AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (4.6 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Major royal-jelly proteins intake modulates immune functions and gut microbiota in mice

Hang Wua,Shican ZhouaWenjuan NingaXiao WuaXiaoxiao XuaZejin LiuaWenhua LiuaKun LiubLirong ShencJunpeng Wanga( )
Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng 475000, China
College of Biology Science and Engineering, Hebei University of Economics and Business, Shijiazhuang 050061, China
College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China

Peer review under responsibility of Tsinghua University Press.

Show Author Information

Abstract

In this study, we investigated the effects of major royal jelly proteins (MRJPs) on the estrogen, gut microbiota, and immunological responses in mice. Mice given 250 or 500 mg/kg, not 125 mg/kg of MRJPs, enhanced the proliferation of splenocytes in response to mitogens. The splenocytes and mesenteric lymphocytes activated by T-cell mitogens (ConA and anti-CD3/CD28 antibodies) released high levels of IL-2 but low levels of IFN-γ and IL-17A. The release of IL-4 was unaffected by MRJPs. Additionally, splenocytes and mesenteric lymphocytes activated by LPS were prevented by MRJPs at the same dose as that required for producing IL-1β and IL-6, two pro-inflammatory cytokines. The production of IL-1β, IL-6, and IFN-γ was negatively associated with estrogen levels, which were higher in the MRJP-treated animals than in the control group. Analysis of the gut microbiota revealed that feeding mice 250 mg/kg of MRJPs maintained the stability of the natural intestinal microflora of mice. Additionally, the LEfSe analysis identified biomarkers in the MRJP-treated mice, including Prevotella, Bacillales, Enterobacteriales, Gammaproteobacteria, Candidatus_Arthromitus, and Shigella. Our results showed that MRJPs are important components of royal jelly that modulate host immunity and hormone levels and help maintain gut microbiota stability.

Electronic Supplementary Material

Download File(s)
fshw-2024-9250038_ESM.pdf (851.9 KB)

References

[1]

M.G. Netea, A. Schlitzer, K. Placek, et al., Innate and adaptive immune memory: an evolutionary continuum in the host’s response to pathogens, Cell Host Microbe 25 (2019) 13-26. http://doi.org/10.1016/j.chom.2018.12.006.

[2]

J. Parkin, B. Cohen, An overview of the immune system, Lancet 357 (2001) 1777-1789. http://doi.org/10.1016/s0140-6736(00)04904-7.

[3]

S. Sattler, The role of the immune system beyond the fight against infection, Adv. Exp. Med. Biol. 1003 (2017) 3-14. http://doi.org/10.1007/978-3-319-57613-8_1.

[4]

W. Yang, Y. Tian, M. Han, et al., Longevity extension of worker honey bees (Apis mellifera) by royal jelly: optimal dose and active ingredient, PeerJ 5 (2017) e3118. http://doi.org/10.7717/peerj.3118.

[5]

M. Khazaei, A. Ansarian, E. Ghanbari, New findings on biological actions and clinical applications of royal jelly: a review, J. Diet. Suppl. 15 (2018) 757-775. http://doi.org/10.1080/19390211.2017.1363843.

[6]

X.X. Xin, Y. Chen, D. Chen, et al., Supplementation with major royal-jelly proteins increases lifespan, feeding, and fecundity in Drosophila, J. Agric. Food Chem. 64 (2016) 5803-5812. http://doi.org/10.1021/acs.jafc.6b00514.

[7]

N. Lin, S. Chen, H. Zhang, et al., Quantification of major royal jelly protein 1 in fresh royal jelly by ultraperformance liquid chromatography-tandem mass spectrometry, J. Agric. Food Chem. 66 (2018) 1270-1278. http://doi.org/10.1021/acs.jafc.7b05698.

[8]

J.R. Shorter, M. Geisz, E. Özsoy, et al., The effects of royal jelly on fitness traits and gene expression in Drosophila melanogaster, PLoS One 10 (2015) e0134612. http://doi.org/10.1371/journal.pone.0134612.

[9]

M. Kamakura, N. Suenobu, M. Fukushima, Fifty-seven-kDa protein in royal jelly enhances proliferation of primary cultured rat hepatocytes and increases albumin production in the absence of serum, Biochem. Biophys. Res. Commun. 282 (2001) 865-874. http://doi.org/10.1006/bbrc.2001.4656.

