AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2.6 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Open Access

The human-derived novel gut commensal Luoshenia tenuis regulates body weight and food intake in mice

Yu JiangaMengxuan DuaLisheng XiecMinzhi JiangaYaokun ZhangaMingxia BiaChang Liua,b( )Hongwei LiudShuangjiang Liua,b( )
State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
College of Life Science, Hebei University, Baoding 071000, China
State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China

Peer review under responsibility of Tsinghua University Press.

Show Author Information

Abstract

Many studies have revealed that gut microbes modulate host metabolism. In this study, we characterized the therapeutic effects of a novel gut commensal Luoshenia tenuis against host metabolic disorders. First, by in silico analysis, we demonstrated that the L. tenuis was prevalent in the gut microbiomes of healthy humans but were depleted specif ically in obesity cohorts. Further in vitro cultivation revealed that L. tenuis produced short chain fatty acids that were verif ied to modulate host metabolism and some other volatile metabolites to benef it hosts by anti-inf lammation and anti-tumor. Second, gavage of the L. tenuis signif icantly decreased the body weight gain and food intake of high-fat diet-feeding C57BL/6J mice, which was in parallel with the changed expression level of genes related to satiety and feeding behavior. We then performed the gavage trial using diet induced obese mice, and it revealed that the administration of L. tenuis alleviated signif icantly the abnormal glucose and lipid metabolisms and reduced the inf lammatory response. In summary, this study revealed a previously-unknown human gut commensal microbe that benef ited host metabolism, and set the stage for the development of novel next-generation probiotic applicable for treatment of obesity and related metabolic disorders.

References

[1]

C.Z. Yu, J. Wang, F. Wang, et al., Victims of Chinese famine in early life have increased risk of metabolic syndrome in adulthood, Nutrition 53 (2018) 20-25. https://doi.org/10.1016/j.nut.2017.12.013.

[2]

L.G. Bjerregaard, B.W. Jensen, L. Angquist, et al., Change in overweight from childhood to early adulthood and risk of type 2 diabetes, N. Engl. J. Med. 378 (2018) 1302-1312. https://doi.org/10.1056/NEJMoa1713231.

[3]

M. Di Cesare, J. Bentham, G.A. Stevens, et al., Trends in adult bodymass index in 200 countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19.2 million participants, Lancet 387 (2016) 1377-1396. https://doi.org/10.1016/s0140-6736(16)30054-x.

[4]

X.F. Pan, L. Wang, A. Pan, Epidemiology and determinants of obesity in China, Lancet Diabetes Endocrinol. 9 (2021) 373-392. https://doi.org/10.1016/s2213-8587(21)00045-0.

[5]

T.D. Muller, C. Clemmensen, B. Finan, et al., Anti-obesity therapy: from rainbow pills to polyagonists, Pharmacol. Rev. 70 (2018) 712-746. https://doi.org/10.1124/pr.117.014803.

[6]

T.D. Muller, M. Bluher, M.H. Tschop, et al., Anti-obesity drug discovery:advances and challenges, Nat. Rev. Drug Discov. 21 (2022) 201-223. https://doi.org/10.1038/s41573-021-00337-8.

[7]

K.D. Arunachalam, Role of bifidobacteria in nutrition, medicine and technology, Nutr. Res. 19 (1999) 1559-1597. https://doi.org/10.1016/S0271-5317(99)00112-8.

[8]

Y.L. Tsai, T.L. Lin, C.J. Chang, et al., Probiotics, prebiotics and amelioration of diseases, J. Biomed. Sci. 26 (2019). https://doi.org/10.1186/s12929-018-0493-6.

[9]

H. Koutnikova, B. Genser, M. Monteiro-Sepulveda, et al., Impact of bacterial probiotics on obesity, diabetes and non-alcoholic fatty liver disease related variables: a systematic review and meta-analysis of randomised controlled trials, BMJ Open 9 (2019) e017995. https://doi.org/10.1136/bmjopen-2017-017995.

[10]

H. Tamaki, H. Nakase, S. Inoue, et al., Efficacy of probiotic treatment with Bifidobacterium longum 536 for induction of remission in active ulcerative colitis: a randomized, double-blinded, placebo-controlled multicenter trial, Dig. Endosc. 28 (2016) 67-74. https://doi.org/10.1111/den.12553.

