Highlights
• TGP ameliorates insulin resistance by activating PI3K/Akt pathway.
• TGP could alleviate hyperglycemia in mice with HFD/STZ-induced type 2 diabetes.
• TGP has the potential to regulate relative abundance of functional microbiota.
• TGP ameliorates insulin resistance by activating PI3K/Akt pathway.
• TGP could alleviate hyperglycemia in mice with HFD/STZ-induced type 2 diabetes.
• TGP has the potential to regulate relative abundance of functional microbiota.
Type 2 diabetes mellitus (T2DM) is a complex metabolic disease threatening human health. We investigated the effects of Tegillarca granosa polysaccharide (TGP) and determined its potential mechanisms in a mouse model of T2DM established through a high-fat diet and streptozotocin. TGP (5.1 × 103 Da) was composed of mannose, glucosamine, rhamnose, glucuronic acid, galactosamine, glucose, galactose, xylose, and fucose. It could signif icantly alleviate weight loss, reduce fasting blood glucose levels, reverse dyslipidemia, reduce liver damage from oxidative stress, and improve insulin sensitivity. RT-PCR and Western blotting indicated that TGP could activate the phosphatidylinositol-3-kinase/protein kinase B signaling pathway to regulate disorders in glucolipid metabolism and improve insulin resistance. TGP increased the abundance of Allobaculum, Akkermansia, and Bifi dobacterium, restored the microbiota abundance in the intestinal tracts of mice with T2DM, and promoted short-chain fatty acid production. This study provides new insights into the antidiabetic effects of TGP and highlights its potential as a natural hypoglycemic nutraceutical.
C.F. Chi, F.Y. Hu, B. Wang, et al., Antioxidant and anticancer peptides from the protein hydrolysate of blood clam (Tegillarca granosa) muscle, J. Funct. Foods 15 (2015) 301-313. https://doi.org/10.1016/j.jff.2015.03.045.
Y. Okamoto, K. Higashi, R.J. Linhardt, et al., Comprehensive analysis of glycosaminoglycans from the edible shellfish, Carbohydr. Polym. 184 (2018) 269-276. https://doi.org/10.1016/j.carbpol.2017.12.076.
L. Zhu, W. Li, Z. Fan, et al., Immunomodulatory activity of polysaccharide from Arca granosa Linnaeus via TLR4/MyD88/NFκB and TLR4/TRIF signaling pathways, J. Funct. Foods 84 (2021) 104579. https://doi.org/10.1016/j.jff.2021.104579.
H. Sun, P. Saeedi, S. Karuranga, et al., IDF diabetes Atlas: global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045, Diabetes Res. Clin. Pract. (2021) 109119. https://doi.org/10.1016/j.diabres.2021.109119.
H. Li, Q. Fang, Q. Nie, et al., Hypoglycemic and hypolipidemic mechanism of tea polysaccharides on type 2 diabetic rats via gut microbiota and metabolism alteration, J. Agric. Food Chem. 68(37) (2020) 10015-10028. https://doi.org/10.1021/acs.jafc.0c01968.
S. Carbone, D.L. Dixon, L.F. Buckley, et al., Glucose-lowering therapies for cardiovascular risk reduction in type 2 diabetes mellitus: state-of-the-art review, Mayo Clin. Proc. 93(11) (2018) 1629-1647. https://doi.org/10.1016/j.mayocp.2018.07.018.
A.A. Tahrani, A.H. Barnett, C.J. Bailey, Pharmacology and therapeutic implications of current drugs for type 2 diabetes mellitus, Nat. Rev. Endocrinol. 12(10) (2016) 566-592. https://doi.org/10.1038/nrendo.2016.86.
M. Siavash, M. Tabbakhian, A.M. Sabzghabaee, et al., Severity of gastrointestinal side effects of metformin tablet compared to metformin capsule in type 2 diabetes mellitus patients, J. Res. Pharm. Pract. 6(2) (2017) 73-76. https://doi.org/10.4103/jrpp.JRPP_17_2.
