AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (3.8 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Open Access

Metabolite acetyl-L-carnitine participates in Bifidobacterium animalis F1-7 to ameliorate atherosclerotic inflammation by downregulating theTLR4/NF-κB pathway

Xi Lianga,bZhe ZhangbXiaoying TianbQingyu CuibHaiyan LubMaozhen ZhaobTongjie LiubHuaxi YibPimin Gongb( )Lanwei Zhangb( )
Department of Nutrition and Food Hygiene, School of public health, Qingdao University, Qingdao 266071, China
College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China

Peer review under responsibility of Tsinghua University Press.

Show Author Information

highlights

Bif. Animalis F1-7 reduced the plaque areas in aorta.

Bif. Animalis F1-7 down regulated TLR4/NFκB pathway.

• Metabolite ALC is closely related to atherosclerotic inflammatory response.

• Probiotic intervention increases ALC and reduces atherosclerotic inflammation.

Graphical Abstract

Abstract

This study aimed to explore the effect of Bif idobacterium animalis F1-7 on the improvement of atherosclerotic inflammation. Arteriosclerosis model ApoE-/- mice were orally administered with B. animalis F1-7 for 12 weeks. The probiotic intervention reduced the plaque areas in aorta and the accumulation of macrophages, and downregulated the expression of toll-like receptor 4 (TLR4)/nuclear factor κB (NF-κB) pathway to reduce the levels of inf lammatory factors. The widely-targeted metabolomics analysis showed that acetyl-L-carnitine (ALC) in the intestine of atherosclerotic mice was signif icantly increased after B. animalis F1-7 intervention. Correlation analysis proved that ALC was associated with atherosclerotic inf lammatory response. By using oxidized low density lipoprotein induced macrophage foam cells, we further verif ied that ALC could reduce lipid accumulation and inf lammatory response in foam cells by downregulating the TLR4/NF-κB pathway. Finally, our results revealed that B. animalis F1-7 upregulated the metabolite ALC to downregulate the inf lammatory responses, leading to the reduction of plaque accumulation of atherosclerosis.

Electronic Supplementary Material

Download File(s)
fshw-13-2-813_ESM2.docx (111.6 KB)
fshw-13-2-813_ESM3.docx (13.7 KB)

References

[1]

N. Wang, X. Zhang, Z. Ma, et al., Combination of tanshinone ⅡA and astragaloside Ⅳ attenuate atherosclerotic plaque vulnerability in ApoE-/- mice by activating PI3K/AKT signaling and suppressing TRL4/NF-κB signaling, Biomed. Pharmacother. 123 (2020) 109729. https://doi.org/10.1016/j.biopha.2019.109729.

[2]

M. Bäck, A. Yurdagul, I. Tabas, et al., Inflammation and its resolution in atherosclerosis: mediators and therapeutic opportunities, Nat. Rev. Cardiol. 16 (2019) 389-406. https://doi.org/10.1038/s41569-019-0169-2.

[3]

Z. Ye, L. Zhong, S. Zhu, et al., The P-selectin and PSGL-1 axis accelerates atherosclerosis via activation of dendritic cells by the TLR4 signaling pathway, Cell Death Dis. 7 (2019) 507. https://doi.org/10.1038/s41419-019-1736-5.

[4]

A. Piaszyk-Borychowska, L. Széles, A. Csermely, et al., Signal integration of IFN-Ⅰ and IFN-Ⅱ with TLR4 involves sequential recruitment of STAT1-complexes and NFκB to enhance pro-inflammatory transcription, Front. Immunol. 10 (2019) 1253. https://doi.org/10.3389/fimmu.2019.01253.

[5]

X. Zhang, C. Xue, Q. Xu, et al., Caprylic acid suppresses inflammation via TLR4/NF-κB signaling and improves atherosclerosis in ApoE-deficient mice, Nutr Metab (Lond). 16 (2019) 40. https://doi.org/10.1186/s12986-019-0359-2.

[6]

J.D. Bowman, S. Surani, M.A. Horseman, et al., Toll-like receptor-4, and atherosclerotic heart disease, Curr. Cardiol. Rev. 13 (2017) 86-93. https://doi.org/10.2174/1573403x12666160901145313.

