AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (7.5 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Open Access

Lactobacillus plantarum AR113 attenuates liver injury in D-galactose-induced aging mice via the inhibition of oxidative stress and endoplasmic reticulum stress

Yongjun XiaaYujie GongaXiangna LinbYijin YangaXin SongaGuangqiang WangaZhiqiang XiongaYangyang QiancZhuan LiaocHui ZhangaLianzhong Aia,( )
School of Health Science and Engineering, Shanghai Engineering Research Center of Food Microbiology, University of Shanghai for Science and Technology, Shanghai 200093, China
College of Life Sciences, Linyi University, Linyi 276000, China
Department of Gastroenterol., Digestive Endoscopy Center, Changhai Hospital, Shanghai 200082, China

Peer review under responsibility of Tsinghua University Press.

Show Author Information

Highlights

• AR113 could promotes endogenous GSH synthesis in D-galactose induced aging mice.

• AR113 could activates the Nrf2/Keap1 pathway in D-galactose induced aging mice.

• AR113 could significantly inhibits ER stress and cell apoptotic pathways.

• AR113 inhibit aging injury through dual inhibition of ER stress and oxidative stress.

Graphical Abstract

Abstract

Probiotics could effectively eliminate excess reactive oxygen species (ROS) generated during aging or lipid metabolism disorders, but their mechanism is unclear. The major purpose of this study was to investigate the mechanism of Lactiplantibacillus plantarun AR113 alleviating oxidative stress injury in the D-galactose induced aging mice. The result showed that pretreatment with L. plantarun AR113 significantly relieving H2O2 induced cytotoxicity in HepG2 cells by maintain cell membrane integrity and increasing antioxidant enzyme activities. In D-galactose induced aging mice, L. plantarun AR113 could significantly attenuate liver damage and inf lammatory infiltration by promoting endogenous glutathione (GSH) synthesis and activating the Nrf2/Keap1 signaling pathway in mice, and increasing the expression of regulated phase Ⅱ detoxification enzymes and antioxidant enzymes. Further analysis shown that gavage of L. plantarun AR113 could significantly reduce the expression of G protein-coupled receptor 78 (GPR78) and C/EBP homologous protein(CHOP) proteins, and promote the restoration of endoplasmic reticulum (ER) homeostasis, thereby activating cell anti-apoptotic pathways. These results were also confirmed in H2O2-treated HepG2 experiments. It indicated that L. plantarun AR113 could inhibit D-galactose-induced liver injury through dual inhibition of ER stress and oxidative stress. L. plantarun AR113 have good application potential in anti-aging and alleviating metabolic disorders.

References

[1]

M. Alia, R. Mateos, S. Ramos, et al., Influence of quercetin and rutin on growth and antioxidant defense system of a human hepatoma cell line (HepG2), Eur. J. Nutr. 45(1) (2006) 19-28. https://doi.org/10.1007/s00394-005-0558-7.

[2]

T.S. Kang, D.R. Korber, T. Tanaka, Influence of oxygen on NADH recycling and oxidative stress resistance systems in Lactobacillus panis PM1, AMB Express 3(1) (2013) 10. https://doi.org/10.1186/2191-0855-3-10.

[3]

R. Krishnaswamy, S.N. Devaraj, V.V. Padma, Lutein protects HT-29 cells against deoxynivalenol-induced oxidative stress and apoptosis: prevention of NF-kappaB nuclear localization and down regulation of NF-kappaB and cyclo-oxygenase-2 expression, Free. Radic. Biol. Med. 49(1) (2010) 50-60. https://doi.org/10.1016/j.freeradbiomed.2010.03.016.

[4]

R. Scherz-Shouval, Z. Elazar, Regulation of autophagy by ROS: physiology and pathology, Trends. Biochem. Sci. 36(1) (2011) 30-38. https://doi.org/10.1016/j.tibs.2010.07.007.

[5]

E. Kobatake, H. Nakagawa, T. Seki, et al., Protective effects and functional mechanisms of Lactobacillus gasseri SBT2055 against oxidative stress, PLoS ONE 12(5) (2017) e0177106. https://doi.org/10.1371/journal.pone.0177106.

[6]

J.J. Su, X.Q. Wang, W.J. Song, et al., Reducing oxidative stress and hepatoprotective effect of the water extracts from Pu-erh tea on rats fed with high-fat diet, Food Sci. Hum. Well. 5(4) (2016) 199-206. https://doi.org/10.1016/j.fshw.2016.09.002.

