AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (5.2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Open Access

One stone two birds: electrochemical and colorimetric dual-mode biosensor based on copper peroxide/covalent organic framework nanocomposite for ultrasensentive norovirus detection

Guobao Ninga,1Quanmei Duana,1Huan Lianga,Huifang LiubMin ZhouaChunlan ChenaChong Zhangc( )Hui Zhaob( )Canpeng Lia( )
School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
Laboratory for Conservation and Utilization of Bio-resource, Yunnan University, Kunming 650091, China
Kunming Customs Technology Center, Kunming 650228, China

1 These authors contributed equally to this work.

Peer review under responsibility of Tsinghua University Press.

Show Author Information

Highlights

• An electrochemical and colorimetric dual-mode assay for norovirus detection was developed.

• The assay was constructed based on copper peroxide/covalent organic framework nanocomposite.

• The assay showed ultrasensitivity, ideal repeatability, and desirable stability.

• The assay was successfully used to detect norovirus in real sample.

Graphical Abstract

Illustration of electrochemical and colorimetric dual-mode biosensor for ultrasensentive norovirus detection.

Abstract

Norovirus (NoV) is regarded as one of the most common causes of foodborne diarrhea in the world. It is urgent to identify the pathogenic microorganism of the diarrhea in short time. In this work, we developed an electrochemical and colorimetric dual-mode detection for NoV based on the excellent dual catalytic properties of copper peroxide/COF-NH2 nanocomposite (CuO2@COF-NH2). For the colorimetric detection, NoV can be directly detected by the naked eye based on CuO2@COF-NH2 as a laccase-like nonazyme using “peptide-NoV-antibody” recognition mode. The colorimetric assay displayed a wide and quality linear detection range from 1 copy/mL to 5000 copies/mL of NoV with a low limit of detection (LOD) of 0.125 copy/mL. For the electrochemical detection of NoV, CuO2@COF-NH2 showed an oxidation peak of copper ion from Cu+ to Cu2+ using “peptide-NoV-antibody” recognition mode. The electrochemical assay showed a linear detection range was 1‒5000 copies/mL with a LOD of 0.152 copy/mL. It’s worthy to note that this assay does not need other electrical signal molecule, which provide the stable and sensitive electrochemial detection for NoV. The electrochemical and colorimetric dual-mode detection was used to detect NoV in foods and faceal samples, which has the potential for improving food safety and diagnosing of NoV-infected diarrhea.

Electronic Supplementary Material

Download File(s)
fshw-13-2-920_ESM.docx (18.4 KB)

References

[1]

S.P. Rushton, R.A. Sanderson, W.D.K. Reid, et al., Transmission routes of rare seasonal diseases: the case of norovirus infections, Phil. Trans. R. Soc B. 374(1776) (2019) 20180267. http://doi.org/10.1098/rstb.2018.0267.

[2]

S.M. Bartsch, B.A. Lopman, S. Ozawa, et al., Global economic burden of norovirus gastroenteritis, PLoS One 11(4) (2016) e0151219. http://doi.org/10.1371/journal.pone.0151219.

[3]

M. Riepenhoff-Talty, H.J. Barrett, B.A. Spada, et al., Negative staining and immune electron microscopy as techniques for rapid diagnosis of viral agents, Ann. N. Y. Acad. Sci. 420(1) (1983) 391-400. http://doi.org/10.1111/j.1749-6632.1983.tb22228.x.

[4]

S. Jones, P.E. Douarre, J. O’Leary, et al., Validation of a norovirus multiplex real-time RT-PCR assay for the detection of norovirus GI and GII from faeces samples, Br. J. Biomed. Sci. 68(3) (2016) 116-119. https://doi.org/10.1080/09674845.2011.11730337.

[5]

O.H. Hernández, A.L. Gutiérrez-Escolano, C. Cancio-Lonches, et al., Multiplex PCR method for the detection of human norovirus, Salmonella spp., Shigella spp., and shiga toxin producing Escherichia coli in blackberry, coriander, lettuce and strawberry, Food Microbiol. 102 (2022) 103926.https://doi.org/10.1016/j.fm.2021.103926.

[6]

D.Y. Yang, Recent advances in hydrogels, Chem. Mater. 34(5) (2022) 1987-1989. http://doi.org/10.1021/acs.chemmater.2c00188.