[11]

V.D. Palumbo, M. Romeo, A. Marino Gammazza, et al., The long-term effects of probiotics in the therapy of ulcerative colitis: a clinical study, Biomed. Pap. Med. Fac. Univ. Palacky Olomouc. Czech. Repub. 160 (2016) 372-377. https://doi.org/10.5507/bp.2016.044.

[12]

F. Bakhshimoghaddam, K. Shateri, M. Sina, et al., Daily consumption of synbiotic yogurt decreases liver steatosis in patients with nonalcoholic fatty liver disease: a randomized controlled clinical trial, J. Nutr. 148 (2018) 1276-1284. https://doi.org/10.1093/jn/nxy088.

[13]

R.K. Dhiman, B. Rana, S. Agrawal, et al., Probiotic VSL#3 reduces liver disease severity and hospitalization in patients with cirrhosis: a randomized, controlled trial, Gastroenterology 147 (2014) 1327-1337. https://doi.org/10.1053/j.gastro.2014.08.031.

[14]

A. Kurilshikov, C. Medina-Gomez, R. Bacigalupe, et al., Large-scale association analyses identify host factors influencing human gut microbiome composition, Nat. Genet. 53 (2021) 156-165. https://doi.org/10.1038/s41588-020-00763-1.

[15]

A. Everard, C. Belzer, L. Geurts, et al., Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity, Proc. Natl. Acad. Sci. U.S.A. 110 (2013) 9066-9071. https://doi.org/10.1073/pnas.1219451110.

[16]

H. Plovier, A. Everard, C. Druart, et al., A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice, Nat. Med. 23 (2017) 107-113. https://doi.org/10.1038/nm.4236.

[17]

C. Depommier, A. Everard, C. Druart, et al., Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: a proof-of-concept exploratory study, Nat. Med. 25 (2019) 1096-1103. https://doi.org/10.1038/s41591-019-0495-2.

[18]

J.K. Goodrich, J.L. Waters, A.C. Poole, et al., Human genetics shape the gut microbiome, Cell 159 (2014) 789-799. https://doi.org/10.1016/j.cell.2014.09.053.

[19]

W. Mazier, K. Le Corf, C. Martinez, et al., A new strain of Christensenella minuta as a potential biotherapy for obesity and associated metabolic diseases, Cells-Basel 10 (2021). https://doi.org/10.3390/cells10040823.

[20]

T. Le Roy, E.M.de Hase, M.van Hul, et al., Dysosmobacter welbionis is a newly isolated human commensal bacterium preventing diet-induced obesity and metabolic disorders in mice, Gut 71 (2022) 534-543. https://doi.org/10.1136/gutjnl-2020-323778.

[21]

S. Shilo, A. Godneva, M. Rachmiel, et al., The gut microbiome of adults with type 1 diabetes and its association with the host glycemic control, Diabetes Care 45 (2022) 555-563. https://doi.org/10.2337/dc21-1656.

[22]

S. Qiao, L. Bao, K. Wang, et al., Activation of a specific gut bacteroidesfolate-liver axis benefits for the alleviation of nonalcoholic hepatic steatosis, Cell Rep. 32 (2020) 108005. https://doi.org/10.1016/j.celrep.2020.108005.

[23]

K. Wang, M. Liao, N. Zhou, et al., Parabacteroides distasonis alleviates obesity and metabolic dysfunctions via production of succinate and secondary bile acids, Cell Rep. 26 (2019) 222-235. https://doi.org/10.1016/j.celrep.2018.12.028.

[24]

J. Sun, H. Li, Y. Jin, et al., Probiotic Clostridium butyricum ameliorated motor deficits in a mouse model of Parkinson’s disease via gut microbiota-GLP-1 pathway, Brain Behav. Immun. 91 (2021) 703-715. https://doi.org/10.1016/j.bbi.2020.10.014.

[25]

T. Tanoue, S. Morita, D.R. Plichta, et al., A defined commensal consortium elicits CD8 T cells and anti-cancer immunity, Nature 565 (2019) 600-605. https://doi.org/10.1038/s41586-019-0878-z.

[26]

C. Liu, M.X. Du, R. Abuduaini, et al., Enlightening the taxonomy darkness of human gut microbiomes with a cultured biobank, Microbiome 9 (2021) 119. https://doi.org/10.1186/s40168-021-01064-3.

[27]

D.E. Kleiner, E.M. Brunt, M.van Natta, et al., Design and validation of a histological scoring system for nonalcoholic fatty liver disease, Hepatology 41 (2005) 1313-1321. https://doi.org/10.1002/hep.20701.

