AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (7.5 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Open Access

The efficiency and safety evaluation of hemoglobin hydrolysate as a non-heme iron fortifier

Dejiang XueaShuai JiangaMiao ZhangaKai ShanaRené LametschbChunbao Lia,( )
Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs, Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
Department of Food Science, University of Copenhagen, Frederiksberg C DK-1958, Denmark

Peer review under responsibility of Tsinghua University Press.

Show Author Information

Graphical Abstract

Abstract

Hemoglobin hydrolysate is derived from the enzymatic degradation of hemoglobin. This work aimed to evaluate whether hemoglobin hydrolysate promotes the absorption of non-heme iron and the safety of absorbed iron in mice by analyzing the iron binding content, iron circulation, and liver homeostasis. We found that hemoglobin hydrolysate promoted the absorption of non-heme iron with high efficiency in duodenum by spontaneously binding non-heme iron during digestion, and increased hepatic iron content by up-regulating divalent metal transporter 1, zinc transporter 14, but hepatic iron content only increased at 3 weeks. Duodenal iron entered the blood through ferroportin without restriction at 3 weeks, and excessive iron entered the liver and then affected the hepatocyte membranes permeability and lipid synthesis through oxidative stress. With the prolongation of dietary intervention, the up-regulated hepcidin acted on the ferroportin to restrict excess iron from entering the blood, and then the hepatic homeostasis recovered. In addition, hemoglobin hydrolysate enhanced the hepatic antioxidant capacity. Taken together, hemoglobin hydrolysate has a strong ability to promote the absorption of non-heme iron in vivo, and the absorbed iron is relatively safe due to the regulation of hepcidin.

References

[1]

F. Toldra, M.C. Aristoy, L. Mora, et al., Innovations in value-addition of edible meat by-products, Meat Sci. 92 (2012) 290-296. https://doi.org/10.1016/j.meatsci.2012.04.004.

[2]

Y. Fu, J.R. Chen, K.H. Bak, et al., Valorisation of protein hydrolysates from animal by-products: perspectives on bitter taste and debittering methods: a review, Int. J. Food Sci. Tech. 54 (2019) 978-986. https://doi.org/10.1111/ijfs.14037.

[3]

S. Jiang, D.J. Xue, M. Zhang, et al., Myoglobin diet affected colonic mucus layer and barrier by increasing the abundance of several beneficial gut bacteria, Food Funct. 13 (2022) 9060-9077. https://doi.org/10.1039/d2fo01799g.

[4]

F. Toldra, M. Reig, L, Mora, Management of meat by- and co-products for an improved meat processing sustainability, Meat Sci. 181 (2021) 108608. https://doi.org/10.1016/j.meatsci.2021.108608.

[5]

P.O. Soladoye, M. Juarez, M. Estevez, et al., Exploring the prospects of the fifth quarter in the 21st century, Compr. Rev. Food Sci. F. 21 (2022) 1439-1461. https://doi.org/10.1111/1541-4337.12879.

[6]

R.T. Duarte, M.C.C. Simoes, V.C. Sgarbieri, Bovine blood components: fractionation, composition, and nutritive value, J. Agri. Food Chem. 47 (1999) 231-236.

[7]

C.S.F. Bah, A. Carne, M.A. McConnell, et al., Production of bioactive peptide hydrolysates from deer, sheep, pig and cattle red blood cell fractions using plant and fungal protease preparations, Food Chem. 202 (2016) 458-466. https://doi.org/10.1016/j.foodchem.2016.02.020.

[8]

J. Lueangsakulthai, S. Phosri, T. Theansungnoen, et al., Novel antioxidant and anti-inflammatory peptides from the Siamese crocodile (Crocodylus siamensis) hemoglobin hydrolysate, Biotechnol. Appl. Bioc. 65 (2018) 455-466. https://doi.org/10.1002/bab.1628.

[9]

F. Lebrun, P. Dhulster, D. Guillochon, Solubility of heme in heme-iron enriched bovine hemoglobin hydrolysates, J. Agric. Food Chem. 46 (1998) 5017-5025. https://doi.org/10.1021/jf9805698.

[10]

R. Baltussen, C. Knai, M. Sharan, et al., Iron fortification and iron supplementation are cost-effective interventions to reduce iron deficiency in four subregions of the world, J. Nutr. 134 (2004) 2678-2684. https://doi.org/10.1093/jn/134.10.2678.

[11]

C. Camaschella, Iron deficiency, Blood 133 (2019) 30-39. https://doi.org/10.1182/blood-2018-05-815944.

[12]

A.G. Quintero-Gutierrez, G. Gonzalez-Rosendo, J. Sanchez-Munoz, et al., Bioavailability of heme iron in biscuit filling using piglets as an animal model for humans, Int. J. Biol. Sci. 4 (2008) 58-62.

