AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (6.7 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Open Access

The role of a novel antibacterial substance,cyclic opine-producing Lacticaseibacillus rhamnosus LS8 in ameliorating ulcerative colitis:a fecal microbiota transplantation study

Tao Wanga,b,Shuang WangaShuchen DongaRuiling WangaShuxuan WangaJie YangcXin Wanga( )Xin Lüa( )
College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling 712100, China
Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
School of Life Science and Technology, Xinjiang University, Urumqi 830046, China

Peer review under responsibility of Tsinghua University Press.

Show Author Information

Graphical Abstract

Abstract

Intestinal microbiota imbalance may worsen the progression of ulcerative colitis (UC). Lacticaseibacillus rhamnosus LS8 (LR) has the potential ability to regulate microbiota through producing a novel antibacterial substance, cyclic opine: cycloalanopine. This study aimed to investigate whether LR could ameliorate dextran sulfate sodium-induced UC in mice via modulating intestinal microbiota using fecal microbiota transplantation (FMT) experiment. The results showed that both LR and FMT attenuated UC as evidenced by 1) alleviating disease activity index and colonic pathology; 2) up-regulating MUCs and tight junction proteins; 3) increasing oxidative mediators and decreasing antioxidant mediators; 4) down-regulating proinflammatory cytokines and chemokines. These results were mainly attributable to the microbiota-regulating effect of LR, including increasing benefi cial bacteria (like Akkermansia) and its related SCFAs, while decreasing harmful bacteria (like Proteobacteria) and its related LPS, thereby suppressing the hyperactivation of TLR4/NF-κB pathway. Consequently, LR can alleviate UC and is a potential dietary supplement to attenuate UC.

Electronic Supplementary Material

Download File(s)
fshw-13-2-778_ESM1.docx (479.3 KB)
fshw-13-2-778_ESM2.docx (4.6 MB)

References

[1]

R. Ungaro, S. Mehandru, P.B. Allen, et al., Ulcerative colitis, Lancet 389 (2017) 1756-1770. http://dx.doi.org/10.1016/s0140-6736(16)32126-2.

[2]

B. Chen, J. Luo, Y. Han, et al., Dietary tangeretin alleviated dextran sulfate sodium-induced colitis in mice via inhibiting inflammatory response, restoring intestinal barrier function, and modulating gut microbiota, J. Agric. Food Chem. 69 (2021) 7663-7674. http://dx.doi.org/10.1021/acs.jafc.1c03046.

[3]

S. Hu, S. Li, Y. Liu, et al., Aged ripe pu-erh tea reduced oxidative stressmediated inflammation in dextran sulfate sodium-induced colitis mice by regulating intestinal microbes, J. Agric. Food Chem. 69 (2021) 10592-10605. http://dx.doi.org/10.1021/acs.jafc.1c04032.

[4]

K. Hiippala, H. Jouhten, A. Ronkainen, et al., The potential of gut commensals in reinforcing intestinal barrier function and alleviating inflammation, Nutrients 10 (2018) 988. http://dx.doi.org/10.3390/nu10080988.

[5]

H. Zhang, Y. Wang, Y. Su, et al., The alleviating effect and mechanism of Bilobalide on ulcerative colitis, Food Funct. 12 (2021) 6226-6239. http://dx.doi.org/10.1039/D1FO01266E.

[6]

Q.H. Mu, J. Kirby, C.M. Reilly, et al., Leaky gut as a danger signal for autoimmune diseases, Front. Immunol. 8 (2017) 598. http://dx.doi.org/10.3389/fimmu.2017.00598.

[7]

B. Pang, H. Jin, N. Liao, et al., Lactobacillus rhamnosus from human breast milk ameliorates ulcerative colitis in mice via gut microbiota modulation, Food Funct. 12 (2021) 5171-5186. http://dx.doi.org/10.1039/D0FO03479G.

[8]

H. Kaur, T. Gupta, S. Kapila, et al., Protective effects of potential probiotic Lactobacillus rhamnosus (MTCC-5897) fermented whey on reinforcement of intestinal epithelial barrier function in a colitis-induced murine model, Food Funct. 12 (2021) 6102-6116. http://dx.doi.org/10.1039/D0FO02641G.

[9]

Y. Huang, Q. Yang, X. Mi, et al., Ripened Pu-erh tea extract promotes gut microbiota resilience against dextran sulfate sodium induced colitis, J. Agric. Food Chem. 69 (2021) 2190-2203. http://dx.doi.org/10.1021/acs.jafc.0c07537.

[10]

M. Ostovan, S.M.B. Fazljou, H. Khazraei, et al., The anti-inflammatory effect of Pistacia lentiscus in a rat model of colitis, J. Inflamm. Res. 13 (2020) 369-376. http://dx.doi.org/10.2147/jir.s259035.

