. Wang, X. Wang, et al., Effects of fermentation with Lactobacillus fermentum 21828 on the nutritional characteristics and antioxidant activity of Lentinus edodes liquid, J. Sci. Food. Agric. (2021). https://doi.org/10.1002/jsfa.11688.

[3]

X. Xu, H. Yan, J. Tang, et al., Polysaccharides in Lentinus edodes: isolation, structure, immunomodulating activity and future prospective, Crit. Rev. Food. Sci. Nutr. 54 (2014) 474-487. https://doi.org/10.1080/10408398.2011.587616.

[4]

J. Liang, M. Zhang, X. Wang, et al., Edible fungal polysaccharides, the gut microbiota, and host health, Carbohydr. Polym. 273 (2021) 118558. https://doi.org/10.1016/j.carbpol.2021.118558.

[5]

Y. Qian, D. Wang, M. Fan, et al., Effects of intrinsic metal ions of lentinan with different molecular weights from Lentinus edodes on the antioxidant capacity and activity against proliferation of cancer cells, Int. J. Biol. Macromol. 120 (2018) 73-81. https://doi.org/10.1016/j.ijbiomac.2018.06.203.

[6]

K.P. Wang, Q.L. Zhang, Y. Liu, et al., Structure and inducing tumor cell apoptosis activity of polysaccharides isolated from Lentinus edodes, J. Agric. Food. Chem. 61 (2013) 9849-9858. https://doi.org/10.1021/jf403291w.

[7]

L. Zhang, X. Li, X. Xu, et al., Correlation between antitumor activity, molecular weight, and conformation of lentinan, Carbohydr. Res. 340 (2005) 1515-1521. https://doi.org/10.1016/j.carres.2005.02.032.

[8]

T. Sasaki, N. Takasuka, G. Chihara, et al., Antitumor activity of degraded products of lentinan: its correlation with molecular weight, Gan. 67 (1976) 191-195. https://doi.org/10.20772/cancersci1959.67.2_191.

[9]

T.C. Lo, C.A. Chang, K. Chiu, et al., Correlation evaluation of antioxidant properties on the monosaccharide components and glycosyl linkages of polysaccharide with different measuring methods, Carbohyd. Polym. 86 (2011) 320-327. https://doi.org/10.1016/j.carbpol.2011.04.056.

[10]

W. Lee, N. Kang, E. Kim, et al., Radioprotective effects of a polysaccharide purified from Lactobacillus plantarum-fermented Ishige okamurae against oxidative stress caused by gamma ray-irradiation in zebrafish in vivo model, J. Funct. Foods 28 (2017) 83-89. https://doi.org/10.1016/j.jff.2016.11.004.

[11]

S.K. Panda, S.K. Behera, X.W. Qaku, et al., Quality enhancement of prickly pears (Opuntia sp.) juice through probiotic fermentation using Lactobacillus fermentum -ATCC 9338, LWT-Food Sci. Technol. 75 (2017) 453-459. https://doi.org/10.1016/j.lwt.2016.09.026.

[12]

W. Peng, D. Meng, T. Yue, et al., Effect of the apple cultivar on cloudy apple juice fermented by a mixture of Lactobacillus acidophilus, Lactobacillus plantarum, and Lactobacillus fermentum, Food Chem. 340 (2021). https://doi.org/10.1016/j.foodchem.2020.127922.

[13]

H. Gao, J. Wen, J. Hu, et al., Polysaccharide from fermented Momordica charantia L. with Lactobacillus plantarum NCU116 ameliorates type 2 diabetes in rats, Carbohyd. Polym. 201 (2018) 624-633. https://doi.org/10.1016/j.carbpol.2018.08.075.

[14]

Y. Wan, T. Hong, H. Shi, et al., Probiotic fermentation modifies the structures of pectic polysaccharides from carrot pulp, Carbohyd. Polym. 251 (2021). https://doi.org/10.1016/j.carbpol.2020.117116.

[15]

W. Tian, L. Dai, S. Lu, et al., Effect of Bacillus sp. DU-106 fermentation on Dendrobium officinale polysaccharide: structure and immunoregulatory activities, Int. J. Biol. Macromol. 135 (2019) 1034-1042. https://doi.org/10.1016/j.ijbiomac.2019.05.203.

[16]

Y. Wang, Q. Qi, A. Li, et al., Immuno-enhancement effects of Yifei Tongluo Granules on cyclophosphamide-induced immunosuppression in Balb/c mice, J. Ethnopharmacol. 194 (2016) 72-82. https://doi.org/10.1016/j.jep.2016.08.046.