A. Singh, S. Dwivedi, Study of adverse drug reactions in patients with diabetes attending a tertiary care hospital in New Delhi, India, Indian J. Med. Res. 145(2) (2017) 247-249. https://doi.org/10.4103/ijmr.IJMR_109_16
S. Hu, J. Wang, J. Wang, et al., Renoprotective effect of fucoidan from Acaudina molpadioides in streptozotocin/high fat diet-induced type 2 diabetic mice, J. Funct. Foods 31 (2017) 123-130. https://doi.org/10.1016/j.jff.2017.01.031.
A.T. Getachew, H.J. Lee, Y.J. Cho, et al., Optimization of polysaccharides extraction from Pacific oyster (Crassostrea gigas) using subcritical water:structural characterization and biological activities, Int. J. Biol. Macromol. 121 (2019) 852-861. https://doi.org/10.1016/j.ijbiomac.2018.10.091.
T. Wang, X. Li, B. Zhou, et al., Antidiabetic activity in type 2 diabetic mice and α-glucosidase inhibitory, antioxidant and anti-inflammatory potential of chemically profiled pear peel and pulp extracts (Pyrus spp.), J. Funct. Foods 13 (2015) 276-288. https://doi.org/10.1016/j.jff.2014.12.049.
Y. Huang, T. Zhou, Y. Zhang, et al., Antidiabetic activity of a Flavonoid-Rich extract from flowers of Wisteria sinensis in type 2 diabetic mice via activation of the IRS-1/PI3K/Akt/GLUT4 pathway, J. Funct. Foods 77 (2021) 104338. https://doi.org/10.1016/j.jff.2020.104338.
X. Zhou, X. Xiang, Y. Zhou, et al., Protective effects of Antarctic krill oil in dextran sulfate sodium-induced ulcerative colitis mice, J. Funct. Foods 79 (2021) 104394. https://doi.org/10.1016/j.jff.2021.104394.
G. Wu, Z. Bai, Y. Wan, et al., Antidiabetic effects of polysaccharide from azuki bean (Vigna angularis) in type 2 diabetic rats via insulin/PI3K/AKT signaling pathway, Food Hydrocolloids 101 (2020) 105456. https://doi.org/10.1016/j.foodhyd.2019.105456.
Y. Zhang, G. Zhou, Y. Peng, et al., Anti-hyperglycemic and antihyperlipidemic effects of a special fraction of Luohanguo extract on obese T2DM rats, J. Ethnopharmacol. 247 (2020) 112273. https://doi.org/10.1016/j.jep.2019.112273.
X. Si, Z. Zhou, P. Strappe, et al., A comparison of RS4-type resistant starch to RS2-type resistant starch in suppressing oxidative stress in highfat-diet-induced obese rats, Food Funct. 8(1) (2016) 232-240. https://doi.org/10.1039/c6fo01225f.
R.A. Defronzo, E. Ferrannini, L. Groop, et al., Type 2 diabetes mellitus, Nat. Rev. Dis. Primers 1(41) (2015) 15019. https://doi.org/10.1038/nrdp.2015.19.
U. Rashid, M.R. Khan, M. Sajid, Antioxidant, anti-inflammatory and hypoglycemic effects of Fagonia olivieri DC on STZ-nicotinamide induced diabetic rats -In vivo and in vitro study, J. Ethnopharmacol. 242 (2019) 112038. https://doi.org/10.1016/j.jep.2019.112038.
S. Tateya, F. Kim, Y. Tamori, Recent advances in obesity-induced inflammation and insulin resistance, Front. Endocrinol. (Lausanne) 4 (2013) 93. https://doi.org/10.3389/fendo.2013.00093.
J. Zhu, M. Wu, H. Zhou, et al., Liubao brick tea activates the PI3K-Akt signaling pathway to lower blood glucose, metabolic disorders and insulin resistance via altering the intestinal flora, Food Res. Int. 148 (2021) 110594. https://doi.org/10.1016/j.foodres.2021.110594.
