AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2.9 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Open Access

Demonstration of safety characteristics and effects on gut microbiota of Lactobacillus gasseri HMV18

Xianxian Jiaa,b,1Miaomiao Jiab,c,1Xiang Gaoa,b,1Xiang LicMengyuan WangcShengqiang DucRui HuangcXiaotong LicJun ZhangcShujin Lib,dChunling Mab,dYan Zhangb,e( )Bin Congb,d( )
Department of Pathogen Biology, Institute of basic Medicine, Hebei Medical University, Shijiazhuang 050017, China
Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang 050017, China
Institute of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, China
College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang 050017, China
Hebei Food Safety Key Laboratory, Hebei Food Inspection and Research Institute, Shijiazhuang 050227, China

1 These authors contributed equally to this work.

Peer review under responsibility of Tsinghua University Press.

Show Author Information

Highlights

Lactobacillus gasseri HMV18 is a potential probiotic.

• Bioamine, mucin utilization and genome encoded mammalian toxin are negative.

• Mice orally administrated HMV18 do no observable harm to organs but can affect the structure and composition of gut microbiota.

• We offered a route map for design safety evaluation experiments.

Abstract

Human normal flora is a source of probiotics. The safety characteristics of a specific isolate determine its application in foods or drugs. The food-borne-pathogen antagonist strain Lactobacillus gasseri HMV18 is one of the isolates from normal human f lora. In this work, we assessed the in vitro pH tolerance, bile tolerance, biogenic amine production, mucin utilization, and safety of in vivo administration to mice to evaluate general health, organ-body weight index, organ histopathological change, whether L. gasseri HMV18 can colonize in the gut or modulate the gut microbiota after oral administration. The results suggest that L. gasseri HMV18 can tolerate pH 3 for 2 h, 3% bile for 3 h, biogenic amine negative, mucin usage negative, does not encode verif ied toxins, and cause no visible change in mice’s organs. L. gasseri HMV18 might not colonize in mice’s gut, but can signif icantly affect the structure of gut microbiota. A bibliographical survey suggested that there were as few as 8 opportunistic infection cases from 1984 to 2022 and that the possibility for L. gasseri to cause infection is relatively low. Therefore, this work provides a basis for the foods or drugs application of L. gasseri HMV18 and gives a map of experiments for the safety assessment of probiotics.

Electronic Supplementary Material

Download File(s)
fshw-13-2-611_ESM1.xls (49.2 KB)
fshw-13-2-611_ESM2.xls (85.5 KB)

References

[1]

M. A’Inurrofiqin, E.S. Rahayu, D.A. Suroto, et al., Safety assessment of the indigenous probiotic strain Lactiplantibacillus plantarum subsp. plantarum Kita-3 using Sprague-Dawley rats as a model, AIMS Microbiol. 8(4) (2022) 403-421. https://doi.org/10.3934/microbiol.2022028.

[2]

S. Rastogi, S. Mohanty, S. Sharma, et al., Possible role of gut microbes and host’s immune response in gut-lung homeostasis, Front. Immunol. 13 (2022) 954339. https://doi.org/10.3389/fimmu.2022.954339.

[3]

C. Mazziotta, M. Tognon, F. Martini, et al., Probiotics mechanism of action on immune cells and beneficial effects on human health, Cells 12(1) (2023) 184. https://doi.org/10.3390/cells12010184.

[4]

R. Huang, F. Wu, Q. Zhou, et al., Lactobacillus and intestinal diseases: mechanisms of action and clinical applications, Microbiol. Res. 260 (2022) 127019. https://doi.org/10.1016/j.micres.2022.127019.

[5]

S. Rastogi, A. Singh, Gut microbiome and human health: exploring how the probiotic genus Lactobacillus modulate immune responses, Front. Pharmacol. 13 (2022) 1042189. https://doi.org/10.3389/fphar.2022.1042189.