[7]

L.J. Kasselman, N.A. Vernice, J. DeLeon, et al., The gut microbiome and elevated cardiovascular risk in obesity and autoimmunity, Atherosclerosis 271 (2018) 203-213. https://doi.org/10.1016/j.atherosclerosis.2018.02.036.

[8]

Y. Xiao, X. Li, X. Zeng, et al., A low ω-6/ω-3 ratio high-fat diet improves rat metabolism via purine and tryptophan metabolism in the intestinal tract, while reversed by inulin, J. Agric. Food Chem. 67 (2019) 7315-7324. https://doi.org/10.1021/acs.jafc.9b02110.

[9]

X. Jian, Y. Zhu, J. Ouyang, et al., Alterations of gut microbiome accelerate multiple myeloma progression by increasing the relative abundances of nitrogen-recycling bacteria, Microbiome 8 (2020) 74. https://doi.org/10.1186/s40168-020-00854-5.

[10]

W.H.W. Tang, D.Y. Li, S.L. Hazen, Dietary metabolism, the gut microbiome, and heart failure, Nat. Rev. Cardiol. 16 (2019) 137-154. https://doi.org/10.1038/s41569-018-0108-7.

[11]

L.E. London, A.H. Kumar, R. Wall, et al., Exopolysaccharide-producing probiotic Lactobacilli reduce serum cholesterol and modify enteric microbiota in ApoE-deficient mice, J. Nutr. 144 (2014) 1956-1962. https://doi.org/10.3945/jn.114.191627.

[12]

B. Sun, T. Ma, Y. Li, et al., Bifidobacterium lactis Probio-M8 adjuvant treatment confers added benefits to patients with coronary artery disease via target modulation of the gut-heart/-brain axes, mSystems 7 (2022) e0010022. https://doi.org/10.1128/msystems.00100-22.

[13]

L. Qiu, X. Tao, H. Xiong, et al., Lactobacillus plantarum ZDY04 exhibits a strain-specific property of lowering TMAO via the modulation of gut microbiota in mice, Food Funct. 9 (2018) 4299-4309. https://doi.org/10.1039/c8fo00349a.

[14]

D. Yang, W. Lyu, Z. Hu, et al., Probiotic effects of Lactobacillus fermentum ZJUIDS06 and Lactobacillus plantarum ZY08 on hypercholesteremic golden hamsters, Front. Nutr. 28 (2021) 705-763. https://doi.org/10.3389/fnut.2021.705763.

[15]

S. Peng, L.W. Xu, X.Y. Che, et al., Atorvastatin inhibits inflammatory response, attenuates lipid deposition, and improves the stability of vulnerable atherosclerotic plaques by modulating autophagy, Front. Pharmacol. 9 (2018) 438. https://doi.org/10.3389/fphar.2018.00438.

[16]

G. Wang, X. Li, J. Zhao, et al., Lactobacillus casei CCFM419 attenuates type 2 diabetes via a gut microbiota dependent mechanism, Food Funct. 8 (2017) 3155-3164. https://doi.org/10.1039/c7fo00593h.

[17]

X. Li, E. Wang, B. Yin, et al., Effects of Lactobacillus casei CCFM419 on insulin resistance and gut microbiota in type 2 diabetic mice, Benef. Microbes. 8 (2017) 421-432. https://doi.org/10.3920/BM2016.0167.

[18]

Y. Zhang, H. Miao, H. Yan, et al., Hepatoprotective effect of Forsythiae Fructus water extract against carbon tetrachloride-induced liver fibrosis in mice, J. Ethnopharmacol. 218 (2018) 27-34. https://doi.org/10.1016/j.jep.2018.02.033.

[19]

W. Lin, W. Wang, D. Wang, et al., Quercetin protects against atherosclerosis by inhibiting dendritic cell activation, Mol. Nutr. Food Res. 71 (2017) 186-187. https://doi.org/10.1002/mnfr.201700031.

[20]

X. Liang, Y. Lv, Z. Zhang, et al., Study on intestinal survival and cholesterol metabolism of probiotics, LWT-Food Sci. Technol. 124 (2020) 109132. https://doi.org/10.1016/j.lwt.2020.109132.

[21]

X. Liang, Z. Zhang, X. Zhou, et al., Probiotics improved hyperlipidemia in mice induced by a high cholesterol diet via downregulating FXR, Food Funct. 11 (2020) 9903-9911. https://doi.org/10.1039/d0fo02255a.