L. Wang, L. Chen, J. Li, et al., Structural elucidation and immune-enhancing activity of peculiar polysaccharides fractioned from marine clam Meretrix meretrix (Linnaeus), Carbohydr. Polym. 201 (2018) 500-513. https://doi.org/10.1016/j.carbpol.2018.08.106.
R. Zhang, X. Zhang, Y. Tang, et al., Composition, isolation, purification and biological activities of Sargassum fusiforme polysaccharides: a review, Carbohydr. Polym. 228 (2020) 115381. https://doi.org/10.1016/j.carbpol.2019.115381.
S.Y. Xu, X. Huang, K.L. Cheong, Recent advances in marine algae polysaccharides: isolation, structure, and activities, Mar. Drugs 15(12) (2017) 388. https://doi.org/10.3390/md15120388.
J. Liu, X. Zhu, L. Sun, et al., Characterization and antidiabetic evaluation of sulfated polysaccharide from Spirulina platensis, J. Funct. Foods 95 (2022) 105155. https://doi.org/10.1016/j.jff.2022.105155.
Z. Liu, Y. Zhang, C. Ai, et al., An acidic polysaccharide from Patinopecten yessoensis skirt prevents obesity and improves gut microbiota and metabolism of mice induced by high-fat diet, Food Res. Int. 154 (2022) 110980. https://doi.org/10.1016/j.foodres.2022.110980.
R.B. Kasetti, M.D. Rajasekhar, V.K. Kondeti, et al., Antihyperglycemic and antihyperlipidemic activities of methanol:water (4:1) fraction isolated from aqueous extract of Syzygium alternifolium seeds in streptozotocin induced diabetic rats, Food Chem. Toxicol. 48(4) (2010) 1078-1084. https://doi.org/10.1016/j.fct.2010.01.029.
M.P. Hermans, S.A. Ahn, S. Sadikot, et al., High rates of atherogenic dyslipidemia, β-cell function loss, and microangiopathy among Turkish migrants with T2DM, Diabetes Metab. Syndr. 13(1) (2019) 716-720. https://doi.org/10.1016/j.dsx.2018.11.049.
A.K. Patar, A. Sharma, D. Syiem, et al., Chlorophyllin supplementation modulates hyperglycemia-induced oxidative stress and apoptosis in liver of streptozotocin-administered mice, Biofactors 44(5) (2018) 418-430. https://doi.org/10.1002/biof.1438.
T. Ito, N. Yoshikawa, H. Ito, et al., Impact of taurine depletion on glucose control and insulin secretion in mice, J. Pharmacol. Sci. 129(1) (2015) 59-64. https://doi.org/10.1016/j.jphs.2015.08.007
H.B. Bhatt, R.J. Smith, Fatty liver disease in diabetes mellitus, Hepatobiliary Surg. Nutr. 4(2) (2015) 101-108. https://doi.org/10.3978/j.issn.2304-3881.2015.01.03.
K. Wang, H. Wang, Y. Liu, et al., Dendrobium officinale polysaccharide attenuates type 2 diabetes mellitus via the regulation of PI3K/Akt-mediated glycogen synthesis and glucose metabolism, J. Funct. Foods 40 (2018) 261-271. https://doi.org/10.1016/j.jff.2017.11.004.
C.J. He, L.Q. Ma, M.S. Iqbal, et al., Veratrilla baillonii Franch exerts antidiabetic activity and improves liver injury through IRS/PI3K/AKT signaling pathways in type 2 diabetic db/db mice, J. Funct. Foods 75 (2020) 104204. https://doi.org/10.1016/j.jff.2020.104204.
V. Krishnan, R. Rani, M. Awana, et al., Role of nutraceutical starch and proanthocyanidins of pigmented rice in regulating hyperglycemia: enzyme inhibition, enhanced glucose uptake and hepatic glucose homeostasis using in vitro model, Food Chem. 335 (2021) 127505. https://doi.org/10.1016/j.foodchem.2020.127505.
