AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.3 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Open Access

Influence of nitrogen status on fermentation performances of non-Saccharomyces yeasts: a review

Jinchen Li,( )Mengmeng YuanNan MengHehe LiJinyuan SunBaoguo Sun
Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Key Laboratory of Flavor Chemistry, Beijing Technology & Business University, Beijing 100048, China

Peer review under responsibility of Tsinghua University Press.

Show Author Information

Abstract

Nitrogen, one of the most crucial nutrients present in grapes and musts, plays a key role in yeast activities during alcoholic fermentation. Such influences are imposed on yeast growth and fermentation performances including the formation of secondary metabolites. Saccharomyces cerevisiae, the main yeast responsible for fermentation, has been studied extensively regarding nitrogen impacts. On the other hand, a similar study for non-Saccharomyces yeasts, whose contributions to winemaking have gradually been acknowledged, remains to be fully explored, with a few studies being reported. This review starts by discussing nitrogen impacts on non-Saccharomyces yeast growth and fermentation kinetics in different case scenarios, then proceeds to summarize the nitrogen preferences of individual yeast strains with regulation mechanisms elucidated by recent studies. Detailed discussions on the influences on the production of volatile compounds and proposed pathways therein are made, followed by future work suggested as the final section. In summarizing the nitrogen impacts on non-Saccharomyces yeasts throughout alcoholic fermentation, this review will be helpful in obtaining a more comprehensive view on these non-conventional wine yeasts in terms of nutrient requirements and corresponding volatile production. Research gaps will therefore be elucidated for future research.

References

[1]

N.P. Jolly, C. Varela, I.S. Pretorius, Not your ordinary yeast: non-Saccharomyces yeasts in wine production uncovered, Fems Yeast Res. 14 (2014) 215-237. https://doi.org/10.1111/1567-1364.12111.

[2]

A. Gobert, R. Tourdot-Marechal, C. Sparrow, et al., Influence of nitrogen status in wine alcoholic fermentation, Food Microbiol. 83 (2019) 71-85. https://doi.org/10.1016/j.fm.2019.04.008.

[3]
P.A. Henschke, V. Jiranek, Yeasts-metabolism of nitrogen compounds, in: G.H. Fleet (Ed.), Wine Microbiology and Biotechnology, Harwood Academic Publishers, 1993.
[4]

B. Gonzalez, J. Vazquez, M.A. Morcillo-Parra, et al., The production of aromatic alcohols in non-Saccharomyces wine yeast is modulated by nutrient availability, Food Microbiol. 74 (2018) 64-74. https://doi.org/10.1016/j.fm.2018.03.003.

[5]

P. Lage, C. Barbosa, B. Mateus, et al., H. guilliermondii impacts growth kinetics and metabolic activity of S. cerevisiae: the role of initial nitrogen concentration, Int. J. Food Microbiol. 172 (2014) 62-69. https://doi.org/10.1016/j.ijfoodmicro.2013.11.031.

[6]

P. Seguinot, A. Ortiz-Julien, C. Camarasa, Impact of nutrient availability on the fermentation and production of aroma compounds under sequential inoculation with M. pulcherrima and S. cerevisiae, Front. Microbiol. 11 (2020) 305. https://doi.org/10.3389/fmicb.2020.00305.

[7]

P. Taillandier, Q.P. Lai, A. Julien-Ortiz, et al., Interactions between Torulaspora delbrueckii and Saccharomyces cerevisiae in wine fermentation: influence of inoculation and nitrogen content, World J. Microbiol. Biotechnol. 30 (2014) 1959-1967. https://doi.org/10.1007/s11274-014-1618-z.

[8]

K. Hu, G.J. Jin, Y.H. Xu, et al., Enhancing wine ester biosynthesis in mixed Hanseniaspora uvarum/Saccharomyces cerevisiae fermentation by nitrogen nutrient addition, Food Res. Int. 123 (2019) 559-566. https://doi.org/10.1016/j.foodres.2019.05.030.

[9]

S. Rollero, A. Bloem, J. Brand, et al., Nitrogen metabolism in three non-conventional wine yeast species: a tool to modulate wine aroma profiles, Food Microbiol. 94 (2021) 103650. https://doi.org/10.1016/j.fm.2020.103650.

[10]

V. Jiranek, P. Langridge, P.A. Henschke, Amino acid and ammonium utilization by Saccharomyces cerevisiae wine yeasts from a chemically defined medium, Am. J. Enol. Vitic. 46 (1995) 75-83. https://doi.org/10.1016/S0065-2660(08)60337-5.