[7]

A. Popolo, G. Autore, A. Pinto, et al., Oxidative stress in patients with cardiovascular disease and chronic renal failure, Free Radic. Res. 47(5) (2013) 346-356. https://doi.org/10.3109/10715762.2013.779373.

[8]

B.J. Song, M. Akbar, M.A. Abdelmegeed, et al., Mitochondrial dysfunction and tissue injury by alcohol, high fat, nonalcoholic substances and pathological conditions through post-translational protein modifications, Redox Biol. 3 (2014) 109-123. https://doi.org/10.1016/j.redox.2014.10.004.

[9]

W.H. Lv, T. Zhao, K. Pantopoulos, et al., Manganese (Mn)-induced oxidative stress contributes to intestinal lipid deposition via the deacetylation of PPARγ at K339 by SIRT1, Antioxid. Redox Sign. 37 (2022) 417-436. https://doi.org/10.1089/ars.2021.0190.

[10]

X.J. Wang, J.D. Hayes, C.J. Henderson, et al., Identification of retinoic acid as an inhibitor of transcription factor Nrf2 through activation of retinoic acid receptor alpha, Proc. Natl. Acad. Sci. U.S.A. 104(49) (2007) 19589-19594. https://doi.org/10.1073/pnas.0709483104.

[11]

C. Espinosa-Diez, V. Miguel, D. Mennerich, et al., Antioxidant responses and cellular adjustments to oxidative stress, Redox Biol. 6 (2015) 183-197. https://doi.org/10.1016/j.redox.2015.07.008.

[12]

P.K. Leong, P.Y. Chiu, N. Chen, et al., Schisandrin B elicits a glutathione antioxidant response and protects against apoptosis via the redox-sensitive ERK/Nrf2 pathway in AML12 hepatocytes, Free Radic. Res. 45(4) (2011) 483-495. https://doi.org/10.3109/10715762.2010.550917.

[13]

N.M. Abu-Elsaad, A.G. Abd-Elhameed, A. El-Karef, et al., Yogurt containing the probacteria Lactobacillus acidophilus combined with natural antioxidants mitigates doxorubicin-induced cardiomyopathy in rats, J. Med. Food. 18(9) (2015) 950-959. https://doi.org/doi:10.1089/jmf.2014.0104.

[14]

P.J. Tian, R.Y. Zou, L.Y. Wang, et al., Multi-probiotics ameliorate major depressive disorder and accompanying gastrointestinal syndromes via serotonergic system regulation, J. Adv. Res. 5 (2022). https://doi.org/10.1016/j.jare.2022.05.003.

[15]

D.E. Lee, C.S. Huh, J. Ra, et al., Clinical evidence of effects of Lactobacillus plantarum HY7714 on skin aging: a randomized, double blind, placebocontrolled study, J. Microbiol. Biotechnol. 25(12) (2015) 2160-2168. https://doi.org/10.4014/jmb.1509.09021.

[16]

J.A. Marazza, J.G. LeBlanc, G.S. Giori, et al., Soymilk fermented with Lactobacillus rhamnosus CRL981 ameliorates hyperglycemia, lipid profiles and increases antioxidant enzyme activities in diabetic mice, J. Funct. Foods 5(4) (2013) 1848-1853. https://doi.org/10.1016/j.jff.2013.09.005.

[17]

T. Feng, J. Wang, Oxidative stress tolerance and antioxidant capacity of lactic acid bacteria as probiotic: a systematic review, Gut Microbes. 12(1) 2020 1801944. https://doi.org/10.1080/19490976.2020.1801944.

[18]

F. Archibald, I. Fridovich, Manganese and defences against oxygen toxicity in Lactobacillus plantarum, J. Bacteriol. 145 (1981) 442-451. https://doi.org/10.1128/JB.145.1.442-451.1981.

[19]

V.C. Culotta, M.J. Daly, Manganese complexes: diverse metabolic routes to oxidative stress resistance in prokaryotes and yeast, Antioxid. Redox. Sign. 19 (2013) 933-944. https://doi.org/10.1089/ars.2012.5093.

[20]

Q. Shen, N. Shang, P. Li, In vitro and in vivo antioxidant activity of Bifidobacterium animalis 01 isolated from centenarians, Curr. Microbiol. 62 (2011) 1097-1103. https://doi.org/10.1007/s00284-010-9827-7.

[21]

M.Y. Lin, F.J. Chang, Antioxidative effect of intestinal bacteria Bifidobacterium longum ATCC 15708 and Lactobacillus acidophilus ATCC 4356, Dig. Dis. Sci. 45 (2000) 1617-1622. https://doi.org/10.1023/a:1005577330695.

