AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (12.2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Open Access

Sodium butyrate alleviates fructose-induced non-alcoholic fatty liver disease by remodeling gut microbiota to promote γ-amino butyric acid production

Qu Chena,bLei WuaAijia ZhangaChen WuaLiuping CaiaYingping XiaobYingdong Nia,( )
Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China
State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310022, China

Peer review under responsibility of Tsinghua University Press.

Show Author Information

Abstract

Sodium butyrate (NaB) can regulate lipid metabolism and inhibit hepatic steatosis. This study aimed to investigate whether NaB can alleviate fructose-induced hepatic steatosis via remodeling the gut microbiota and evaluate the anti-fatty liver mechanisms. The results showed that NaB and NaB-remodeled gut microbiota significantly alleviated fructose-induced hepatic steatosis and increased plasma uric acid and fructose levels. Furthermore, both NaB and NaB-remodeled gut microbiota increased the abundance of Lactobacillus and altered the levels of plasma amino acids (upregulating gamma-amino butyric acid (GABA) and downregulating L-glutamic acid and L-arginine) in fructose-exposed mice. The correlation analysis showed that GABA levels positively correlated with Lactobacillus abundance, and increased GABA levels might promote the reduction of the hepatic triglyceride content. Further studies confirmed that GABA significantly reduced lipid deposition in mouse hepatocytes induced via fructose pretreatment in vitro. These findings suggested that NaB could ameliorate fructose-induced hepatic steatosis by regulating gut microbiota.

Electronic Supplementary Material

Download File(s)
fshw-13-2-961_ESM.docx (935.3 KB)

References

[1]

M.H. Le, Y.H. Yeo, X. Li, et al., 2019 Global NAFLD prevalence: a systematic review and meta-analysis, Clin. Gastroenterol. Hepatol. 20(12) (2022) 2809-2817. https://doi.org/10.1016/j.cgh.2021.12.002.

[2]

H. Basciano, L. Federico, K. Adeli, Fructose, insulin resistance, and metabolic dyslipidemia, Nutr. Metab (Lond.) 2 (2005) 5. https://doi.org/10.1186/1743-7075-2-5.

[3]

R.B. Canani, M.D. Costanzo, L. Leone, et al., Potential beneficial effects of butyrate in intestinal and extraintestinal diseases, World J. Gastroenterol. 17 (2011) 1519-1528. https://doi.org/10.3748/wjg.v17.i12.1519.

[4]

G. Clarke, R.M. Stilling, P.J. Kennedy, et al., Minireview: gut microbiota: the neglected endocrine organ, Mol. Endocrinol. 28 (2014) 1221-1238. https://doi.org/10.1210/me.2014-1108.

[5]

W.H. Zhang, Y. Jiang, Q.F. Zhu, et al., Sodium butyrate maintains growth performance by regulating the immune response in broiler chickens, Br. Poult. Sci. 52 (2011) 292-301. https://doi.org/10.1080/00071668.2011.578121.

[6]

S. Ploger, F. Stumpff, G.B. Penner, et al., Microbial butyrate and its role for barrier function in the gastrointestinal tract, Ann. N.Y. Acad. Sci. 1258 (2012) 52-59. https://doi.org/10.1111/j.1749-6632.2012.06553.x.

[7]

E. Chang, D.H. Kim, H. Yang, et al., CB1 receptor blockade ameliorates hepatic fat infiltration and inflammation and increases Nrf2-AMPK pathway in a rat model of severely uncontrolled diabetes, PLoS One 13 (2018) e0206152. https://doi.org/10.1371/journal.pone.0206152.

[8]

B. Sun, Y. Jia, S. Yang, et al., Sodium butyrate protects against high-fat diet-induced oxidative stress in rat liver by promoting expression of nuclear factor E2-related factor 2, Br. J. Nutr. 122 (2019) 400-410. https://doi.org/10.1017/S0007114519001399.

[9]

S. Khan, G. Jena, Sodium butyrate reduces insulin-resistance, fat accumulation and dyslipidemia in type-2 diabetic rat: a comparative study with metformin, Chem. Biol. Interact. 254 (2016) 124-134. https://doi.org/10.1016/j.cbi.2016.06.007.

[10]

D. Zhou, Q. Pan, F.Z. Xin, et al., Sodium butyrate attenuates high-fat diet-induced steatohepatitis in mice by improving gut microbiota and gastrointestinal barrier, World J. Gastroenterol. 23 (2017) 60-75. https://doi.org/10.3748/wjg.v23.i1.60.

[11]

R.B. Jones, T.L. Alderete, J.S. Kim, et al., High intake of dietary fructose in overweight/obese teenagers associated with depletion of Eubacterium and Streptococcus in gut microbiome, Gut Microbes. 10 (2019) 712-719. https://doi.org/10.1080/19490976.2019.1592420.

[12]

J. Boursier, O. Mueller, M. Barret, et al., The severity of nonalcoholic fatty liver disease is associated with gut dysbiosis and shift in the metabolic function of the gut microbiota, Hepatology 63 (2016) 764-775. https://doi.org/10.1002/hep.28356.