[17]

J.P. Fruehauf, G.D. Bonnard, R.B. Herberman, The effect of lentinan on production of interleukin-1 by human monocytes, Immunopharmacology. 5 (1982) 65-74. https://doi.org/10.1016/0162-3109(82)90037-6.

[18]

X. Xu, M. Yasuda, S. Nakamura-Tsuruta, et al., Beta-Glucan from Lentinus edodes inhibits nitric oxide and tumor necrosis factor-alpha production and phosphorylation of mitogen-activated protein kinases in lipopolysaccharide-stimulated murine RAW 264.7 macrophages, J. Biol. Chem. 287 (2012) 871-878. https://doi.org/10.1074/jbc.M111.297887.

[19]

Y. Sun, Z. Zhang, L. Cheng, et al., Polysaccharides confer benefits in immune regulation and multiple sclerosis by interacting with gut microbiota, Food. Res. Int. 149 (2021). https://doi.org/10.1016/j.foodres.2021.110675.

[20]

C. Martin-Gallausiaux, L. Marinelli, H.M. Blottiere, et al., SCFA: Mechanisms and functional importance in the gut, Proc. Nutr. Soc. 80 (2021) 37-49. https://doi.org/10.1017/S0029665120006916.

[21]

Z. Dou, C. Chen, X. Fu. Digestive property and bioactivity of blackberry polysaccharides with different molecular weights, J. Agric. Food. Chem. 67(2019) 12428-12440. https://doi.org/10.1021/acs.jafc.9b03505.

[22]

K. Siu, L. Xu, X. Chen, et al., Molecular properties and antioxidant activities of polysaccharides isolated from alkaline extract of wild Armillaria ostoyae mushrooms, Carbohyd. Polym. 137 (2016) 739-746. https://doi.org/10.1016/j.carbpol.2015.05.061.

[23]

R. Montgomery. Further studies of the phenol-sulfuric acid reagent for carbohydrates, Biochim. Biophys. Acta. 48 (1961) 591-593. https://doi.org/10.1016/0006-3002(61)90059-2.

[24]

N.J. Kruger, The Bradford method for protein quantitation, Methods. Mol. Biol. 32 (1994) 9-15. https://doi.org/10.1385/0-89603-268-X:9.

[25]

T. Zhao, G. Mao, W. Feng, et al., Isolation, characterization and antioxidant activity of polysaccharide from Schisandra sphenanthera, Carbohydr. Polym. 105 (2014) 26-33. https://doi.org/10.1016/j.carbpol.2014.01.059.

[26]

Y. Yu, S. Mo, M. Shen, et al., Sulfated modification enhances the immunomodulatory effect of Cyclocarya paliurus polysaccharide on cyclophosphamide-induced immunosuppressed mice through MyD88-dependent MAPK/NF-kappaB and PI3K-Akt signaling pathways, Food. Res. Int. 150 (2021) 110756. https://doi.org/10.1016/j.foodres.2021.110756.

[27]

M. Jackson, H.H. Mantsch, The use and misuse of FTIR spectroscopy in the determination of protein structure, Crit. Rev. Biochem. Mol. Biol. 30 (1995) 95-120. https://doi.org/10.3109/10409239509085140.

[28]

L. Wang, L. Chen, J. Li, et al., Structural elucidation and immune-enhancing activity of peculiar polysaccharides fractioned from marine clam Meretrix meretrix (Linnaeus), Carbohydr. Polym. 201 (2018) 500-513. https://doi.org/10.1016/j.carbpol.2018.08.106.

[29]

B.S. Hoseiniyan, K. Jahanbin. A new water-soluble polysaccharide from Echinops pungens Trautv roots. Part Ⅰ. Isolation, purification, characterization and antioxidant activity, Int. J. Biol. Macromol. 161 (2020) 909-916. https://doi.org/10.1016/j.ijbiomac.2020.06.128.

[30]

H. Shabani, G. Askari, K. Jahanbin, et al., Evaluation of physicochemical characteristics and antioxidant property of Prunus avium gum exudates, Int. J. Biol. Macromol. 93 (2016) 436-441. https://doi.org/10.1016/j.ijbiomac.2016.08.070.

[31]

Y. Liu, Y. Luo, D. Wei, et al., Effect of solid-state fermentation with Monascus anka on the compositions, in vitro antioxidation and amylase-inhibitory activity of oatpolysaccharides, Mod. Food Sci. Technol. 35 (2019) 95-101. https://doi.org/10.13982/j.mfst.1673-9078.2019.5.014.