[22]

W. Li, J. Ji, X.H. Chen, et al., Structural elucidation and antioxidant activities of exopolysaccharides from Lactobacillus helveticus MB2-1, Carbohyd. Poly. 102(1) (2014) 351-359. https://doi.org/10.1016/j.carbpol.2013.11.053.

[23]

Y. Suzuki, M. Kosaka, K. Shindo, et al., Identification of antioxidants produced by Lactobacillus plantarum, Biosci. Biotech. Bioch. 77(6) (2013) 1299-1302. https://doi.org/10.1271/bbb.121006.

[24]

X.N. Lin, Y.J. Xia, G.Q. Wang, et al., Lactobacillus plantarum AR501 alleviates the oxidative stress of D-galactose-induced aging mice liver by upregulation of Nrf2-mediated antioxidant enzyme expression, J. Food. Sci. 83(7) (2018) 1990-1998. https://doi.org/10.1111/1750-3841.14200.

[25]

X.N. Lin, Y.J. Xia, G.Q. Wang, et al., Lactic acid bacteria with antioxidant activities alleviating oxidized oil induced hepatic injury in mice, Front Microbiol. 9 (2018) 2684. https://doi.org/10.3389/fmicb.2018.02684.

[26]

S.A. Aherne, J.P. Kerry, N.M. O’Brien, Effects of plant extracts on antioxidant status and oxidant-induced stress in Caco-2 cells, Br. J. Nutr. 97(2) (2007) 321-328. https://doi.org/10.1017/S0007114507250469.

[27]

G. Yi, J.U. Din, F. Zhao, et al., Effect of soybean peptides against hydrogen peroxide induced oxidative stress in HepG2 cells via Nrf2 signaling, Food Funct. 11 (2020) 2725-2737. https://doi.org/10.1039/C9FO01466G.

[28]

X. Guo, P. Cao, X. Lian, et al., The neuroprotective effect of phillyrin in intracerebral hemorrhagic mice is produced by activation of the Nrf2 signaling pathway, Eur. J. Pharmacol. 909 (2021) 174439. https://doi.org/10.1016/j.ejphar.2021.174439.

[29]

K. Se-Jin, P. Channy, N.L. Joon, et al., Erdosteine protects HEI-OC1 auditory cells from cisplatin toxicity through suppression of inflammatory cytokines and induction of Nrf2 target proteins, Toxicol. Appl. Pharmacol. 288(2) (2015) 192-202. https://doi.org/10.1016/j.taap.2015.07.014.

[30]

M. Alía, R. Mateos, S. Ramos, et al., Influence of quercetin and rutin on growth and antioxidant defense system of a human hepatoma cell line (HepG2), Eur. J. Nutr. 45(1) (2006) 19-28. https://doi.org/10.1007/s00394-005-0558-7.

[31]

O.W. Griffith, Biologic and pharmacologic regulation of mammalian glutathione synthesis, Free Radic. Biol. Med. 27 (1999) 922-935. https://doi.org/10.1016/S0891-5849(99)00176-8.

[32]

J.W Kaspar, S.K. Niture, A.K. Jaiswal, Nrf2:INrf2 (Keap1) signaling in oxidative stress, Free Radic. Biol. Med. 47(9) (2009) 1304-1309. https://doi.org/10.1016/j.freeradbiomed.2009.07.035.

[33]

V. Paul, S. Dronamraju, R.K. Mohanram, Crosstalk between endoplasmic reticulum stress and oxidative stress: focus on protein disulfide isomerase and endoplasmic reticulum oxidase, Eur. J. Pharmacol. 892 (2020) 96-106. https://doi.org/10.1016/j.ejphar.2020.173749.

[34]

W.F. Qin, Y.X. Xia, Z.Q. Xiong, et al., The intestinal colonization of Lactiplantibacillus plantarum AR113 is influenced by its mucins and intestinal environment, Food Res. Int. 157 (2022) 111328. https://doi.org/10.1016/j.foodres.2022.111382.

[35]

Y.C. Yu, P. Paragomi, R.W. Wang, et al., Composite dietary antioxidant index and the risk of colorectal cancer: findings from the Singapore Chinese Health Study, Int. J. Cancer. 2022. https://doi.org/10.1002/ijc.33925.

[36]

S. Talebi, S.M. Ghoreishy, A. Jayedi, et al., Dietary antioxidants and risk of Parkinson’s disease: a systematic review and dose-response meta-analysis of observational studies, Adv. Nutr. nmac001 (2022). https://doi.org/10.1093/advances/nmac001.