[7]

Y. Wu, L. Jiao, W.Q. Xu, et al., Polydopamine-capped bimetallic AuPt hydrogels enable robust biosensor for organophosphorus pesticide detection, Small 15(17) (2019) 1900632. https://doi.org/10.1002/smll.201900632.

[8]

G.H. Zhao, X. Dong, Y. Du, et al., Enhancing electrochemiluminescence efficiency through introducing atomically dispersed ruthenium in nickelbased metal–organic frameworks, Anal. Chem. 94(29) (2022) 10557-10566. http://doi.org/10.1021/acs.analchem.2c02334.

[9]

Y.G. Wang, G.H. Zhao, H. Chi, et al., Self-luminescent lanthanide metal–organic frameworks as signal probes in electrochemiluminescence immunoassay, J. Am. Chem. Soc. 143(1) (2021) 504-512. http://doi.org/10.1021/jacs.0c12449.

[10]

Y.G. Wang, Y.Y. Wang, F.Z. Wang, et al., Electrochemical aptasensor based on gold modified thiol graphene as sensing platform and gold-palladium modified zirconium metal-organic frameworks nanozyme as signal enhancer for ultrasensitive detection of mercury ions, J. Colloid Interface Sci. 606 (2022) 510-517. https://doi.org/10.1016/j.jcis.2021.08.055.

[11]

Y.G. Wang, G.H. Zhao, G.Y. Zhang, et al., An electrochemical aptasensor based on gold-modified MoS2/rGO nanocomposite and gold-palladiummodified Fe-MOFs for sensitive detection of lead ions, Sens. Actuators, B. 319 (2020) 128313. https://doi.org/10.1016/j.snb.2020.128313.

[12]

G.H. Zhao, Y.G. Wang, X.J. Li, et al., Dual-quenching electrochemiluminescence strategy based on three-dimensional metal–organic frameworks for ultrasensitive detection of amyloid-β, Anal. Chem. 91(3) (2019) 1989-1996. http://doi.org/10.1021/acs.analchem.8b04332.

[13]

Y.G. Wang, G.H. Zhao, H. Wang, et al., Label-free electrochemical immunosensor based on biocompatible nanoporous Fe3O4 and biotin– streptavidin system for sensitive detection of zearalenone, Analyst 145 (2020) 1368-1375. https://doi.org/10.1039/C9AN02543J.

[14]

Z. Zhuang, H. Shi, J. Kang, et al., An overview on covalent organic frameworks: synthetic reactions and miscellaneous applications, Mater. Today Chem. 22 (2021) 100573. https://doi.org/10.1016/j.mtchem.2021.100573.

[15]

M.S. Lohse, T. Stassin, G. Naudin, et al., Sequential pore wall modification in a covalent organic framework for application in lactic acid adsorption, Chem. Mater. 28(2) (2016) 626-631. http://doi.org/10.1021/acs.chemmater.5b04388.

[16]

S.Y. Kim, A. Zille, M. Murkovic, et al., Enzymatic polymerization on the surface of functionalized cellulose fibers, Enzy. Microb. Technol. 40(7) (2007) 1782-1787. https://doi.org/10.1016/j.enzmictec.2007.01.001.

[17]

L.S. Lin, T. Huang, J.B. Song, et al., Synthesis of copper peroxide nanodots for H2O2 self-supplying chemodynamic therapy, J. Am. Chem. Soc. 141(25) (2019) 9937-9945. https://doi.org/10.1021/jacs.9b03457.

[18]

L.J. You, K. Xu, G.J. Ding, et al., Facile synthesis of Fe3O4@COF covalent organic frameworks for the adsorption of bisphenols from aqueous solution, J. Mol. Liq. 320 (2020) 114456. https://doi.org/10.1016/j.molliq.2020.114456.

[19]

Q. Palomar, X.X. Xu, R. Selegård, et al., Peptide decorated gold nanoparticle/carbon nanotube electrochemical sensor for ultrasensitive detection of matrix metalloproteinase-7, Sens. Actuators, B. 325 (2020) 128789. https://doi.org/10.1016/j.snb.2020.128789.

[20]

H.J. Hwang, M.Y. Ryua, J.P. Park, Identification of high affinity peptides for capturing norovirus capsid proteins, RSC Adv. 5(68) (2015) 55300-55302. https://doi.org/10.1039/C5RA09655C.