[11]

K.J. Prior, F.F. Bauer, B. Divol, The utilisation of nitrogenous compounds by commercial non-Saccharomyces yeasts associated with wine, Food Microbiol. 79 (2019) 75-84. https://doi.org/10.1016/j.fm.2018.12.002.

[12]

I. Andorra, M. Berradre, N. Rozes, et al., Effect of pure and mixed cultures of the main wine yeast species on grape must fermentations, Eur. Food Res. Technol. 231 (2010) 215-224. https://doi.org/10.1007/s00217-010-1272-0.

[13]

V. Englezos, L. Cocolin, K. Rantsiou, et al., Influence of single nitrogen compounds on growth and fermentation performance of Starmerella bacillaris and Saccharomyces cerevisiae during alcoholic fermentation, Appl. Environ. Microbiol. 87 (2020) e02485-20. https://doi.org/10.1128/AEM.02485-20.

[14]

Y. Su, P. Seguinot, I. Sanchez, et al., Nitrogen sources preferences of non-Saccharomyces yeasts to sustain growth and fermentation under winemaking conditions, Food Microbiol. 85 (2020) 103287. https://doi.org/10.1016/j.fm.2019.103287.

[15]

P.O. Ljungdahl, B. Daignan-Fornier, Regulation of amino acid, nucleotide, and phosphate metabolism in Saccharomyces cerevisiae, Genetics 190 (2012) 885-929. https://doi.org/10.1534/genetics.111.133306.

[16]

G. Beltran, M. Novo, N. Rozes, et al., Nitrogen catabolite repression in Saccharomyces cerevisiae during wine fermentations, Fems Yeast Res. 4 (2004) 625-632. https://doi.org/10.1016/j.femsyr.2003.12.004.

[17]

P. Godard, A. Urrestarazu, S. Vissers, et al., Effect of 21 different nitrogen sources on global gene expression in the yeast Saccharomyces cerevisiae, Mol. Cell. Biol. 27 (2007) 3065-3086. https://doi.org/10.1128/Mcb.01084-06.

[18]

A. Gutierrez, R. Chiva, G. Beltran, et al., Biomarkers for detecting nitrogen deficiency during alcoholic fermentation in different commercial wine yeast strains, Food Microbiol. 34 (2013) 227-237. https://doi.org/10.1016/j.fm.2012.12.004.

[19]

C. Tesniere, C. Brice, B. Blondin, Responses of Saccharomyces cerevisiae to nitrogen starvation in wine alcoholic fermentation, Appl. Microbiol. Biotechnol. 99 (2015) 7025-7034. https://doi.org/10.1007/s00253-015-6810-z.

[20]

J. Lleixa, V. Martin, F. Giorello, et al., Analysis of the NCR mechanisms in Hanseniaspora vineae and Saccharomyces cerevisiae during winemaking, Front. Genet. 9 (2018) 747. https://doi.org/10.3389/fgene.2018.00747.

[21]

B. Regenberg, L. During-Olsen, M.C. Kielland-Brandt, et al., Substrate specificity and gene expression of the amino-acid permeases in Saccharomyces cerevisiae, Curr. Genet. 36 (1999) 317-328. https://doi.org/10.1007/s002940050506.

[22]

H. Forsberg, P.O. Ljungdahl, Sensors of extracellular nutrients in Saccharomyces cerevisiae, Curr. Genet. 40 (2001) 91-109. https://doi.org/10.1007/s002940100244.

[23]

V. Englezos, L. Cocolin, K. Rantsiou, et al., Specific phenotypic traits of Starmerella bacillaris related to nitrogen source consumption and central carbon metabolite production during wine fermentation, Appl. Environ. Microbiol. 84 (2018) e00797-18. https://doi.org/10.1128/AEM.00797-18.

[24]

S. Rollero, A. Bloem, A. Ortiz-Julien, et al., Fermentation performances and aroma production of non-conventional wine yeasts are influenced by nitrogen preferences, Fems Yeast Res. 18 (2018). https://doi.org/10.1093/femsyr/foy055.

[25]

A. Gobert, R. Tourdot-Marechal, C. Morge, et al., Non-Saccharomyces yeasts nitrogen source preferences: impact on sequential fermentation and wine volatile compounds profile, Front. Microbiol. 8 (2017) 2175. https://doi.org/10.3389/fmicb.2017.02175.