B. Thorens, GLUT2, glucose sensing and glucose homeostasis, Diabetologia 58(2) (2015) 221-232. https://doi.org/10.1007/s00125-014-3451-1.
Y. Zhang, N.Q. Huang, F. Yan, et al., Diabetes mellitus and Alzheimer’s disease: GSK-3β as a potential link, Behav. Brain Res. 339 (2018) 57-65. https://doi.org/10.1016/j.bbr.2017.11.015.
S. Lamichane, B. Dahal Lamichane, S.M. Kwon, Pivotal roles of peroxisome proliferator-activated receptors (PPARs) and their signal cascade for cellular and whole-body energy homeostasis, Int. J. Mol. Sci. 19(4) (2018). https://doi.org/10.3390/ijms19040949.
G.den Besten, A. Bleeker, A. Gerding, et al., Short-chain fatty acids protect against high-fat diet-induced obesity via a PPARγ-dependent switch from lipogenesis to fat oxidation, Diabetes 64(7) (2015) 2398-2408. https://doi.org/10.2337/db14-1213.
G. Zhao, X. Hou, X. Li, et al., Metabolomics analysis of alloxan-induced diabetes in mice using UPLC-Q-TOF-MS after Crassostrea gigas polysaccharide treatment, Int. J. Biol. Macromol. 108 (2018) 550-557. https://doi.org/10.1016/j.ijbiomac.2017.12.057.
Y. Danrong, H. Yuee, C. Jinquan, et al., Impact of crude polysaccharides from abalone viscera on the physiological function of diabetic mice, Xiandai Shipin Keji 30(04) (2014) 26-33. https://doi.org/10.13982/j.mfst.1673-9078.2014.04.014.
Y. Zhang, Y. Peng, L. Zhao, et al., Regulating the gut microbiota and SCFAs in the faeces of T2DM rats should be one of antidiabetic mechanisms of mogrosides in the fruits of Siraitia grosvenorii, J. Ethnopharmacol. 274 (2021) 114033. https://doi.org/10.1016/j.jep.2021.114033.
G. Yang, J. Wei, P. Liu, et al., Role of the gut microbiota in type 2 diabetes and related diseases, Metabolism 117 (2021) 154712. https://doi.org/10.1016/j.metabol.2021.154712.
F.S. Thomaz, K.I. Tomsett, S.K. Panchal, et al., Wasabi supplementation alters the composition of the gut microbiota of diet-induced obese rats, J. Funct. Foods 67 (2020) 103868. https://doi.org/10.1016/j.jff.2020.103868.
N. Ottman, M. Davids, M. Suarez-Diez, et al., Genome-scale model and omics analysis of metabolic capacities of Akkermansia muciniphila reveal a preferential mucin-degrading lifestyle, Appl. Environ. Microbiol. (2017) e01014-17. https://doi.org/10.1128/AEM.01014-17.
H.J. Flint, S.H. Duncan, K.P. Scott, et al., Links between diet, gut microbiota composition and gut metabolism, Proc. Nutr. Soc. 74(1) (2015) 13-22. https://doi.org/10.1017/S0029665114001463.
R. Zhong, L. Chen, Y. Liu, et al., Antidiabetic effect of aloin via JNK-IRS1/PI3K pathways and regulation of gut microbiota, Food Sci. Human Wellness 11(1) (2022) 189-198. https://doi.org/10.1016/j.fshw.2021.07.019.
K. Zhang, X. Qin, J. Qiu, et al., Desulfovibrio desulfuricans aggravates atherosclerosis by enhancing intestinal permeability and endothelial TLR4/NF-κB pathway in Apoe mice, Genes Dis. (2021). https://doi.org/10.1016/j.gendis.2021.09.007.
S. Yue, D. Zhao, C. Peng, et al., Effects of theabrownin on serum metabolites and gut microbiome in rats with a high-sugar diet, Food Funct. 10(11) (2019) 7063-7080. https://doi.org/10.1039/c9fo01334b.