[6]

X. Li, Y. Xiao, Y. Huang, et al., Lactobacillus gasseri RW2014 ameliorates hyperlipidemia by modulating bile acid metabolism and gut microbiota composition in rats, Nutrients 14(23) (2022) 4945. https://doi.org/10.3390/nu14234945.

[7]

J.K. Oh, M.B.C. Amoranto, N.S. Oh, et al., Synergistic effect of Lactobacillus gasseri and Cudrania tricuspidata on the modulation of body weight and gut microbiota structure in diet-induced obese mice, Appl. Microbiol. Biotechnol. 104(14) (2020) 6273-6285. https://doi.org/10.1007/s00253-020-10634-8.

[8]

S. Ait Abdellah, J. Scanzi, C. Gal, et al., Lactobacillus gasseri LA806 supplementation in patients with irritable bowel syndrome: a multicenter study, J. Clin. Med. 11 (24) (2022) 7446. https://doi.org/10.3390/jcm11247446.

[9]

S. Xiang, J. Fu, K. Ye, et al., Effect of Lactobacillus gasseri PA3 on gut microbiota in an in vitro colonic simulation, Food Sci. Nutr. 7(12) (2019) 3883-3891. https://doi.org/10.1002/fsn3.1236.

[10]

X. Gao, Z. Wang, X. Li, et al., A new Lactobacillus gasseri strain HMV18 inhibits the growth of pathogenic bacteria, Food Sci. Human Wellness 11(2) (2022) 247-254. https://doi.org/10.1016/j.fshw.2021.11.010.

[11]

O.H. Ban, S. Oh, C. Park, et al., Safety assessment of Streptococcus thermophilus IDCC 2201 used for product manufacturing in Korea, Food Sci. Nutr. 8(11) (2020) 6269-6274. https://doi.org/10.1002/fsn3.1925.

[12]

H. Sun, S. Liu, J. Zhang, et al., Safety evaluation and comparative genomics analysis of the industrial strain Aspergillus flavus SU-16 used for huangjiu brewing, Int. J. Food Microbiol. 380 (2022) 109859. https://doi.org/10.1016/j.ijfoodmicro.2022.109859.

[13]

F. Bourdichon, V. Patrone, A. Fontana, et al., Safety demonstration of a microbial species for use in the food chain: Weissella confusa, Int. J. Food Microbiol. 339 (2021) 109028. https://doi.org/10.1016/j.ijfoodmicro.2020.109028.

[14]

A.S. Metlakunta, R.J. Soman, Safety evaluation of Bacillus coagulans SNZ 1969 in Wistar rats, Regul. Toxicol. Pharmacol. 110 (2020) 104538. https://doi.org/10.1016/j.yrtph.2019.104538.

[15]

D. Pradhan, R. Singh, A. Tyagi, et al., Assessing the safety and efficacy of Lactobacillus plantarum MTCC 5690 and Lactobacillus fermentum MTCC 5689 in colitis mouse model, Probiotics Antimicrob. Proteins 11(3) (2019) 910-920. https://doi.org/10.1007/s12602-018-9489-5.

[16]

S. Hatami, M. Yavarmanesh, M. Sankian, et al., Comparison of probiotic Lactobacillus strains isolated from dairy and Iranian traditional food products with those from human source on intestinal microbiota using BALB/c mice model, Braz. J. Microbiol. 53(3) (2022) 1577-1591. https://doi.org/10.1007/s42770-022-00790-6.

[17]

J. Liu, Y. Wang, A. Li, et al., Probiotic potential and safety assessment of Lactobacillus isolated from yaks, Microb. Pathog. 145 (2020) 104213. https://doi.org/10.1016/j.micpath.2020.104213.

[18]

Y. He, X. Niu, B. Wang, et al., Evaluation of the inhibitory effects of Lactobacillus gasseri and Lactobacillus crispatus on the adhesion of seven common lower genital tract infection-causing pathogens to vaginal epithelial cells, Front. Med (Lausanne) 7 (2020) 284. https://doi.org/10.3389/fmed.2020.00284.

