Graphical Abstract

Gluten, known as the major allergen in wheat, has gained increasing concerns in industrialized countries, resulting in an urgent need for accurate, high-sensitive, and on-site detection of wheat gluten in complex food systems. Herein, we proposed a silver nanoparticles (AgNPs)/metal-organic framework (MOF) substrate-based surface-enhanced Raman scattering (SERS) sensor for the high-sensitive on-site detection of wheat gluten. The detection occurred on the newly in-situ synthesized AgNPs/MOF-modified SERS substrate, providing an enhancement factor (EF) of 1.89 × 105. Benefitting from the signal amplification function of AgNPs/MOF and the superiority of SERS, this sensor represented high sensitivity performance and a wide detection range from 1 × 10-15 mol/L to 2 × 10-6 mol/L with a detection limit of 1.16 × 10-16 mol/L, which allowed monitoring the trace of wheat gluten in complex food system without matrix interference. This reliable sandwich SERS sensor may provide a promising platform for high-sensitive, accurate, and on-site detection of allergens in the field of food safety.
H. Wieser, Chemistry of gluten proteins, Food Microbiol. 24(2) (2007) 115-119. http://dx.doi.org/10.1016/j.fm.2006.07.004.
M. Spaggiari, L. Calani, S. Folloni, et al., The impact of processing on the phenolic acids, free betaine, and choline in Triticum spp. L. whole grains and milling by-products, Food Chem. 311 (2020) 125940. http://dx.doi.org/10.1016/j.foodchem.2019.125940.
S. Sievers, A. Rohrbach, K. Beyer, Wheat-induced food allergy in childhood: ancient grains seem no way out, Eur. J. Nutr. 59(6) (2020) 2693-2707. http://dx.doi.org/10.1007/s00394-019-02116-z.
A. Miyazaki, S. Watanabe, K. Ogata, et al., Real-time PCR detection methods for food allergens (wheat, buckwheat, and peanuts) using reference plasmids, J. Agric. Food. Chem. 67(19) (2019) 5680-5686. http://dx.doi.org/10.1021/acs.jafc.9b01234.
B.I. Nwaru, L. Hickstein, S.S. Panesar, et al., Prevalence of common food allergies in Europe: a systematic review and meta-analysis, Allergy 69(8) (2014) 992-1007. http://dx.doi.org/10.1111/all.12423.
K.A. Vierk, K.M. Koehler, S.B. Fein, et al., Prevalence of self-reported food allergy in American adults and use of food labels, J. Allergy Clin. Immunol. 119(6) (2007) 1504-1510. http://dx.doi.org/10.1016/j.jaci.2007.03.011.
X.Y. Wang, Y. Zhuang, T.T. Ma, et al., Prevalence of self-reported food allergy in six regions of inner Mongolia, Northern China: a population-based survey, Med. Sci. Monit. 24 (2018) 1902-1911. http://dx.doi.org/10.12659/msm.908365.
C. Huang, S. Sheth, M. Li, et al., Rapid and selective luminescent sensing of allergenic gluten by highly phosphorescent switch-on probe, Talanta 190 (2018) 292-297. http://dx.doi.org/10.1016/j.talanta.2018.08.013.
J.G. Burkhardt, A. Chapa-Rodriguez, S.L. Bahna, Gluten sensitivities and the allergist: threshing the grain from the husks, Allergy 73(7) (2018) 1359-1368. http://dx.doi.org/10.1111/all.13354.
Y.Y. Xu, N.N. Jiang, L.P. Wen, et al., Wheat allergy in patients with recurrent urticaria, World Allergy Organ. J. 12(2) (2019) 100013. http://dx.doi.org/10.1016/j.waojou.2019.100013.
S.M. Gendel, J. Zhu, Analysis of U.S. Food and Drug Administration food allergen recalls after implementation of the food allergen labeling and consumer protection act, J. Food Prot. 76(11) (2013) 1933-1938. http://dx.doi.org/10.4315/0362-028X.JFP-13-171.