[11]

M. Schieber, N.S. Chandel, ROS function in redox signaling and oxidative stress, Curr. Biol. 24 (2014) R453-R462. http://dx.doi.org/10.1016/j.cub.2014.03.034.

[12]

R.B. Chanin, M.G. Winter, L. Spiga, et al., Epithelial-derived reactive oxygen species enable AppBCX-mediated aerobic respiration of Escherichia coli during intestinal inflammation, Cell Host Microbe. 28 (2020) 780-788. http://dx.doi.org/10.1016/j.chom.2020.09.005.

[13]

M.G. Rooks, W.S. Garrett, Gut microbiota, metabolites and host immunity, Nat. Rev. Immunol. 16 (2016) 341-352. http://dx.doi.org/10.1038/nri.2016.42.

[14]

M. Candelli, L. Franza, G. Pignataro, et al., Interaction between lipopolysaccharide and gut microbiota in inflammatory bowel diseases, Int. J. Mol. Sci. 22 (2021) 6242. http://dx.doi.org/10.3390/ijms22126242.

[15]

F. Imhann, A. Vich Vila, M.J. Bonder, et al., Interplay of host genetics and gut microbiota underlying the onset and clinical presentation of inflammatory bowel disease, Gut 67 (2018) 108-119. http://dx.doi.org/10.1136/gutjnl-2016-312135.

[16]

M.C. Abt, P.T. McKenney, E.G. Pamer, Clostridium difficile colitis: pathogenesis and host defence, Nat. Rev. Microbiol. 14 (2016) 609-620. http://dx.doi.org/10.1038/nrmicro.2016.108.

[17]

N. Steck, M. Hoffmann, I.G. Sava, et al., Enterococcus faecalis metalloprotease compromises epithelial barrier and contributes to intestinal inflammation, Gastroenterology 141 (2011) 959-971. http://dx.doi.org/10.1053/j.gastro.2011.05.035.

[18]

W.A. Awad, C. Hess, M. Hess, Enteric pathogens and their toxin-induced disruption of the intestinal barrier through alteration of tight junctions in chickens, Toxins (Basel). 9 (2017) 60. http://dx.doi.org/10.3390/toxins9020060.

[19]

S.C. Bischoff, G. Barbara, W. Buurman, et al., Intestinal permeability-a new target for disease prevention and therapy, BMC Gastroenterol. 14 (2014) 189. http://dx.doi.org/10.1186/s12876-014-0189-7.

[20]

L. Rigottier-Gois, Dysbiosis in inflammatory bowel diseases: the oxygen hypothesis, ISME J. 7 (2013) 1256-1261. http://dx.doi.org/10.1038/ismej.2013.80.

[21]

Y. Liu, L.Y. Luo, Y.K. Luo, et al., Prebiotic properties of green and dark tea contribute to protective effects in chemical-induced colitis in mice: a fecal microbiota transplantation study, J. Agric. Food Chem. 68 (2020) 6368-6380. http://dx.doi.org/10.1021/acs.jafc.0c02336.

[22]

T. Wang, C. Shi, S. Wang, et al., Protective effects of Companilactobacillus crustorum MN047 against dextran sulfate sodium-induced ulcerative colitis: a fecal microbiota transplantation study, J. Agric. Food Chem. 70 (2022) 1547-1561. http://dx.doi.org/10.1021/acs.jafc.1c07316.

[23]

M. Deng, X. Wu, X. Duan, et al., Lactobacillus paracasei L9 improves colitis by expanding butyrate-producing bacteria that inhibit the IL-6/STAT3 signaling pathway, Food Funct. 12 (2021) 10700-10713. http://dx.doi.org/10.1039/d1fo02077c.

[24]

L. Zhang, L. Wang, L. Yi, et al., A novel antimicrobial substance produced by Lactobacillus rhamnous LS8, Food Control 73 (2017) 754-760. http://dx.doi.org/10.1016/j.foodcont.2016.09.028.

[25]

T. Wang, H.M. Sun, J.X. Chen, et al., Anti-adhesion effects of Lactobacillus strains on Caco-2 cells against Escherichia coli and their application in ameliorating the symptoms of dextran sulfate sodium-induced colitis in mice, Probiotics Antimicrob. Proteins. 13 (2021) 1632-1643. http://dx.doi.org/10.1007/s12602-021-09774-8.

[26]

T. Wang, J. Zheng, S. Dong, et al., Lacticaseibacillus rhamnosus LS8 ameliorates azoxymethane/dextran sulfate sodium-induced colitis-associated tumorigenesis in mice via regulating gut microbiota and inhibiting inflammation, Probiotics Antimicrob. Proteins. (2022). http://dx.doi.org/10.1007/s12602-022-09967-9.

[27]

T. Wang, H. Yan, Y.Y. Lu, et al., Anti-obesity effect of Lactobacillus rhamnosus LS-8 and Lactobacillus crustorum MN047 on high-fat and high-fructose diet mice base on inflammatory response alleviation and gut microbiota regulation, Eur. J. Nutr. 59 (2020) 2709-2728. http://dx.doi.org/10.1007/s00394-019-02117-y.