[19]

S. Mann, M.S. Park, T.V. Johnston, et al., Oral probiotic activities and biosafety of Lactobacillus gasseri HHuMIN D, Microb. Cell Fact. 20(1) (2021) 75. https://doi.org/10.1186/s12934-021-01563-w.

[20]

A. Ene, N. Stegman, A. Wolfe, et al., Genomic insights into Lactobacillus gasseri and Lactobacillus paragasseri, PeerJ 10 (2022) e13479. https://doi.org/10.7717/peerj.13479.

[21]

M. Boland, Human digestion--a processing perspective, J. Sci. Food Agric. 96(7) (2016) 2275-2283. https://doi.org/10.1002/jsfa.7601.

[22]

M. Duran-Lobato, Z. Niu, M.J. Alonso, Oral delivery of biologics for precision medicine, Adv. Mater. 32 (13) (2020) e1901935. https://doi.org/10.1002/adma.201901935.

[23]

M.J. Kim, S. Ku, S.Y. Kim, et al., Safety evaluations of Bifidobacterium bifidum BGN4 and Bifidobacterium longum BORI, Int. J. Mol. Sci. 19(5) (2018) 1422. https://doi.org/10.3390/ijms19051422.

[24]

E. Bolyen, J.R. Rideout, M.R. Dillon, et al., Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2, Nat. Biotechnol. 37(8) (2019) 852-857. https://doi.org/10.1038/s41587-019-0209-9.

[25]

M.K. Salminen, H. Rautelin, S. Tynkkynen, et al., Lactobacillus bacteremia, species identification, and antimicrobial susceptibility of 85 blood isolates, Clin. Infect. Dis. 42(5) (2006) e35-44. https://doi.org/10.1086/500214

[26]

A. Esquibel, A.S. Dababneh, B.R. Palraj, Lactobacillus gasseri causing bilateral empyema, Case. Rep. Infect. Dis. 2017 (2017) 4895619. https://doi.org/10.1155/2017/4895619.

[27]

I.M. Tleyjeh, J. Routh, M.O. Qutub, et al., Lactobacillus gasseri causing Fournier’s gangrene, Scand. J. Infect. Dis. 36(6/7) (2004) 501-503. https://doi.org/10.1080/00365540410015916.

[28]

U. Dickgiesser, N. Weiss, D. Fritsche, Lactobacillus gasseri as the cause of septic urinary infection, Infection 12(1) (1984) 14-16. https://doi.org/10.1007/BF01641017.

[29]

A.G.Y. Sun, N. Miller, Lactobacillus gasseri associated with urinary and surgical wound infection in a renal transplant patient, Med. Microbiol. Infect. Dis. 144(Suppl_2) (2015) A206-A206. https://doi.org/https://doi.org/10.1093/ajcp/144.suppl2.206

[30]

E. Chaini, N.D. Chainis, A. Ioannidis, et al., Pneumonia and pleural empyema due to a mixed Lactobacillus spp. infection as a possible early esophageal carcinoma signature, Front. Med. (Lausanne) 3 (2016) 42. https://doi.org/10.3389/fmed.2016.00042.

[31]

W. Elikowski, M. Malek-Elikowska, M. Lisiecka, et al., Lactobacillus gasseri endocarditis on the aortic valve bioprosthesis-a case report, Pol. Merkur. Lekarski. 43(257) (2017) 220-223.

[32]

D. Ramos-Coria, J. Canto-Losa, D. Carrillo-Vazquez, et al., Lactobacillus gasseri liver abscess and bacteremia: a case report, BMC Infect. Dis. 21(1) (2021) 518. https://doi.org/10.1186/s12879-021-06181-w.