[21]

H. Zhao, W. Xie, R. Zhang, et al., Electrochemical sensor for human norovirus based on covalent organic framework/pillararene heterosupramolecular nanocomposites, Talanta 237 (2022) 122896. https://doi.org/10.1016/j.talanta.2021.122896.

[22]

X.L. Zhang, D. Wu, Y.N. Wu, et al., Bioinspired nanozyme for portable immunoassay of allergenic proteins based on a smartphone, Biosens. Bioelectron. 172 (2021) 112776. https://doi.org/10.1016/j.bios.2020.112776.

[23]

C. Hou, Y. Wang, H. Zhu, et al., Formulation of robust organic-inorganic hybrid magnetic microcapsules through hard-template mediated method for efficient enzyme immobilization, J. Mater. Chem. B. 3(14) (2015) 2883-2891. https://doi.org/10.1039/C4TB02102A.

[24]

S. Chandra, S. Kandambeth, B.P. Biswal, et al., Chemically stable multilayered covalent organic nanosheets from covalent organic frameworks via mechanical delamination, J. Am. Chem. Soc. 135(47) (2013) 17853-17861. http://doi.org/10.1021/ja408121p.

[25]

M.H. Li, J.X. Chen, W.W. Wu, et al., Oxidase-like MOF-818 nanozyme with high specificity for catalysis of catechol oxidation, J. Am. Chem. Soc. 142(36) (2020) 15569-15574. http://doi.org/10.1021/jacs.0c07273.

[26]

R.N. Shi, J. Wang, J.X. Zhao, et al., Cu nanoparticles encapsulated with hollow carbon spheres for methanol oxidative carbonylation: tuning of the catalytic properties by particle size control, Appl. Surf. Sci. 459 (2018) 707-715. https://doi.org/10.1016/j.apsusc.2018.08.032.

[27]

J. Su, J.J. Fu, Q. Wang, et al., Laccase: a green catalyst for the biosynthesis of poly-phenols, Crit. Rev. Biotechnol. 38(2) (2018) 294-307. https://doi.org/10.1080/07388551.2017.1354353.

[28]

M.M. Sun, Y. Dang, R. Du, et al., Experiment and theoretical insights into CuNi/CoMoO4 multi-functional catalyst with laccase-like: catalysis mechanism, smartphone biosensing and organic pollutant efficient degradation, Chem. Eng. J. 425 (2021) 130586. https://doi.org/10.1016/j.cej.2021.130586.

[29]

Y.Y. Li, W.J. Zhu, Q. Kang, et al., Dual-mode electrochemical immunoassay for insulin based on Cu7S4–Au as a double signal indicator, ACS Appl. Mater. Interfaces 10(45) (2018) 38791-38798. http://doi.org/10.1021/acsami.8b14908.

[30]

S.H. Baek, C.Y. Park, T.P. Nguyen, et al., Novel peptides functionalized gold nanoparticles decorated tungsten disulfide nanoflowers as the electrochemical sensing platforms for the norovirus in an oyster, Food Cont. 114 (2020) 107225. https://doi.org/10.1016/j.foodcont.2020.107225.

[31]

S.A. Hong, J. Kwon, D. Kim, et al., A rapid, sensitive and selective electrochemical biosensor with concanavalin A for the preemptive detection of norovirus, Biosens. Bioelectron. 64 (2015) 338-344. https://doi.org/10.1016/j.bios.2014.09.025.

[32]

H.J. Hwang, M.Y. Ryu, C.Y. Park, et al., High sensitive and selective electrochemical biosensor: label-free detection of human norovirus using affinity peptide as molecular binder, Biosens. Bioelectron. 87 (2017) 164-170. https://doi.org/10.1016/j.bios.2016.08.031.

[33]

S.H. Baek, M.W. Kim, C.Y. Park, et al., Development of a rapid and sensitive electrochemical biosensor for detection of human norovirus via novel specific binding peptides, Biosens. Bioelectron. 123 (2019) 223-229. https://doi.org/10.1016/j.bios.2018.08.064.

[34]

I.M. Khoris, K. Takemura, J. Lee, et al., Enhanced colorimetric detection of norovirus using in-situ growth of Ag shell on Au NPs, Biosens. Bioelectron. 126 (2019) 425-432. https://doi.org/10.1016/j.bios.2018.10.067.

[35]

B.S. Batule, S.U. Kim, H. Mun, et al., Colorimetric detection of norovirus in oyster samples through DNAzyme as a signaling probe, J. Agric. Food Chem. 66(11) (2018) 3003-3008. http://doi.org/10.1021/acs.jafc.7b05289.