[37]

I. Gusarov, I. Shamovsky, B. Pani, et al., Dietary thiols accelerate aging of C. elegans, Nat. Commun. 12(1) (2021) 1-14. https://doi.org/10.1038/s41467-021-24634-3.

[38]

C. Wiel, K.L. Gal, M.X. Ibrahim, et al., BACH1 stabilization by antioxidants stimulates lung cancer metastasis, Cell 178 (2019) 1-16. https://doi.org/10.1016/j.cell.2019.06.005.

[39]

C. Susana, Mitochondrial uncoupling, ROS generation and cardioprotection, BBA-Bioenergetics 1859(9) (2018) 940-950. https://doi.org/10.1016/j.bbabio.2018.05.019.

[40]

G. Aviello, U.G. Knaus, NADPH oxidases and ROS signaling in the gastrointestinal tract, Muscosal Immunol. 11(4) (2018) 1011-1023. https://doi.org/10.1038/s41385-018-0021-8.

[41]

S.A. Aherne, J.P. Kerry, N.M. O’Brien, Effects of plant extracts on antioxidant status and oxidant-induced stress in Caco-2 cells, Br. J. Nutr. 97(2) (2007) 321-328. https://doi.org/10.1017/S0007114507250469.

[42]

J.K. Kim, H.D. Jang, 6-shogaol attenuates H2O2-induced oxidative stress via upregulation of Nrf2-mediated gamma-glutamylcysteine synthetase and heme oxygenase expression in HepG2 cells, Food Sci. Biotechnol. 25(1) (2016) 319-327. https://doi.org/10.1007/s10068-016-0045-3

[43]

P. Miah, S.B.S. Mohona, M.M. Rahman, et al., Supplementation of cumin seed powder prevents oxidative stress, hyperlipidemia and non-alcoholic fatty liver in high fat diet fed rats, Biomed. Pharmacother. 141 (2021) 111908. https://doi.org/10.1016/j.biopha.2021.111908.

[44]

X.N. Lin, Y.J. Xia, Y.J. Yang, et al., Probiotic characteristics of Lactobacillus plantarum AR113 and its molecular mechanism of antioxidant, LWT-Food Sci. Technol. 126 (2020) 109278. https://doi.org/10.1016/j.lwt.2020.109278.

[45]

T. Kullisaar, E. Songisepp, M. Aunapuu, et al., Complete glutathione system in probiotic Lactobacillus fermentum ME-3, Prikl. Biokhim. Mikrobiol. 46 (2010) 527-531. https://doi.org/10.1134/S0003683810050030.

[46]

J. Zhang, S. Wang, Z. Zeng, et al., The complete genome sequence of Bifidobacterium animalis subsp. lactis 01 and its integral components of antioxidant defense system, 3 Biotech. 9(352) (2019). https://doi.org/10.1007/s13205-019-1890-6.

[47]

W. Zhang, H. Ji, D. Zhang, et al., Complete genome sequencing of Lactobacillus plantarum ZLP001, a potential probiotic that enhances intestinal epithelial barrier function and defense against pathogens in pigs, Front. Physiol. 9 (2018) 1689. https://doi.org/10.3389/fphys.2018.01689.

[48]

A. Mws, A. Yc, A. Ktk, et al., Probiotic characteristics of Lactobacillus brevis B13-2 isolated from kimchi and investigation of antioxidant and immune-modulating abilities of its heat-killed cells, LWT-Food Sci. Tech. 128 (2020) 109452 https://doi.org/10.1016/j.lwt.2020.109452.

[49]

M. Dawood, F.I. Magouz, M. Salem, et al., Modulation of digestive enzyme activity, blood health, oxidative responses and growth-related gene expression in GIFT by heat-killed Lactobacillus plantarum (L-137), Aquaculture 505 (2019) 127-136. https://doi.org/10.1016/j.aquaculture.2019.02.053.

[50]

R.M. Jones, C. Desai, T.M. Darby, et al., Lactobacilli modulate epithelial cytoprotection through the Nrf2 pathway, Cell Rep. 12 (2015) 1217-1225. https://doi.org/10.1016/j.celrep.2015.07.042.

[51]

Z. Zhao, C. Wang, L. Zhang, et al., Lactobacillus plantarum NA136 improves the non-alcoholic fatty liver disease by modulating the AMPK/Nrf2 pathway, Appl. Microbiol. Biotechnol. 103 (2019) 5843-5850. https://doi.org/10.1007/s00253-019-09703-4.

[52]

Y. Qian, J. Zhang, X. Zhou, et al., Lactobacillus plantarum CQPC11 isolated from Sichuan pickled cabbages antagonizesd-galactose-induced oxidation and aging in mice, Molecules 23 (2018) 3026. https://doi.org/10.3390/molecules23113026.