M. Timon, Proposals for harmonization of allergens regulation in the European Union, Allergol Immunopathol (Madr.) 45(Suppl 1) (2017) 1-3. http://dx.doi.org/10.1016/j.aller.2017.09.001.
K.J. Allen, P.J. Turner, R. Pawankar, et al., Precautionary labelling of foods for allergen content: are we ready for a global framework? World Allergy Organ. J. 7(1) (2014) 10. http://dx.doi.org/10.1186/1939-4551-7-10.
M. Koeberl, D. Clarke, K.J. Allen, et al., Food allergen management in Australia, J. AOAC Int. 101(1) (2018) 60-69. http://dx.doi.org/10.5740/jaoacint.17-0386.
A. Garcia-Garcia, R. Madrid, E. Garcia-Calvo, et al., Production of a recombinant single-domain antibody for gluten detection in foods using the Pichia pastoris expression system, Foods 9(12) (2020) 1838. http://dx.doi.org/10.3390/foods9121838.
B. Martin-Fernandez, J. Costa, N. de-Los-Santos-Alvarez, et al., High resolution melting analysis as a new approach to discriminate gluten containing cereals, Food Chem. 211 (2016) 383-391. http://dx.doi.org/10.1016/j.foodchem.2016.05.067.
K.C.M. Verhoeckx, Y.M. Vissers, J.L. Baumert, et al., Food processing and allergenicity, Food Chem. Toxicol. 80 (2015) 223-240. http://dx.doi.org/10.1016/j.fct.2015.03.005.
D.A. Schmitt, J.B. Nesbit, B.K. Hurlburt, et al., Processing can alter the properties of peanut extract preparations, J. Agric. Food. Chem. 58(2) (2010) 1138-1143. http://dx.doi.org/10.1021/jf902694j.
E. Iniesto, A. Jimenez, N. Prieto, et al., Real time PCR to detect hazelnut allergen coding sequences in processed foods, Food Chem. 138(2/3) (2013) 1976-1981. http://dx.doi.org/10.1016/j.foodchem.2012.11.036.
L. Mandrile, A.M. Giovannozzi, F. Durbiano, et al., Rapid and sensitive detection of pyrimethanil residues on pome fruits by Surface Enhanced Raman Scattering, Food Chem. 244 (2018) 16-24. http://dx.doi.org/10.1016/j.foodchem.2017.10.003.
H. Feng, Q. Fu, W. Du, et al., Quantitative assessment of copper(Ⅱ) in Wilson’s disease based on photoacoustic imaging and ratiometric surfaceenhanced Raman scattering, ACS Nano. 15(2) (2021) 3402-3414. http://dx.doi.org/10.1021/acsnano.0c10407.
J. Xi, Q. Yu, The development of lateral flow immunoassay strip tests based on surface enhanced Raman spectroscopy coupled with gold nanoparticles for the rapid detection of soybean allergen β-conglycinin, Spectrochim. Acta A Mol. Biomol. Spectrosc. 241 (2020) 118640. http://dx.doi.org/10.1016/j.saa.2020.118640.
L. Zhang, Y. Jin, H. Mao, et al., Structure-selective hot-spot Raman enhancement for direct identification and detection of trace penicilloic acid allergen in penicillin, Biosens. Bioelectron. 58 (2014) 165-171. http://dx.doi.org/10.1016/j.bios.2014.02.052.
A. Nilghaz, S. Mahdi Mousavi, A. Amiri, et al., Surface-enhanced Raman spectroscopy substrates for food safety and quality analysis, J. Agric. Food Chem. 70(18) (2022) 5463-5476. http://dx.doi.org/10.1021/acs.jafc.2c00089.