[32]

F. Huang, R. Hong, R. Zhang, et al., Physicochemical and biological properties of longan pulp polysaccharides modified by Lactobacillus fermentum fermentation, Int. J. Biol. Macromol. 125 (2019) 232-237. https://doi.org/10.1016/j.ijbiomac.2018.12.061.

[33]

G. Ya, A Lentinus edodes polysaccharide induces mitochondrial-mediated apoptosis in human cervical carcinoma HeLa cells, Int. J. Biol. Macromol. 103 (2017) 676-682. https://doi.org/10.1016/j.ijbiomac.2017.05.085.

[34]

H. Wu, N. Tao, X. Liu, et al., Polysaccharide from Lentinus edodes inhibits the immunosuppressive function of myeloid-derived suppressor cells, PLoS One 7 (2012) e51751. https://doi.org/10.1371/journal.pone.0051751.

[35]

Y.M. Zhao, J. Wang, Z.G. Wu, et al., Extraction, purification and anti-proliferative activities of polysaccharides from Lentinus edodes, Int. J. Biol. Macromol. 93 (2016) 136-144. https://doi.org/10.1016/j.ijbiomac.2016.05.100.

[36]

K. Wang, J. Wang, Q. Li, et al., Structural differences and conformational characterization of five bioactive polysaccharides from Lentinus edodes, Food. Res. Int. 62 (2014) 223-232. https://doi.org/10.1016/j.foodres.2014.02.047.

[37]

W. Liu, Y. Liu, R. Zhu, et al., Structure characterization, chemical and enzymatic degradation, and chain conformation of an acidic polysaccharide from Lycium barbarum L, Carbohydr. Polym. 147 (2016) 114-124. https://doi.org/10.1016/j.carbpol.2016.03.087.

[38]

H. Zhu, L. Tian, L. Zhang, et al., Preparation, characterization and antioxidant activity of polysaccharide from spent Lentinus edodes substrate, Int. J. Biol. Macromol. 112 (2018) 976-984. https://doi.org/10.1016/j.ijbiomac.2018.01.196.

[39]

P. Maity, A.K. Nandi, M. Pattanayak, et al., Structural characterization of a heteroglycan from an edible mushroom Termitomyces heimii, Int. J. Biol. Macromol. 151 (2020) 305-311. https://doi.org/10.1016/j.ijbiomac.2020.02.120.

[40]

P. Maity, I.K. Sen, P.K. Maji, et al., Structural, immunological, and antioxidant studies of beta-glucan from edible mushroom Entoloma lividoalbum, Carbohydr. Polym. 123 (2015) 350-358. https://doi.org/10.1016/j.carbpol.2015.01.051.

[41]

D. Chen, G. Chen, Y. Ding, et al., Polysaccharides from the flowers of tea (Camellia sinensis L.) modulate gut health and ameliorate cyclophosphamide-induced immunosuppression, J. Funct. Foods. 61 (2019). https://doi.org/10.1016/j.jff.2019.103470.

[42]

C. Kupfahl, G. Geginat, H. Hof, Lentinan has a stimulatory effect on innate and adaptive immunity against murine Listeria monocytogenes infection, Int. Immunopharmacol. 6 (2006) 686-696. https://doi.org/10.1016/j.intimp.2005.10.008.

[43]

A. Gonzalez-Quintela, R. Alende, F. Gude, et al., Serum levels of immunoglobulins (IgG, IgA, IgM) in a general adult population and their relationship with alcohol consumption, smoking and common metabolic abnormalities, Clin. Exp. Immunol. 151 (2008) 42-50. https://doi.org/10.1111/j.1365-2249.2007.03545.x.

[44]

L. Gate, J. Paul, G.N. Ba, et al., Oxidative stress induced in pathologies: the role of antioxidants, Biomed. Pharmacother. 53 (1999) 169-180. https://doi.org/10.1016/S0753-3322(99)80086-9.

[45]

B. Rodriguez-Iturbe, C.D. Zhan, Y. Quiroz, et al., Antioxidant-rich diet relieves hypertension and reduces renal immune infiltration in spontaneously hypertensive rats, Hypertension 41 (2003) 341-346. https://doi.org/10.1161/01.hyp.0000052833.20759.64

[46]

X. Chen, H.Y. Zhong, J.H. Zeng, et al., The pharmacological effect of polysaccharides from Lentinus edodes on the oxidative status and expression of VCAM-1mRNA of thoracic aorta endothelial cell in high-fat-diet rats, Carbohyd. Polym. 74 (2008) 445-450. https://doi.org/10.1016/j.carbpol.2008.03.018.