[13]

P. Gkolfakis, G. Dimitriadis, K. Triantafyllou, Gut microbiota and nonalcoholic fatty liver disease, Hepatob. Pancreat. Dis. 14 (2015) 572-581. https://doi.org/10.1016/s1499-3872(15)60026-1.

[14]

V. Tremaroli, F. Backhed, Functional interactions between the gut microbiota and host metabolism, Nature 489 (2012) 242-249. https://doi.org/10.1038/nature11552.

[15]

W. Fang, H. Xue, X. Chen, et al., Supplementation with sodium butyrate modulates the composition of the gut microbiota and ameliorates highfat diet-induced obesity in mice, J. Nutr. 149 (2019) 747-754. https://doi.org/10.1093/jn/nxy324.

[16]

G. den Besten, K. van Eunen, A.K. Groen, et al., The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism, J. Lipid Res. 54 (2013) 2325-2340. https://doi.org/10.1194/jlr.R036012.

[17]

T.J. Borody, S. Paramsothy, G. Agrawal, Fecal microbiota transplantation: indications, methods, evidence, and future directions, Curr. Gastroenterol. Rep. 15 (2013) 337. https://doi.org/10.1007/s11894-013-0337-1.

[18]

W.B. Dunn, D. Broadhurst, P. Begley, et al., Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry, Nat. Protoc. 6 (2011) 1060-1083. https://doi.org/10.1038/nprot.2011.335.

[19]

E. Zelena, W.B. Dunn, D. Broadhurst, et al., Development of a robust and repeatable UPLC-MS method for the long-term metabolomic study of human serum, Anal. Chem. 81 (2009) 1357-1364. https://doi.org/10.1021/ac8019366.

[20]

W. Chen, L. Gong, Z. Guo, et al., A novel integrated method for large-scale detection, identification, and quantification of widely targeted metabolites: application in the study of rice metabolomics, Mol. Plant. 6 (2013) 1769-1780. https://doi.org/10.1093/mp/sst080.

[21]

E.J. Want, P. Masson, F. Michopoulos, et al., Global metabolic profiling of animal and human tissues via UPLC-MS, Nat. Protoc. 8 (2013) 17-32. https://doi.org/10.1038/nprot.2012.135.

[22]

Y.C. Wang, S.N. Bleich, S.L. Gortmaker, Increasing caloric contribution from sugar-sweetened beverages and 100% fruit juices among US children and adolescents, 1988-2004, Pediatrics 121 (2008) e1604-14. https://doi.org/10.1542/peds.2007-2834.

[23]

J.S. Sullivan, M.T. Le, Z. Pan, et al., Oral fructose absorption in obese children with non-alcoholic fatty liver disease, Pediatr. Obes. 10 (2015) 188-195. https://doi.org/10.1111/ijpo.238.

[24]

M. Chung, J. Ma, K. Patel, et al., Fructose, high-fructose corn syrup, sucrose, and nonalcoholic fatty liver disease or indexes of liver health: a systematic review and meta-analysis, Am. J. Clin. Nutr. 100 (2014) 833-849. https://doi.org/10.3945/ajcn.114.086314.

[25]

C. Sellmann, J. Priebs, M. Landmann, et al., Diets rich in fructose, fat or fructose and fat alter intestinal barrier function and lead to the development of nonalcoholic fatty liver disease over time, J. Nutr. Biochem. 26 (2015) 1183-1192. https://doi.org/10.1016/j.jnutbio.2015.05.011.

[26]

T. Jensen, M.F. Abdelmalek, S. Sullivan, et al., Fructose and sugar: a major mediator of non-alcoholic fatty liver disease, J. Hepatol. 68 (2018) 1063-1075. https://doi.org/10.1016/j.jhep.2018.01.019.

[27]

C.D. Kane, O.L. Francone, K.A. Stevens, Differential regulation of the cynomolgus, human, and rat acyl-CoA oxidase promoters by PPARalpha, Gene 380 (2006) 84-94. https://doi.org/10.1016/j.gene.2006.05.011.

[28]

Y. Zhang, S. Li, W. Donelan, et al., Angiopoietin-like protein 8 (betatrophin) is a stress-response protein that down-regulates expression of adipocyte triglyceride lipase, Biochim. Biophys. Acta. 1861 (2016) 130-137. https://doi.org/10.1016/j.bbalip.2015.11.003.

[29]

J.M. Orellana-Gavalda, L. Herrero, M.I. Malandrino, et al., Molecular therapy for obesity and diabetes based on a long-term increase in hepatic fatty-acid oxidation, Hepatology 53 (2011) 821-832. https://doi.org/10.1002/hep.24140.

[30]

P. Ma, R. Huang, Y. Ou, A soy glycinin derived octapeptide protects against MCD diet induced non-alcoholic fatty liver disease in mice, Food Sci. Hum. Well. 11 (2022) 1544-1554. https://doi.org/10.1016/j.fshw.2022.06.012.