[10]

A.N.K.G. Ramanathan, A.J. Nair, V.S. Sugunan, A review on royal jelly proteins and peptides, J. Funct. Foods 44 (2018) 255-264. http://doi.org/https://doi.org/10.1016/j.jff.2018.03.008.

[11]

A. Buttstedt, C.H. Ihling, M. Pietzsch, et al., Royalactin is not a royal making of a queen, Nature 537 (2016) E10-E12. http://doi.org/10.1038/nature19349.

[12]

X. Liu, C. Jiang, Y. Chen, et al., Major royal jelly proteins accelerate onset of puberty and promote ovarian follicular development in immature female mice, Food Sci. Hum. Well. 9 (2020) 338-345. http://doi.org/https://doi.org/10.1016/j.fshw.2020.05.008.

[13]

D. Chen, F. Liu, J.B. Wan, et al., Effect of major royal jelly proteins on spatial memory in aged rats: metabolomics analysis in urine, J. Agric. Food Chem. 65 (2017) 3151-3159. http://doi.org/10.1021/acs.jafc.7b00202.

[14]

S. Ito, Y. Nitta, H. Fukumitsu, et al., Antidepressant-like activity of 10-hydroxy-trans-2-decenoic acid, a unique unsaturated fatty acid of royal jelly, in stress-inducible depression-like mouse model, Evid. Based Complement. Alternat. Med. 2012 (2012) 139140. http://doi.org/10.1155/2012/139140.

[15]

L.H. Morais, H.L.T. Schreiber, S.K. Mazmanian, The gut microbiota-brain axis in behaviour and brain disorders, Nat. Rev. Microbiol. 19 (2021) 241-255. http://doi.org/10.1038/s41579-020-00460-0.

[16]

K.Z. Sanidad, M.Y. Zeng, Neonatal gut microbiome and immunity, Curr. Opin. Microbiol. 56 (2020) 30-37. http://doi.org/10.1016/j.mib.2020.05.011.

[17]

B.M. González Olmo, M.J. Butler, R.M. Barrientos, evolution of the human diet and its impact on gut microbiota, immune responses, and brain health, Nutrients 13 (2021). http://doi.org/10.3390/nu13010196.

[18]

G. Jamar, D.A. Ribeiro, L.P. Pisani, High-fat or high-sugar diets as trigger inflammation in the microbiota-gut-brain axis, Crit. Rev. Food Sci. Nutr. 61(2021) 836-854. http://doi.org/10.1080/10408398.2020.1747046.

[19]

X. Wang, G. Sun, T. Feng, et al., Sodium oligomannate therapeutically remodels gut microbiota and suppresses gut bacterial amino acids-shaped neuroinflammation to inhibit Alzheimer’s disease progression, Cell Res. 29 (2019) 787-803. http://doi.org/10.1038/s41422-019-0216-x.

[20]

D.J. Machate, P.S. Figueiredo, G. Marcelino, et al., Fatty acid diets: regulation of gut microbiota composition and obesity and its related metabolic dysbiosis, Int. J. Mol. Sci. 21 (2020). http://doi.org/10.3390/ijms21114093.

[21]

A.M. Zahran, K.I. Elsayh, K. Saad, et al., Effects of royal jelly supplementation on regulatory T cells in children with SLE, Food Nutr. Res. 60 (2016) 32963. http://doi.org/10.3402/fnr.v60.32963.

[22]

X. Chi, Z. Liu, H. Wang, et al., Royal jelly enhanced the antioxidant activities and modulated the gut microbiota in healthy mice, J. Food Biochem. 45 (2021) e13701. http://doi.org/10.1111/jfbc.13701.

[23]

E. Ghanbari, M.R. Khazaei, M. Khazaei, et al., Royal jelly promotes ovarian follicles growth and increases steroid hormones in immature rats, Int. J. Fertil. Steril. 11 (2018) 263-269. http://doi.org/10.22074/ijfs.2018.5156.

[24]

M. Li, L. Tan, W. Qiu, et al., Optimization of ultrafiltration separation and quality analysis of the major royal jelly proteins, Zhejiang Univ. (Agric. Life Sci.) 40 (2014) 526-532. http://doi.org/10.3785/j.issn.1008-9209.2014.02.131.