[22]

Q. Xuan, C. Hu, D. Yu, et al., Development of a high coverage pseudotargeted lipidomics method based on ultra-high performance liquid chromatography-mass spectrometry, Anal. Bioanal. Chem. 90 (2018) 7608-7616. https://doi.org/10.1007/s00216-021-03349-w.

[23]

Z. Wang, Q. Zhu, Y. Liu, et al., Genome-wide association study of metabolites in patients with coronary artery disease identified novel metabolite quantitative trait loci, Clin. Transl. Med. 11 (2021) e290. https://doi.org/10.1002/ctm2.290.

[24]

X. He, X. Chen, L. Wang, et al., Metformin ameliorates ox-LDL-induced foam cell formation in RAW264.7 cells by promoting ABCG-1 mediated cholesterol efflux, Life Sci. 216 (2019) 67-74. https://doi.org/10.1016/j.lfs.2018.09.024.

[25]

D. Baci, A. Bruno, C. Cascini, et al., Acetyl-L-carnitine downregulates invasion (CXCR4/CXCL12, MMP-9) and angiogenesis (VEGF, CXCL8) pathways in prostate cancer cells: rationale for prevention and interception strategies, J. Exp. Clin. Cancer Res. 38 (2019) 464. https://doi.org/10.1186/s13046-019-1461-z.

[26]

F.Y. Chen, J. Zhou, N. Guo, et al., Curcumin retunes cholesterol transport homeostasis and inflammation response in M1 macrophage to prevent atherosclerosis, Biochem. Biophys. Res. Commun. 467 (2015) 872-878. https://doi.org/10.1016/j.bbrc.2015.10.051.

[27]

L. Badimon, G. Vilahur, Thrombosis formation on atherosclerotic lesions and plaque rupture, J. Intern. Med. 276 (2014) 618-632. https://doi.org/10.1111/joim.12296.

[28]

M.R. Bennett, S. Sinha, G.K. Owens, Vascular smooth muscle cells in atherosclerosis, Circ. Res. 118 (2016) 692-702. https://doi.org/10.1161/CIRCRESAHA.115.306361.

[29]

D. Wolf, K. Ley, Immunity and inflammation in atherosclerosis, Circ. Res. 124 (2019) 315-327. https://doi.org/10.1161/CIRCRESAHA.118.313591.

[30]

L. Groh, S.T. Keating, L.A.B. Joosten, et al., Monocyte and macrophage immunometabolism in atherosclerosis, Semin. Immunopathol. 40 (2017) 203-214. https://doi.org/10.1007/s00281-017-0656-7.

[31]

C. Cochain, A. Zernecke, Macrophages in vascular inflammation and atherosclerosis, Pflugers Arch. 469 (2017) 1-15. https://doi.org/10.1007/s00424-017-1941-y.

[32]

D.M. Rocha, A.P. Caldas, L.L. Oliveira, et al., Saturated fatty acids trigger TLR4-mediated inflammatory response, Atherosclerosis 244 (2016) 211-215. https://doi.org/10.1016/j.atherosclerosis.2015.11.015.

[33]

Z. Ye, L. Zhong, S. Zhu, et al., The P-selectin and PSGL-1 axis accelerates atherosclerosis via activation of dendritic cells by the TLR4 signaling pathway, Cell Death Dis. 10 (2019) 507. https://doi.org/10.1038/s41419-019-1736-5.

[34]

X. Liang, C. Xiu, M. Liu, et al., Platelet-neutrophil interaction aggravates vascular inflammation and promotes the progression of atherosclerosis by activating the TLR4/NF-κB pathway, J. Cell. Biochem. 120 (2019) 5612-5619. https://doi.org/10.1002/jcb.27844.

[35]

Y. Li, Y. Wang, Y. Chen, et al., Corilagin ameliorates atherosclerosis in peripheral artery disease via the toll-like receptor-4 signaling pathway in vitro and in vivo, Front. Immunol. 11 (2020) 1611. https://doi.org/10.3389/fimmu.2020.01611.

[36]

T. Liu, L. Zhang, D. Joo, et al., NF-kappaB signaling in inflammation, Signal. Transduct. Target Ther. 2 (2017) 17023. https://doi.org/10.1038/sigtrans.2017.23.

[37]

A. Oeckinghaus, S. Ghosh. The NF-kappaB family of transcription factors and its regulation, Cold Spring Harb. Perspect. Biol. 1 (2009) a000034. https://doi.org/10.1101/cshperspect.a000034.