[53]

L.X. Wang, K. Liu, D.W. Gao, et al., Protective effects of two Lactobacillus plantarum strains in hyperlipidemic mice, World J. Gastroenterol. 19 (2013) 3150-3156. https://doi.org/10.3748/wjg.v19.i20.3150.

[54]

H. Xu, J. Wang, J. Cai, et al., Protective Effect of Lactobacillus rhamnosus GG and its supernatant against myocardial dysfunction in obese mice exposed to intermittent hypoxia is associated with the activation of Nrf2 pathway, Int. J. Biol. Sci. 15(11) (2019) 2471-2483. https://doi.org/10.7150/ijbs.36465.

[55]

G.Z. Sun, Z.M. Zhao, J.D. Lang, et al., Nrf2 loss of function exacerbates endoplasmic reticulum stress-induced apoptosis in TBI mice, Neurosci. Lett. 770 (2022) 136400. https://doi.org/10.1016/j.neulet.2021.136400.

[56]

L. Morgan, M. Antenos, G.M. Kirby, Nrf2-mediated induction of cyp2a5 partially protects against reductive endoplasmic reticulum stress in mouse hepatocytes, Toxicology 471 (2022) 153162. https://doi.org/10.1016/j.tox.2022.153162.

[57]

T.J. Ma, D.H. Lan, S.Z. He, et al., Nrf2 protects human lens epithelial cells against H2O2-induced oxidative and ER stress: The ATF4 may be involved, Exp. Eye Res. 169 (2018) 28-37. https://doi.org/10.1016/j.exer.2018.01.018.

[58]

C.S. Lee, D.V. Ho, J.Y. Chan, Nuclear factor-erythroid 2-related factor 1 regulates expression of proteasome genes in hepatocytes and protects against endoplasmic reticulum stress and steatosis in mice, FEBS J. 280(15) (2013) 3609-3620. https://doi.org/10.1111/febs.12350.

[59]

W.S. Cheang, Panax notoginseng saponins attenuates endothelial dysfunction in obese and diabetic mice through inhibition of endoplasmic reticulum stress, Free Radic. Bio. Med. 180 (2022) s41. https://doi.org/10.1016/j.freeradbiomed.2021.12.088.

[60]

J. Fang, L. Luo, Z. Ke, et al., Polydatin protects against acute cholestatic liver injury in mice via the inhibition of oxidative stress and endoplasmic reticulum stress, J. Funct. Foods 55 (2019) 175-183. https://doi.org/10.1016/j.jff.2019.02.029.

[61]

M. Jiang, X. Li, J. Zhang, et al., Dual inhibition of endoplasmic reticulum stress and oxidation stress manipulates the polarization of macrophages under hypoxia to sensitize immunotherapy, ACS Nano. 15(9) (2021) 14522-14534. https://doi.org/10.1021/acsnano.1c04068.

[62]

G. Poli, R.J. Schaur, W.G. Siems, et al., 4-Hydroxynonenal: a membrane lipid oxidation product of medicinal interest, Med. Res. Rev. 28(4) (2008) 569-631. https://doi.org/10.1002/med.20117.

[63]

J.J. Galligan, R.L. Smathers, C.T. Shearn, et al., Oxidative stress and the ER stress response in a murine model for early-stage alcoholic liver disease, J. Toxicol. 2012 (2012) 207594. https://doi.org/10.1155/2012/207594.

[64]

C.X. Santos, L.Y. Tanaka, J. Wosniak, et al., Mechanisms and implications of reactive oxygen species generation during the unfolded protein response: roles of endoplasmic reticulum oxidoreductases, mitochondrial electron transport, and NADPH oxidase, Antioxid. Redox Sign. 11(10) (2009) 2409-2427. https://doi.org/10.1089/ars.2009.2625.

Food Science and Human Wellness
Pages 885-897
Cite this article:
Xia Y, Gong Y, Lin X, et al. Lactobacillus plantarum AR113 attenuates liver injury in D-galactose-induced aging mice via the inhibition of oxidative stress and endoplasmic reticulum stress. Food Science and Human Wellness, 2024, 13(2): 885-897. https://doi.org/10.26599/FSHW.2022.9250076

1159

Views

219

Downloads

7

Crossref

4

Web of Science

5

Scopus

0

CSCD

Altmetrics

Received: 09 July 2022
Revised: 26 August 2022
Accepted: 26 September 2022
Published: 25 September 2023
© 2024 Beijing Academy of Food Sciences. Publishing services by Tsinghua University Press.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return