[25]

H. Sang, Y. Xie, X. Su, et al., Mushroom Bulgaria inquinans modulates host immunological response and gut microbiota in mice, Front Nutr 7 (2020) 144. http://doi.org/10.3389/fnut.2020.00144.

[26]

V. De Preter, K. Machiels, M. Joossens, et al., Faecal metabolite profiling identifies medium-chain fatty acids as discriminating compounds in IBD, Gut 64 (2015) 447-58. http://doi.org/10.1136/gutjnl-2013-306423.

[27]

M. Cunningham, G. Gilkeson, Estrogen receptors in immunity and autoimmunity, Clin. Rev. Allerg. Immu. 40 (2011) 66-73. http://doi.org/10.1007/s12016-010-8203-5.

[28]

I. Okamoto, Y. Taniguchi, T. Kunikata, et al., Major royal jelly protein 3 modulates immune responses in vitro and in vivo, Life Sci. 73 (2003) 2029-45. http://doi.org/10.1016/s0024-3205(03)00562-9.

[29]

T. Moriyama, A. Ito, S. Omote, et al., heat resistant characteristics of major royal jelly protein 1 (MRJP1) oligomer, PLoS One 10 (2015) e0119169. http://doi.org/10.1371/journal.pone.0119169.

[30]

M.M. Abu-Serie, N.H. Habashy, Two purified proteins from royal jelly with in vitro dual anti-hepatic damage potency: major royal jelly protein 2 and its novel isoform X1, Int. J. Biol. Macromol. 128 (2019) 782-795. http://doi.org/10.1016/j.ijbiomac.2019.01.210.

[31]

K. Kohno, I. Okamoto, O. Sano, et al., Royal jelly inhibits the production of pro-inflammatory cytokines by activated macrophages, Biosci. Biotechnol. Biochem. 68 (2004) 138-145. http://doi.org/10.1271/bbb.68.138.

[32]

M.T. Labro, Immunomodulatory effects of anti-microbial agents. Part Ⅰ: antibacterial and antiviral agents, Expert Rev. Anti Infect. Ther. 10 (2012) 319-340. http://doi.org/10.1586/eri.12.11.

[33]

P. Fan, B. Han, H. Hu, et al., Proteome of thymus and spleen reveals that 10-hydroxydec-2-enoic acid could enhance immunity in mice, Expert Opin. Ther. Targets 24 (2020) 267-279. http://doi.org/10.1080/14728222.2020.1733529.

[34]

A.K. Abbas, E. Trotta, R.S. D, et al., Revisiting IL-2: Biology and therapeutic prospects, Sci Immunol 3 (2018). http://doi.org/10.1126/sciimmunol.aat1482.

[35]

H. Holtmann, K. Resch, Cytokines, Naturwissenschaften 82 (1995) 178-87. http://doi.org/10.1007/bf01143192.

[36]

H. Oka, Y. Emori, N. Kobayashi, et al., Suppression of allergic reactions by royal jelly in association with the restoration of macrophage function and the improvement of Th1/Th2 cell responses, Int. Immunopharmacol. 1 (2001) 521-532. http://doi.org/10.1016/s1567-5769(00)00007-2.

[37]

T. Tanaka, M. Narazaki, T. Kishimoto, IL-6 in inflammation, immunity, and disease, Cold Spring Harb. Perspect. Biol. 6 (2014) a016295. http://doi.org/10.1101/cshperspect.a016295.

[38]

N. Amatya, A.V. Garg, S.L. Gaffen, IL-17 signaling: the Yin and the Yang, Trends Immunol. 38 (2017) 310-322. http://doi.org/10.1016/j.it.2017.01.006.

[39]

H. Tsukazaki, T. Kaito, The role of the IL-23/IL-17 pathway in the pathogenesis of spondyloarthritis, Int. J. Mol. Sci. 21 (2020). http://doi.org/10.3390/ijms21176401.

[40]

M. Jia, K. Dahlman-Wright, J. Gustafsson, Estrogen receptor alpha and beta in health and disease, Best Practice & Research Clin. endoc. metab. 29 (2015) 557-68. http://doi.org/10.1016/j.beem.2015.04.008.

[41]

A. Ruggieri, S. Anticoli, A. D’Ambrosio, et al., The influence of sex and gender on immunity, infection and vaccination, Annali dell’Istituto superiore di sanita 52 (2016) 198-204. http://doi.org/10.4415/ann_16_02_11.