[28]

T. Cui, M. Miksa, R. Wu, et al., Milk fat globule epidermal growth factor 8 attenuates acute lung injury in mice after intestinal ischemia and reperfusion, Am. J. Respir. Crit. Care Med. 181 (2010) 238-246. https://doi.org/10.1164/rccm.200804-625OC.

[29]

K.J. Livak, T.D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method, Methods 25 (2001) 402-408. https://doi.org/10.1006/meth.2001.1262.

[30]

D. Dai, J.Y. Zhu, C.Q. Sun, et al., GMrepo v2: a curated human gut microbiome database with special focus on disease markers and crossdataset comparison, Nucleic Acids Res. 50 (2022) D777-D784. https://doi.org/10.1093/nar/gkab1019.

[31]

J. Chong, P. Liu, G.Y. Zhou, et al., Using MicrobiomeAnalyst for comprehensive statistical, functional, and meta-analysis of microbiome data, Nat. Protoc. 15 (2020) 799-821. https://doi.org/10.1038/s41596-019-0264-1.

[32]

J. Chen, J.N. Tang, H. Shi, et al., Characteristics of volatile organic compounds produced from five pathogenic bacteria by headspace-solid phase micro-extraction/gas chromatography-mass spectrometry, J. Basic Microb. 57 (2017) 228-237. https://doi.org/10.1002/jobm.201600505.

[33]

R. Shchepin, D.H. Navarathna, R. Dumitru, et al., Influence of heterocyclic and oxime-containing farnesol analogs on quorum sensing and pathogenicity in Candida albicans, Bioorg. Med. Chem. 16 (2008) 1842-1848. https://doi.org/10.1016/j.bmc.2007.11.011.

[34]

G. Wei, L. Kong, J. Zhang, et al., Essential oil composition and antibacterial activity of Lindera nacusua (D. Don) Merr, Nat. Prod. Res. 30 (2016) 2704-2706. https://doi.org/10.1080/14786419.2015.1135145.

[35]

O.N. Avoseh, F.M. Mtunzi, I.A. Ogunwande, et al., Albizia lebbeck and Albizia zygia volatile oils exhibit anti-nociceptive and anti-inflammatory properties in pain models, J. Ethnopharmacol. 268 (2021) 113676. https://doi.org/10.1016/j.jep.2020.113676.

[36]

M.X. Li, C.L. Chen, C.S. Ling, et al., Cytotoxicity and structure-activity relationships of four alpha-N-heterocyclic thiosemicarbazone derivatives crystal structure of 2-acetylpyrazine thiosemicarbazone, Bioorg. Med. Chem. Lett. 19 (2009) 2704-2706. https://doi.org/10.1016/j.bmcl.2009.03.135.

[37]

W.J. Hunter, D.K. Manter, D.van der Lelie, Biotransformation of ferulic acid to 4-vinylguaiacol by Enterobacter soli and E. aerogenes, Curr. Microbiol. 65 (2012) 752-757. https://doi.org/10.1007/s00284-012-0222-4.

[38]

M.A. Schalla, Y. Tache, A. Stengel, Neuroendocrine peptides of the gut and their role in the regulation of food intake, Compr. Physiol. 11 (2021) 1679-1730. https://doi.org/10.1002/cphy.c200007.

[39]

R. Dore, R. Krotenko, J.P. Reising, et al., Nesfatin-1 decreases the motivational and rewarding value of food, Neuropsychopharmacol. 45 (2020) 1645-1655. https://doi.org/10.1038/s41386-020-0682-3.

[40]

Y.S. Lee, M. Riopel, P. Cabrales, et al., Hepatocyte-specific HIF-1α ablation improves obesity-induced glucose intolerance by reducing first-pass GLP-1 degradation, Sci. Adv. 5 (2019). https://doi.org/10.1126/sciadv.aaw4176.

[41]

L.T. Khuat, C.T. Le, C.S. Pai, et al., Obesity induces gut microbiota alterations and augments acute graft-versus-host disease after allogeneic stem cell transplantation, Sci. Transl. Med. 12 (2020). https://doi.org/10.1126/scitranslmed.aay7713.

[42]

R.M. Gadaleta, A. Moschetta, Metabolic messengers: fibroblast growth factor 15/19, Nat. Metab. 1 (2019) 588-594. https://doi.org/10.1038/s42255-019-0074-3.