[26]

H. Roca-Mesa, S. Sendra, A. Mas, et al., Nitrogen preferences during alcoholic fermentation of different non-Saccharomyces yeasts of oenological interest, Microorganisms 8 (2020) 157. https://doi.org/10.3390/microorganisms8020157.

[27]

P. Zhang, R. Zhang, S. Sirisena, et al., Beta-glucosidase activity of wine yeasts and its impacts on wine volatiles and phenolics: a mini-review, Food Microbiol. 100 (2021) 103859. https://doi.org/10.1016/j.fm.2021.103859.

[28]

D. Dubourdieu, T. Torninaga, I. Masneuf, et al., The role of yeasts in grape flavor development during fermentation: the example of Sauvignon blanc, Am. J. Enol. Vitic. 57 (2006) 81-88. https://doi.org/10.1016/j.scienta.2005.07.007.

[29]

K. Zott, C. Thibon, M. Bely, et al., The grape must non-Saccharomyces microbial community: impact on volatile thiol release, Int. J. Food Microbiol. 151 (2011) 210-215. https://doi.org/10.1016/j.ijfoodmicro.2011.08.026.

[30]

M. Roncoroni, M. Santiago, D.O. Hooks, et al., The yeast IRC7 gene encodes a beta-lyase responsible for production of the varietal thiol 4-mercapto-4-methylpentan-2-one in wine, Food Microbiol. 28 (2011) 926-935. https://doi.org/10.1016/j.fm.2011.01.002.

[31]

P. Seguinot, A. Bloem, P. Brial, et al., Analysing the impact of the nature of the nitrogen source on the formation of volatile compounds to unravel the aroma metabolism of two non-Saccharomyces strains, Int. J. Food Microbiol. 316 (2020) 108441. https://doi.org/10.1016/j.ijfoodmicro.2019.108441.

[32]

G.H. Fleet, Yeast interactions and wine flavour, Int. J. Food Microbiol. 86 (2003) 11-22. https://doi.org/10.1016/S0168-1605(03)00245-9.

[33]

P. Polaskova, J. Herszage, S.E. Ebeler, Wine flavor: chemistry in a glass, Chem. Soc. Rev. 37 (2008) 2478-2489. https://doi.org/10.1039/b714455p.

[34]

G. Styger, B. Prior, F.F. Bauer, Wine flavor and aroma, J. Int. Microbiol. Biotechnol. 38 (2011) 1145-1159. https://doi.org/10.1007/s10295-011-1018-4.

[35]

M. Carpena, M. Fraga-Corral, P. Otero, et al., Secondary aroma: influence of wine microorganisms in their aroma profile, Foods 10 (2020). https://doi.org/10.3390/foods10010051.

[36]

I. Belda, J. Ruiz, A. Esteban-Fernandez, et al., Microbial contribution to wine aroma and its intended use for wine quality improvement, Molecules 22 (2017) 189-218. https://doi.org/10.3390/molecules22020189.

[37]

D. Schulthess, L. Ettlinger, Influence of the concentration of branched chain amino acids on the formation of fusel alcohols, J. Inst. Brew. 84 (1978) 240-243. https://doi.org/10.1002/j.2050-0416.1978.tb03881.x.

[38]

B. Padilla, J.V. Gil, P. Manzanares, Past and future of non-Saccharomyces yeasts: from spoilage microorganisms to biotechnological tools for improving wine aroma complexity, Front. Microbiol. 7 (2016) 411. https://doi.org/10.3389/fmicb.2016.00411.

[39]

V. Rojas, J.V. Gil, F. Pinaga, et al., Studies on acetate ester production by non-Saccharomyces wine yeasts, Int. J. Food Microbiol. 70 (2001) 283-289. https://doi.org/10.1016/s0168-1605(01)00552-9.

[40]

N. Moreira, F. Mendes, T. Hogg, et al., Alcohols, esters and heavy sulphur compounds production by pure and mixed cultures of apiculate wine yeasts, Int. J. Food Microbiol. 103 (2005) 285-294. https://doi.org/10.1016/j.ijfoodmicro.2004.12.029.

[41]

F. Viana, J.V. Gil, S. Valles, et al., Increasing the levels of 2-phenylethyl acetate in wine through the use of a mixed culture of Hanseniaspora osmophila and Saccharomyces cerevisiae, Int. J. Food Microbiol. 135 (2009) 68-74. https://doi.org/10.1016/j.ijfoodmicro.2009.07.025.