[42]

S.L. Klein, Immune cells have sex and so should journal articles, Endocrinology 153 (2012) 2544-2550. http://doi.org/10.1210/en.2011-2120.

[43]

R.J. Engler, M.R. Nelson, M.M. Klote, et al., Half-vs full-dose trivalent inactivated influenza vaccine (2004-2005): age, dose, and sex effects on immune responses, Arch. Intern. Med. 168 (2008) 2405-2414. http://doi.org/10.1001/archinternmed.2008.513.

[44]

J.J. Graham, M.S. Longhi, M.A. Heneghan, T helper cell immunity in pregnancy and influence on autoimmune disease progression, J. Autoimmun. 121 (2021) 102651. http://doi.org/https://doi.org/10.1016/j.jaut.2021.102651.

[45]

P. Tai, J. Wang, H. Jin, et al., Induction of regulatory T cells by physiological level estrogen, J. Cell. Physiol. 214 (2008) 456-464. http://doi.org/https://doi.org/10.1002/jcp.21221.

[46]

A. Ramírez-de-Arellano, J. Gutiérrez-Franco, E. Sierra-Diaz, et al., The role of estradiol in the immune response against COVID-19, Hormones (Athens, Greece) 20 (2021) 657-667. http://doi.org/10.1007/s42000-021-00300-7.

[47]

Y. Furusawa, Y. Obata, K. Hase, Commensal microbiota regulates T cell fate decision in the gut, Semin. Immunopathol. 37 (2015) 17-25. http://doi.org/10.1007/s00281-014-0455-3.

[48]

M.B. Geuking, J. Cahenzli, M.A. Lawson, et al., Intestinal bacterial colonization induces mutualistic regulatory T cell responses, Immunity 34 (2011) 794-806. http://doi.org/10.1016/j.immuni.2011.03.021.

[49]

V. Gaboriau-Routhiau, S. Rakotobe, E. Lécuyer, et al., The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses, Immunity 31 (2009) 677-689. http://doi.org/10.1016/j.immuni.2009.08.020.

[50]

Y.K. Lee, J.S. Menezes, Y. Umesaki, et al., Pro-inflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis, Proc. Natl. Acad. Sci. U. S. A. 108 Suppl 1 (2011) 4615-22. http://doi.org/10.1073/pnas.1000082107.

[51]

N. Shi, N. Li, X. Duan, et al., Interaction between the gut microbiome and mucosal immune system, Mil. Med. Res. 4 (2017) 14. http://doi.org/10.1186/s40779-017-0122-9.

[52]

J.C. Lagier, S. Edouard, I. Pagnier, et al., Current and past strategies for bacterial culture in clinical microbiology, Clin. Microbiol. Rev. 28 (2015) 208-236. http://doi.org/10.1128/cmr.00110-14.

[53]

M. Tramontano, S. Andrejev, M. Pruteanu, et al., Nutritional preferences of human gut bacteria reveal their metabolic idiosyncrasies, Nat. Microbiol. 3 (2018) 514-522. http://doi.org/10.1038/s41564-018-0123-9.

[54]

F. Cignarella, C. Cantoni, L. Ghezzi, et al., Intermittent fasting confers protection in CNS autoimmunity by altering the gut microbiota, Cell Metab. 27 (2018) 1222-1235.e6. http://doi.org/10.1016/j.cmet.2018.05.006.

[55]

X. Zhao, O.P. Kuipers, Identification and classification of known and putative anti-microbial compounds produced by a wide variety of Bacillales species, BMC genomics 17 (2016) 882. http://doi.org/10.1186/s12864-016-3224-y.

Food Science and Human Wellness
Pages 444-453
Cite this article:
Wu H, Zhou S, Ning W, et al. Major royal-jelly proteins intake modulates immune functions and gut microbiota in mice. Food Science and Human Wellness, 2024, 13(1): 444-453. https://doi.org/10.26599/FSHW.2022.9250038

1251

Views

176

Downloads

2

Crossref

2

Web of Science

2

Scopus

0

CSCD

Altmetrics

Received: 03 May 2022
Revised: 15 June 2022
Accepted: 14 July 2022
Published: 01 June 2023
© 2024 Beijing Academy of Food Sciences. Publishing services by Tsinghua University Press.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return