[43]

J.W. Xiang, Z.Y. Zhang, H.Y. Xie, et al., Effect of different bile acids on the intestine through enterohepatic circulation based on FXR, Gut Microbes. 13 (2021). https://doi.org/10.1080/19490976.2021.1949095.

[44]

L. Dong, C. Qin, Y. Li, et al., Oat phenolic compounds regulate metabolic syndrome in high fat diet-fed mice via gut microbiota, Food Biosci. 50 (2022). https://doi.org/10.1016/j.fbio.2022.101946.

[45]

Y. Zhang, Y. Li, X. Ren, et al., The positive correlation of antioxidant activity and prebiotic effect about oat phenolic compounds, Food Chem. 402 (2023) 134231. https://doi.org/10.1016/j.foodchem.2022.134231.

[46]

M.A. Borton, A. Sabag-Daigle, J. Wu, et al., Chemical and pathogen-induced inflammation disrupt the murine intestinal microbiome, Microbiome 5 (2017) 47. https://doi.org/10.1186/s40168-017-0264-8.

[47]

S. Zhang, J. Zhao, F. Xie, et al., Dietary fiber-derived short-chain fatty acids: a potential therapeutic target to alleviate obesity-related nonalcoholic fatty liver disease, Obes. Rev. 22 (2021) e13316. https://doi.org/10.1111/obr.13316.

[48]

B. Dalile, L.van Oudenhove, B. Vervliet, et al., The role of short-chain fatty acids in microbiota-gut-brain communication, Nat. Rev. Gastroenterol. Hepatol. 16 (2019) 461-478. https://doi.org/10.1038/s41575-019-0157-3.

[49]

A.de Silva, S.R. Bloom, Gut hormones and appetite control: a focus on PYY and GLP-1 as therapeutic targets in obesity, Gut Liver 6 (2012) 10-20. https://doi.org/10.5009/gnl.2012.6.1.10.

[50]

Y. Li, Y. Peng, Y. Shen, et al., Dietary polyphenols: regulate the advanced glycation end products-RAGE axis and the microbiota-gut-brain axis to prevent neurodegenerative diseases, Crit. Rev. Food Sci. Nutr. (2022) 1-27. https://doi.org/10.1080/10408398.2022.2076064.

[51]

Y. Fan, O. Pedersen, Gut microbiota in human metabolic health and disease, Nat. Rev. Microbiol. 19 (2021) 55-71. https://doi.org/10.1038/s41579-020-0433-9.

[52]

N. Vallianou, T. Stratigou, G.S. Christodoulatos, et al., Probiotics, prebiotics, synbiotics, postbiotics, and obesity: current evidence, controversies, and perspectives, Curr. Obes. Rep. 9 (2020) 179-192. https://doi.org/10.1007/s13679-020-00379-w.

[53]

H. Li, Y. Jia, D. Weng, et al., Clostridium butyricum inhibits fat deposition via increasing the frequency of adipose tissue-resident regulatory T cells, Mol. Nutr. Food Res. 66 (2022) e2100884. https://doi.org/10.1002/mnfr.202100884.

[54]

H.S. Yoon, C.H. Cho, M.S. Yun, et al., Akkermansia muciniphila secretes a glucagon-like peptide-1-inducing protein that improves glucose homeostasis and ameliorates metabolic disease in mice, Nat. Microbiol. 6 (2021) 563-573. https://doi.org/10.1038/s41564-021-00880-5.

[55]

J.C. Wang, W.J. Xu, R.J. Wang, et al., The outer membrane protein Amuc_1100 of Akkermansia muciniphila promotes intestinal 5-HT biosynthesis and extracellular availability through TLR2 signalling, Food Funct. 12 (2021) 3597-3610. https://doi.org/10.1039/d1fo00115a.

Food Science and Human Wellness
Pages 830-841
Cite this article:
Jiang Y, Du M, Xie L, et al. The human-derived novel gut commensal Luoshenia tenuis regulates body weight and food intake in mice. Food Science and Human Wellness, 2024, 13(2): 830-841. https://doi.org/10.26599/FSHW.2022.9250071

1595

Views

365

Downloads

2

Crossref

2

Web of Science

2

Scopus

0

CSCD

Altmetrics

Received: 23 June 2022
Revised: 09 November 2022
Accepted: 09 November 2022
Published: 25 September 2023
© 2024 Beijing Academy of Food Sciences. Publishing services by Tsinghua University Press.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return