[47]

J.E. Park, J.H. Yang, S.J. Yoon, et al., Lipid peroxidation-mediated cytotoxicity and DNA damage in U937 cells, Biochimie. 84 (2002) 1199-1205. https://doi.org/10.1016/s0300-9084(02)00039-1.

[48]

T. Ito, Y. Tokura. The role of cytokines and chemokines in the T-cell-mediated autoimmune process in alopecia areata, Exp. Dermatol. 23 (2014) 787-791. https://doi.org/10.1111/exd.12489.

[49]

I. Raphael, S. Nalawade, T.N. Eagar, et al., T cell subsets and their signature cytokines in autoimmune and inflammatory diseases, Cytokine. 74 (2015) 5-17. https://doi.org/10.1016/j.cyto.2014.09.011.

[50]

M.F. Neurath. Cytokines in inflammatory bowel disease, Nat. Rev. Immunol. 14 (2014) 329-342. https://doi.org/10.1038/nri3661.

[51]

K. Wang, J. Wang, Q. Li, et al., Structural differences and conformational characterization of five bioactive polysaccharides from Lentinus edodes, Food Res. Int. 62 (2014) 223-232. https://doi.org/10.1016/j.foodres.2014.02.047.

[52]

M.G. Rooks, W.S. Garrett, Gut microbiota, metabolites and host immunity, Nat. Rev. Immunol. 16 (2016) 341-352. https://doi.org/10.1038/nri.2016.42.

[53]

A.D. Truax, L. Chen, J.W. Tam, et al., The inhibitory innate immune sensor NLRP12 maintains a threshold against obesity by regulating gut microbiota homeostasis, Cell. Host. Microbe. 24 (2018) 364-378. https://doi.org/10.1016/j.chom.2018.08.009.

[54]

M. Ying, Q. Yu, B. Zheng, et al., Cultured Cordyceps sinensis polysaccharides modulate intestinal mucosal immunity and gut microbiota in cyclophosphamide-treated mice, Carbohydr. Polym. 235 (2020) 115957. https://doi.org/10.1016/j.carbpol.2020.115957.

[55]

J. Tian, C. Zhang, X. Wang, et al., Structural characterization and immunomodulatory activity of intracellular polysaccharide from the mycelium of Paecilomyces cicadae TJJ1213, Food Res. Int. 147 (2021) 110515. https://doi.org/10.1016/j.foodres.2021.110515.

[56]

C.P. Gauffin, A. Santacruz, A. Moya, et al., Bacteroides uniformis CECT 7771 ameliorates metabolic and immunological dysfunction in mice with high-fat-diet induced obesity, PLoS. One. 7 (2012) e41079. https://doi.org/10.1371/journal.pone.0041079.

[57]

J. Zhang, G. Yang, Y. Wen, et al., Intestinal microbiota are involved in the immunomodulatory activities of longan polysaccharide, Mol. Nutr. Food Res. 61 (2017). https://doi.org/10.1002/mnfr.201700466.

[58]

S. Patrick, K.L. Jobling, D. O’Connor, et al., A unique homologue of the eukaryotic protein-modifier ubiquitin present in the bacterium Bacteroides fragilis, a predominant resident of the human gastrointestinal tract, Microbiology (Reading). 157 (2011) 3071-3078. https://doi.org/10.1099/mic.0.049940-0.

[59]

H. Guo, W.C. Chou, Y. Lai, et al., Multi-omics analyses of radiation survivors identify radioprotective microbes and metabolites, Science 370 (2020). https://doi.org/10.1126/science.aay9097.

[60]

E. Brandsma, T. Houben, J. Fu, et al., The immunity-diet-microbiota axis in the development of metabolic syndrome, Curr. Opin. Lipidol. 26 (2015) 73-81. https://doi.org/10.1097/MOL.0000000000000154.

[61]

P.V. Chang, L. Hao, S. Offermanns, et al., The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proc. Natl. Acad. Sci. USA. 111 (2014) 2247-2252. https://doi.org/10.1073/pnas.1322269111.

Food Science and Human Wellness
Pages 421-433
Cite this article:
Liang J, Zhang M, Li X, et al. Structure and immunomodulatory activity of Lentinus edodes polysaccharides modified by probiotic fermentation. Food Science and Human Wellness, 2024, 13(1): 421-433. https://doi.org/10.26599/FSHW.2022.9250036

1558

Views

370

Downloads

12

Crossref

10

Web of Science

12

Scopus

0

CSCD

Altmetrics

Received: 27 April 2022
Revised: 17 June 2022
Accepted: 11 July 2022
Published: 01 June 2023
© 2024 Beijing Academy of Food Sciences. Publishing services by Tsinghua University Press.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return