[38]

P. Arun, M.S. Brown, R. Ehsanian, et al., Nuclear NF-kappaB p65 phosphorylation at serine 276 by protein kinase A contributes to the malignant phenotype of head and neck cancer, Clin. Cancer Res. 15 (2009) 5974-5984. https://doi.org/10.1158/1078-0432.CCR-09-1352.

[39]

S.C. Li, W.F. Hsu, J.S. Chang, et al., Combination of Lactobacillus acidophilus and Bifidobacterium animalis subsp. lactis shows a stronger anti-inflammatory effect than individual strains in HT-29 cells, Nutrients 11 (2019) 969. https://doi.org/10.3390/nu11050969.

[40]

K. Yang, J. Xu, M. Fan, et al., Lactate suppresses macrophage proinflammatory response to LPS stimulation by inhibition of YAP and NF-κB activation via GPR81-mediated signaling, Front. Immunol. 11 (2020) 587913. https://doi.org/10.3389/fimmu.2020.587913.

[41]

E. Sanchez-Rodriguez, A. Egea-Zorrilla, J. Plaza-Díaz, et al., The gut microbiota and its implication in the development of atherosclerosis and related cardiovascular diseases, Nutrients 12 (2020) 605. https://doi.org/10.3390/nu12030605.

[42]

V. Bodaghi-Namileh, M.R. Sepand, A. Omidi, et al., Acetyl-L-carnitine attenuates arsenic-induced liver injury by abrogation of mitochondrial dysfunction, inflammation, and apoptosis in rats, Environ. Toxicol. Pharmacol. 58 (2018) 11-20. https://doi.org/10.1016/j.etap.2017.12.005.

[43]

C.J. Rebouche, Kinetics, pharmacokinetics, and regulation of L-carnitine and acetyl-L-carnitine metabolism, Ann. N.Y. Acad. Sci. 1033 (2004) 30-41. https://doi.org/10.1196/annals.1320.003.

[44]

M.Z. Israr, D. Bernieh, A. Salzano, et al., Association of gut-related metabolites with outcome in acute heart failure, Am. Heart J.234 (2021) 71-80. https://doi.org/10.1016/j.ahj.2021.01.006.

[45]

N. Jamali-Raeufy, F. Alizadeh, Z. Mehrabi, et al., Acetyl-L-carnitine confers neuroprotection against lipopolysaccharide (LPS)-induced neuroinflammation by targeting TLR4/NF-κB, autophagy, inflammation and oxidative stress, Metab. Brain Dis. 36 (2021) 1391-1401. https://doi.org/10.1007/s11011-021-00715-6.

[46]

S. Wang, J. Xu, J. Zheng, et al., Anti-inflammatory and antioxidant effects of acetyl-L-carnitine on atherosclerotic rats, Med. Sci. Monit. 26 (2020) e920250. https://doi.org/10.12659/MSM.920250.

[47]

Y. Zheng, P. Lv, J. Huang, et al., GYY4137 exhibits anti-atherosclerosis effect in apolipoprotein E-/- mice via PI3K/Akt and TLR4 signalling, Clin. Exp. Pharmacol. Physiol. 47 (2020) 1231-1239. https://doi.org/10.1111/1440-1681.13298.

[48]

G.C. Ferreira, M.C. McKenna, L-carnitine and acetyl-L-carnitine roles and neuroprotection in developing brain, Neurochem. Res. 42 (2017) 1661-1675. https://doi.org/10.1007/s11064-017-2288-7.

Food Science and Human Wellness
Pages 813-822
Cite this article:
Liang X, Zhang Z, Tian X, et al. Metabolite acetyl-L-carnitine participates in Bifidobacterium animalis F1-7 to ameliorate atherosclerotic inflammation by downregulating theTLR4/NF-κB pathway. Food Science and Human Wellness, 2024, 13(2): 813-822. https://doi.org/10.26599/FSHW.2022.9250069

1535

Views

227

Downloads

7

Crossref

7

Web of Science

7

Scopus

0

CSCD

Altmetrics

Received: 21 June 2022
Revised: 25 July 2022
Accepted: 16 August 2022
Published: 25 September 2023
© 2024 Beijing Academy of Food Sciences. Publishing services by Tsinghua University Press.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return