W. Li, L. Xiong, N. Li, et al., Tunable 3D light trapping architectures based on self-assembled SnSe2 nanoplate arrays for ultrasensitive SERS detection, J. Materials Chem. C. 7(33) (2019) 10179-10186. http://dx.doi.org/10.1039/c9tc03715b.
A. Fateeva, P.A. Chater, C.P. Ireland, et al., A water-stable porphyrin-based metal-organic framework active for visible-light photocatalysis, Angew. Chem. Int. Ed. Engl. 51(30) (2012) 7440-7444. http://dx.doi.org/10.1002/anie.201202471.
J. Li, J. Wang, Y. Ling, et al., Unprecedented highly efficient capture of glycopeptides by Fe3O4@Mg-MOF-74 core-shell nanoparticles, Chem. Commun. 53(28) (2017) 4018-4021. http://dx.doi.org/10.1039/c7cc00447h.
K. Deng, Z. Hou, X. Li, et al., Aptamer-mediated up-conversion core/MOF shell nanocomposites for targeted drug delivery and cell imaging, Sci. Rep. 5(1) (2015) 7851. http://dx.doi.org/10.1038/srep07851.
Z. Jiang, P. Gao, L. Yang, et al., Facile in situ synthesis of silver nanoparticles on the surface of metal-organic framework for ultrasensitive surface-enhanced Raman scattering detection of dopamine, Anal. Chem. 87(24) (2015) 12177-12182. http://dx.doi.org/10.1021/acs.analchem.5b03058.
J.M. Li, C. Wei, W.F. Ma, et al., Multiplexed SERS detection of DNA targets in a sandwich-hybridization assay using SERS-encoded core–shell nanospheres, J. Mater. Chem. 22(24) (2012) 12100-12106. http://dx.doi.org/10.1039/c2jm30702b.
A. Garrido-Maestu, S. Azinheiro, P. Fucinos, et al., Highly sensitive detection of gluten-containing cereals in food samples by real-time Loopmediated isothermal AMPlification (qLAMP) and real-time polymerase chain reaction (qPCR), Food Chem. 246 (2018) 156-163. http://dx.doi.org/10.1016/j.foodchem.2017.11.005.
B. Martin-Fernandez, A.J. Miranda-Ordieres, M.J. Lobo-Castanon, et al., Strongly structured DNA sequences as targets for genosensing: sensing phase design and coupling to PCR amplification for a highly specific 33-mer gliadin DNA fragment, Biosens. Bioelectron. 60 (2014) 244-251. http://dx.doi.org/10.1016/j.bios.2014.04.033.
Z. Guo, P. Chen, L. Yin, et al., Determination of lead in food by surfaceenhanced Raman spectroscopy with aptamer regulating gold nanoparticles reduction, Food Control. 132 (2022) 108498. http://dx.doi.org/10.1016/j.foodcont.2021.108498.
C. Li, Y. Huang, K. Lai, et al., Analysis of trace methylene blue in fish muscles using ultra-sensitive surface-enhanced Raman spectroscopy, Food Control. 65 (2016) 99-105. http://dx.doi.org/10.1016/j.foodcont.2016.01.017.
M. Liu, J. Wang, Q. Yang, et al., Patulin removal from apple juice using a novel cysteine-functionalized metal-organic framework adsorbent, Food Chem. 270 (2019) 1-9. http://dx.doi.org/10.1016/j.foodchem.2018.07.072.
L. Wu, H. Pu, L. Huang, et al., Plasmonic nanoparticles on metal-organic framework: a versatile SERS platform for adsorptive detection of new coccine and orange Ⅱ dyes in food, Food Chem. 328 (2020) 127105. http://dx.doi.org/10.1016/j.foodchem.2020.127105.
S. Mukhopadhyay, J. Debgupta, C. Singh, et al., Designing UiO-66-based superprotonic conductor with the highest metal-organic framework based proton conductivity, ACS Appl. Mater. Interfaces 11(14) (2019) 13423-13432. http://dx.doi.org/10.1021/acsami.9b01121.