[36]

J.H. Kim, J.E. Park, M.H. Lin, et al., Sensitive, quantitative naked-eye biodetection with polyhedral Cu nanoshells, Adv. Mater. 29 (2017) 1702945. https://doi.org/10.1002/adma.201702945.

[37]

K.N. Han, J.S. Choi, J. Kwon, Three-dimensional paper-based slip device for one-step point-of-care testing, Sci. Rep. 6 (2016) 25710. https://doi.org/10.1038/srep25710.

[38]

Z.W. Qin, X.R. Xiang, L. Xue, et al., Development of a novel RAAbased microfluidic chip for absolute quantitative detection of human norovirus, Microchem. J. 164 (2021) 106050. https://doi.org/10.1016/j.microc.2021.106050.

[39]

Y.Z. Han, J.C. Wang, S.H. Zhang, et al., Rapid detection of norovirus genogroup Ⅱ in clinical and environmental samples using recombinase polymerase amplification, Anal. Biochem. 605 (2020) 113834. https://doi.org/10.1016/j.ab.2020.113834.

[40]

N.S. Heo, S.Y. Oh, M.Y. Ryu, et al., Affinity peptide-guided plasmonic biosensor for detection of noroviral protein and human norovirus, Biotechnol. Bioproc. Eng. 24 (2019) 318-325. https://doi.org/10.1007/s12257-018-0410-6.

[41]

A.D. Chowdhury, S. Sharmin, F. Nasrin, et al., Use of target-specific liposome and magnetic nanoparticle conjugation for the amplified detection of norovirus, ACS App. Bio. Mater. 3(6) (2020) 3560-3568. https://doi.org/10.1021/acsabm.0c00213.

[42]

W.D. Qian, J. Huang, X.F. Wang, et al., CRISPR-Cas12a combined with reverse transcription recombinase polymerase amplification for sensitive and specific detection of human norovirus genotype GII.4, Virology 564 (2021) 26-32. https://doi.org/10.1016/j.virol.2021.09.008.

[43]

C.Z. Sun, J.Y. Chen, H. Li, et al., One-step duplex RT-droplet digital PCR assay for the detection of norovirus GI and GII in lettuce and strawberry, Food Microbiol. 94 (2021) 103653. https://doi.org/10.1016/j.fm.2020.103653.

[44]

F. Nasrin, A.D. Chowdhury, K. Takemura, et al., Single-step detection of norovirus tuning localized surface plasmon resonance-induced optical signal between gold nanoparticles and quantum dots, Biosens. Bioelectron. 122 (2018) 16-24. https://doi.org/10.1016/j.bios.2018.09.024.

[45]

Z.Z. Han, L. Chen, Q.H. Weng, et al., Silica-coated gold nanorod@CdSeTe ternary quantum dots core/shell structure for fluorescence detection and dual-modal imaging, Sens. Actuators, B. 258 (2018) 508-516. https://doi.org/10.1016/j.snb.2017.11.157.

[46]

M.A. Jahne, N.E. Brinkman, S.P. Keely, et al., Droplet digital PCR quantification of norovirus and adenovirus in decentralized wastewater and graywater collections: implications for onsite reuse, Water Res. 169 (2020) 115213. https://doi.org/10.1016/j.watres.2019.115213.

[47]

É. Larocque, Y. L’Homme, H. Charest, et al., A31 Molecular characterization of circulating human noroviruses in Canada to assess RT-qPCR assays used for the detection of foodborne noroviruses, Virus Evolution 4 (2018) vey010.030. https://doi.org/10.1093/ve/vey010.030.

Food Science and Human Wellness
Pages 920-931
Cite this article:
Ning G, Duan Q, Liang H, et al. One stone two birds: electrochemical and colorimetric dual-mode biosensor based on copper peroxide/covalent organic framework nanocomposite for ultrasensentive norovirus detection. Food Science and Human Wellness, 2024, 13(2): 920-931. https://doi.org/10.26599/FSHW.2022.9250079

1357

Views

258

Downloads

4

Crossref

4

Web of Science

4

Scopus

0

CSCD

Altmetrics

Received: 21 July 2022
Revised: 08 September 2022
Accepted: 08 October 2022
Published: 25 September 2023
© 2024 Beijing Academy of Food Sciences. Publishing services by Tsinghua University Press.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return