[33]

M. Moniente, L. Botello-Morte, D. Garcia-Gonzalo, et al., Analytical strategies for the determination of biogenic amines in dairy products, Compr. Rev. Food Sci. Food Saf. 21(4) (2022) 3612-3646. https://doi.org/10.1111/1541-4337.12980.

[34]

F. Barbieri, C. Montanari, F. Gardini, et al., Biogenic amine production by lactic acid bacteria: a review, Foods 8(1) (2019) 17. https://doi.org/10.3390/foods8010017.

[35]

S. Byakika, I.M. Mukisa, Y.B. Byaruhanga, et al., Probiotic potential of lactic acid starter cultures isolated from a traditional fermented sorghum-millet beverage, Int. J. Microbiol. 2020 (2020) 7825943. https://doi.org/10.1155/2020/7825943.

[36]

T. Yoshimura, Molecular basis and functional development of enzymes related to amino acid metabolism, Biosci. Biotechnol. Biochem. 86(9) (2022) 1161-1172. https://doi.org/10.1093/bbb/zbac102.

[37]

Y. Kang, H. Park, B.H. Choe, et al., The role and function of mucins and its relationship to inflammatory bowel disease, Front. Med. (Lausanne) 9 (2022) 848344. https://doi.org/10.3389/fmed.2022.848344.

[38]

J.K. Gustafsson, M.E.V. Johansson, The role of goblet cells and mucus in intestinal homeostasis, Nat. Rev. Gastroenterol. Hepatol. 19(12) (2022) 785-803. https://doi.org/10.1038/s41575-022-00675-x.

[39]

S.K. Ward, B. Abomoelak, E.A. Hoye, et al., CtpV: a putative copper exporter required for full virulence of Mycobacterium tuberculosis, Mol. Microbiol. 77 (5) (2010) 1096-1110. https://doi.org/10.1111/j.1365-2958.2010.07273.x.

[40]

I.J. McLoughlin, E.M. Wright, J.R. Tagg, et al., Skin microbiome-the next frontier for probiotic intervention, Probiotics Antimicrob. Proteins 14(4) (2022) 630-647. https://doi.org/10.1007/s12602-021-09824-1.

[41]

C. Matto, B. D’Alessandro, M.I. Mota, et al., Listeria innocua isolated from diseased ruminants harbour minor virulence genes of L. monocytogenes, Vet. Med. Sci. 8(2) (2022) 735-740. https://doi.org/10.1002/vms3.710.

[42]

P.D. Cotter, C.M. Guinane, C. Hill, The LisRK signal transduction system determines the sensitivity of Listeria monocytogenes to nisin and cephalosporins, Antimicrob. Agents Chemother. 46(9) (2002) 2784-2790. https://doi.org/10.1128/AAC.46.9.2784-2790.2002.

[43]

H. Kusada, K. Morinaga, H. Tamaki, Identification of bile salt hydrolase and bile salt resistance in a probiotic bacterium Lactobacillus gasseri JCM1131(T), Microorganisms 9(5) (2021) 1011. https://doi.org/10.3390/microorganisms9051011.

[44]

F. Magne, M. Gotteland, L. Gauthier, et al., The Firmicutes/Bacteroidetes ratio: a relevant marker of gut dysbiosis in obese patients? Nutrients 12(5) (2020) 1474. https://doi.org/10.3390/nu12051474.

Food Science and Human Wellness
Pages 611-620
Cite this article:
Jia X, Jia M, Gao X, et al. Demonstration of safety characteristics and effects on gut microbiota of Lactobacillus gasseri HMV18. Food Science and Human Wellness, 2024, 13(2): 611-620. https://doi.org/10.26599/FSHW.2022.9250052

1899

Views

291

Downloads

2

Crossref

1

Web of Science

2

Scopus

0

CSCD

Altmetrics

Received: 13 February 2023
Revised: 26 February 2023
Accepted: 04 March 2023
Published: 25 September 2023
© 2024 Beijing Academy of Food Sciences. Publishing services by Tsinghua University Press.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return