[42]

M. Sadoudi, R. Tourdot-Marechal, S. Rousseaux, et al., Yeast-yeast interactions revealed by aromatic profile analysis of Sauvignon blanc wine fermented by single or co-culture of non-Saccharomyces and Saccharomyces yeasts, Food Microbiol. 32 (2012) 243-253. https://doi.org/10.1016/j.fm.2012.06.006.

[43]

J. Lleixa, V. Martin, C. Portillo Mdel, et al., Comparison of fermentation and wines produced by inoculation of Hanseniaspora vineae and Saccharomyces cerevisiae, Front. Microbiol. 7 (2016) 338. https://doi.org/10.3389/fmicb.2016.00338.

[44]

M. Lilly, M.G. Lambrechts, I.S. Pretorius, Effect of increased yeast alcohol acetyltransferase activity on flavor profiles of wine and distillates, Appl. Environ. Microbiol. 66 (2000) 744-753. https://pubmed.ncbi.nlm.nih.gov/10653746.

[45]

V. Martin, E. Boido, F. Giorello, et al., Effect of yeast assimilable nitrogen on the synthesis of phenolic aroma compounds by Hanseniaspora vineae strains, Yeast 33 (2016) 323-328. https://doi.org/10.1002/yea.3159.

[46]

P. Malcorps, J.P. Dufour, Short-chain and medium-chain aliphatic-ester synthesis in Saccharomyces cerevisiae, Eur. J. Biochem. 210 (1992) 1015-1022. https://doi.org/10.1111/j.1432-1033.1992.tb17507.x.

[47]

G. Beltran, M. Novo, V. Leberre, et al., Integration of transcriptomic and metabolic analyses for understanding the global responses of low-temperature winemaking fermentations, Fems Yeast Res. 6 (2006) 1167-1183. https://doi.org/10.1111/j.1567-1364.2006.00106.x.

[48]

N. Nagasawa, T. Bogaki, A. Iwamatsu, et al., Cloning and nucleotide sequence of the alcohol acetyltransferase Ⅱ gene (ATF2) from Saccharomyces cerevisiae Kyokai No. 7, Biosci. Biotechnol. Biochem. 62 (1998) 1852-1857. https://doi.org/10.1016/s0021-9673(00)00220-x.

[49]

T. Tominaga, I. Masneuf-Pomarède, D. Dubourdieu, A S-cysteine conjugate, precursor of aroma of white Sauvignon, Oeno One 29 (1995) 227-232. https://doi.org/10.20870/oeno-one.1995.29.4.1123.

[50]

J.H. Swiegers, I.S. Pretorius, Yeast modulation of wine flavor, Adv. Appl. Microbiol. 57 (2005) 131-175. https://doi.org/10.1016/S0065-2164(05)57005-9.

[51]

T. Tominaga, P. Darriet, D.J.V. Dubourdieu, Identification of 3-mercaptohexyl acetate in Sauvignon wine, a powerful aromatic compound exhibiting box-tree odor, Vitis 35 (1996) 207-210.

[52]

M. Mestres, O. Busto, J. Guasch, Analysis of organic sulfur compounds in wine aroma, J. Chromatogr. A. 881 (2000) 569-581. https://doi.org/10.1016/s0021-9673(00)00220-x.

[53]

A. Mendes-Ferreira, A. Mendes-Faia, C. Leao, Survey of hydrogen sulphide production by wine yeasts, J. Food Prot. 65 (2002) 1033-1037. https://doi.org/10.4315/0362-028x-65.6.1033.

[54]

H. Chen, G.R. Fink, Feedback control of morphogenesis in fungi by aromatic alcohols, Genes. Dev. 20 (2006) 1150-1161. https://doi.org/10.1101/gad.1411806.

[55]

M.G. Lambrechts, I.S. Pretorius, Yeast and its importance to wine aroma, S. Afr. J. Enol. Viticul. 21 (2000) 97-129.

Food Science and Human Wellness
Pages 556-567
Cite this article:
Li J, Yuan M, Meng N, et al. Influence of nitrogen status on fermentation performances of non-Saccharomyces yeasts: a review. Food Science and Human Wellness, 2024, 13(2): 556-567. https://doi.org/10.26599/FSHW.2022.9250050

1727

Views

331

Downloads

5

Crossref

1

Web of Science

3

Scopus

0

CSCD

Altmetrics

Received: 09 May 2022
Revised: 03 July 2022
Accepted: 05 August 2022
Published: 25 September 2023
© 2024 Beijing Academy of Food Sciences. Publishing services by Tsinghua University Press.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return