[31]

S. Jung, H. Bae, W.S. Song, et al., Dietary fructose and fructose-induced pathologies, Annu. Rev. Nutr. 42 (2022) 45-66. https://doi.org/10.1146/annurev-nutr-062220-025831.

[32]

M. Song, Dietary fructose induced gut microbiota dysbiosis is an early event in the onset of metabolic phenotype, FASEB J. 33 (2019) 723.2. https://doi.org/10.1096/fasebj.2019.33.1_supplement.723.2

[33]

A.N. Payne, C. Chassard, C. Lacroix, Gut microbial adaptation to dietary consumption of fructose, artificial sweeteners and sugar alcohols: implications for host-microbe interactions contributing to obesity, Obes. Rev. 13 (2012) 799-809. https://doi.org/10.1111/j.1467-789X.2012.01009.x.

[34]

L.K. Stenman, R. Burcelin, S. Lahtinen, Establishing a causal link between gut microbes, body weight gain and glucose metabolism in humans-towards treatment with probiotics, Benef. Microbes 7 (2016) 11-22. https://doi.org/10.3920/BM2015.0069.

[35]

T.S. Kang, D.R. Korber, T. Tanaka, Regulation of dual glycolytic pathways for fructose metabolism in heterofermentative Lactobacillus panis PM1, Appl. Environ. Microbiol. 79 (2013) 7818-7826. https://doi.org/10.1128/AEM.02377-13.

[36]

D.P. Neveling, A. Endo, L.M. Dicks, Fructophilic Lactobacillus kunkeei and Lactobacillus brevis isolated from fresh flowers, bees and bee-hives, Curr. Microbiol. 65 (2012) 507-515. https://doi.org/10.1007/s00284-012-0186-4.

[37]

M. Rossi, C. Corradini, A. Amaretti, et al., Fermentation of fructooligosaccharides and inulin by bifidobacteria: a comparative study of pure and fecal cultures, Appl. Environ. Microbiol. 71 (2005) 6150-6158. https://doi.org/10.1128/AEM.71.10.6150-6158.2005.

[38]

R. Fuller, Probiotics in man and animals, J. Appl. Bacteriol. 66 (1989) 365-378. https://doi.org/10.1111/j.1365-2672.1989.tb05105.x

[39]

A. Azarang, O. Farshad, M.M. Ommati, et al., Protective role of probiotic supplements in hepatic steatosis: a rat model study, Biomed. Res. Int. 2020 (2020) 5487659. https://doi.org/10.1155/2020/5487659.

[40]

E.E. Canfora, R.C.R. Meex, K. Venema, et al., Gut microbial metabolites in obesity, NAFLD and T2DM, Nat. Rev. Endocrinol. 15 (2019) 261-273. https://doi.org/10.1038/s41574-019-0156-z.

[41]

C. Jang, S. Hui, W. Lu, et al., The small intestine converts dietary fructose into glucose and organic acids, Cell. Metab. 27 (2018) 351-361. https://doi.org/10.1016/j.cmet.2017.12.016.

[42]

Y. Hou, W. Wei, X. Guan, et al., A diet-microbial metabolism feedforward loop modulates intestinal stem cell renewal in the stressed gut, Nat. Commun. 12 (2021) 271. https://doi.org/10.1038/s41467-020-20673-4.

[43]

M.S. Su, S. Schlicht, M.G. Ganzle, Contribution of glutamate decarboxylase in Lactobacillus reuteri to acid resistance and persistence in sourdough fermentation, Microb. Cell Fact. 10(Suppl 1) (2011) S8. https://doi.org/10.1186/1475-2859-10-S1-S8.

[44]

D. Dahiya, J.V. Manuel, P.S. Nigam, An overview of bioprocesses employing specifically selected microbial catalysts for gamma-aminobutyric acid production, Microorganisms 9 (2021) 2457. https://doi.org/10.3390/microorganisms9122457.

[45]

Q. Wu, N.P. Shah, High gamma-aminobutyric acid production from lactic acid bacteria: emphasis on Lactobacillus brevis as a functional dairy starter, Crit. Rev. Food Sci. 57 (2017) 3661-3672. https://doi.org/10.1080/10408398.2016.1147418.

[46]

X. Si, W. Shang, Z. Zhou, et al., Gamma-aminobutyric acid enriched rice bran diet attenuates insulin resistance and balances energy expenditure via modification of gut microbiota and short-chain fatty acids, J. Agric. Food Chem. 66 (2018) 881-890. https://doi.org/10.1021/acs.jafc.7b04994.

Food Science and Human Wellness
Pages 961-971
Cite this article:
Chen Q, Wu L, Zhang A, et al. Sodium butyrate alleviates fructose-induced non-alcoholic fatty liver disease by remodeling gut microbiota to promote γ-amino butyric acid production. Food Science and Human Wellness, 2024, 13(2): 961-971. https://doi.org/10.26599/FSHW.2022.9250082

1314

Views

207

Downloads

1

Crossref

0

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 26 July 2022
Revised: 29 September 2022
Accepted: 20 October 2022
Published: 25 September 2023
© 2024 Beijing Academy of Food Sciences. Publishing services by Tsinghua University Press.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return