[28]

K.J. Livak, T.D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method, Methods 25 (2001) 402-408. http://dx.doi.org/10.1006/meth.2001.1262.

[29]

H. Chung, D.L. Kasper, Microbiota-stimulated immune mechanisms to maintain gut homeostasis, Curr. Opin. Immunol. 22 (2010) 455-460. http://dx.doi.org/10.1016/j.coi.2010.06.008.

[30]

H.M. Xu, H.L. Huang, J. Xu, et al., Cross-talk between butyric acid and gut microbiota in ulcerative colitis following fecal microbiota transplantation, Front. Microbiol. 12 (2021) 658292. http://dx.doi.org/10.3389/fmicb.2021.658292.

[31]

S. Deleu, K. Machiels, J. Raes, et al., Short chain fatty acids and its producing organisms: an overlooked therapy for IBD? Ebiomedicine 66 (2021) 103293. http://dx.doi.org/10.1016/j.ebiom.2021.103293.

[32]

M. Schirmer, A. Garner, H. Vlamakis, et al., Microbial genes and pathways in inflammatory bowel disease, Nat. Rev. Microbiol. 17 (2019) 497-511. http://dx.doi.org/10.1038/s41579-019-0213-6.

[33]

T. Mishiro, R. Kusunoki, A. Otani, et al., Butyric acid attenuates intestinal inflammation in murine DSS-induced colitis model via milk fat globuleEGF factor 8, Lab. Investig. 93 (2013) 834-843. http://dx.doi.org/10.1038/labinvest.2013.70.

[34]

J. Wang, S.M. Fan, J. Zhang, Epigallocatechin-3-gallate ameliorates lipopolysaccharide-induced acute lung injury by suppression of TLR4/NFkappa B signaling activation, Braz. J. Med. Biol. Res. 52 (2019) e8092. http://dx.doi.org/10.1590/1414-431x20198092.

[35]

A. Cianciulli, R. Calvello, P. Cavallo, et al., Modulation of NF-κB activation by resveratrol in LPS treated human intestinal cells results in downregulation of PGE2 production and COX-2 expression, Toxicol. In Vitro. 26 (2012) 1122-1128. http://dx.doi.org/10.1016/j.tiv.2012.06.015.

[36]

Y.B. Yang, L.L. Li, C.J. Xu, et al., Cross-talk between the gut microbiota and monocyte-like macrophages mediates an inflammatory response to promote colitis-associated tumourigenesis, Gut 70 (2021) 1495-1506. http://dx.doi.org/10.1136/gutjnl-2020-320777.

[37]

Y. Wang, H. Tao, H. Huang, et al., The dietary supplement Rhodiola crenulata extract alleviates dextran sulfate sodium-induced colitis in mice through anti-inflammation, mediating gut barrier integrity and reshaping the gut microbiome, Food Funct. 12 (2021) 3142-3158. http://dx.doi.org/10.1039/D0FO03061A.

[38]

A. Everard, C. Belzer, L. Geurts, et al., Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity, Proc. Natl. Acad. Sci. U.S.A. 110 (2013) 9066-9071. http://dx.doi.org/10.1073/pnas.1219451110.

[39]

H.A. Abd Elmaksoud, M.H. Motawea, A.A. Desoky, et al., Hydroxytyrosol alleviate intestinal inflammation, oxidative stress and apoptosis resulted in ulcerative colitis, Biomed. Pharmacother. 142 (2021) 112073. http://dx.doi.org/10.1016/j.biopha.2021.112073.

[40]

L. Albenberg, T.V. Esipova, C.P. Judge, et al., Correlation between intraluminal oxygen gradient and radial partitioning of intestinal microbiota, Gastroenterology 147 (2014) 1055-1063. http://dx.doi.org/10.1053/j.gastro.2014.07.020.

[41]

D.Z. Wang, R.N. DuBois, A. Richmond, The role of chemokines in intestinal inflammation and cancer, Curr. Opin. Pharm. 9 (2009) 688-696. http://dx.doi.org/10.1016/j.coph.2009.08.003.

Food Science and Human Wellness
Pages 778-790
Cite this article:
Wang T, Wang S, Dong S, et al. The role of a novel antibacterial substance,cyclic opine-producing Lacticaseibacillus rhamnosus LS8 in ameliorating ulcerative colitis:a fecal microbiota transplantation study. Food Science and Human Wellness, 2024, 13(2): 778-790. https://doi.org/10.26599/FSHW.2022.9250066

1245

Views

171

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 31 May 2022
Revised: 04 August 2022
Accepted: 15 September 2022
Published: 25 September 2023
© 2024 Beijing Academy of Food Sciences. Publishing services by Tsinghua University Press.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return