[13]

N. Seiwert, J. Adam, P. Steinberg, et al., Chronic intestinal inflammation drives colorectal tumor formation triggered by dietary heme iron in vivo, Arch. Toxicol. 95 (2021) 2507-2522. https://doi.org/10.1007/s00204-021-03064-6.

[14]

C. Marco, F. Gabriela, C. Annie, et al., Dietary heme induces gut dysbiosis, aggravates colitis, and potentiates the development of adenomas in mice, Front. Microbiol. 8 (2017) 1809. https://doi.org/10.3389/fmicb.2017.01809.

[15]

Q.J. Tian, Y. Fan, L. Hao, et al., A comprehensive review of calcium and ferrous ions chelating peptides: preparation, structure and transport pathways, Crit. Rev. Food Sci. (2021) 1-13. https://doi.org/10.1080/10408398.2021.2001786.

[16]

Y.N. Li, H. Jiang, G.R. Huang, Protein hydrolysates as promoters of nonhaem iron absorption, Nutrients 9 (2017) 609. https://doi.org/10.3390/nu9060609.

[17]

Y. Horimoto, R. Tan, L.T. Lim, Enzymatic treatment of pork protein for the enhancement of iron bioavailability, Int. J. Food Sci. Nutr. 70 (2019) 41-52. https://doi.org/10.1080/09637486.2018.1466270.

[18]

N. Sun, T.T. Wang, D. Wang, et al., Antarctic krill derived nonapeptide as an effective iron-binding ligand for facilitating iron absorption via the small intestine, J. Agri. Food Chem. 68 (2020) 11290-11300. https://doi.org/10.1021/acs.jafc.0c03223.

[19]

C. Torres-Fuentes, M. Alaiz, J. Vioque, Iron-chelating activity of chickpea protein hydrolysate peptides, Food Chem. 134 (2012) 1585-1588. https://doi.org/10.1016/j.foodchem.2012.03.112.

[20]

E. Evcan, S. Gulec, The development of lentil derived protein-iron complexes and their effects on iron deficiency anemia in vitro, Food Funct. 11 (2020) 4185-4192. https://doi.org/10.1039/D0FO00384K.

[21]

Y. Fu, K.H. Bak, J. Liu, et al., Protein hydrolysates of porcine hemoglobin and blood: peptide characteristics in relation to taste attributes and formation of volatile compounds, Food Res. Int. 121 (2019) 28-38. https://doi.org/10.1016/j.foodres.2019.03.017.

[22]

M. Prajapati, H.L. Conboy, S. Hojyo, et al., Biliary excretion of excess iron in mice requires hepatocyte iron import by Slc39a14, J. Biol. Chem. 297 (2021) 100835. https://doi.org/10.1016/j.jbc.2021.100835.

[23]

C.J. Mercadante, M. Prajapati, J.H. Parmar, et al., Gastrointestinal iron excretion and reversal of iron excess in a mouse model of inherited iron excess, Haematologica 104 (2019) 678-689. https://doi.org/10.3324/haematol.2018.198382.

[24]

W.F. Wu, B.F. Li, H. Hou, et al., Identification of iron-chelating peptides from Pacific cod skin gelatin and the possible binding mode, J. Funct. Foods 35 (2017) 418-427. https://doi.org/10.1016/j.jff.2017.06.013.

[25]

S. Jiang, D. Zhao, Y.Q. Nian, et al., Ultrasonic treatment increased functional properties and in vitro digestion of actomyosin complex during meat storage, Food Chem. 352 (2021) 129398. https://doi.org/10.1016/j.foodchem.2021.129398.

[26]

O.P. Ajsuvakova, M.G. Skalnaya, B. Michalke, et al., Alteration of iron (Fe), copper (Cu), zinc (Zn), and manganese (Mn) tissue levels and speciation in rats with desferioxamine-induced iron deficiency, Biometals 34 (2021) 923-936. https://doi.org/10.1007/s10534-021-00318-9.

[27]

J.H. Chen, X. Zheng, M.Y. Fu, et al., Ultrasound-assisted covalent reaction of myofibrillar protein: the improvement of functional properties and its potential mechanism, Ultrason. Sonochem. 76 (2021) 105652. https://doi.org/10.1016/j.ultsonch.2021.105652.

[28]

F. Bamdad, L.Y. Chen, Antioxidant capacities of fractionated barley hordein hydrolysates in relation to peptide structures, Mol. Nutr. Food Res. 57 (2013) 493-503. https://doi.org/10.1002/mnfr.201200252.

[29]

P.G. Reeves, F.H. Nielsen, G.C. Fahey, AIN-93 purified diets for laboratory rodents: final report of the american institute of nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet, J. Nutr. 123 (1993) 1939-1951. https://doi.org/10.1093/jn/123.11.1939.

[30]

J. Shi, D. Zhao, S.X. Song, et al., High-meat-protein high-fat diet induced dysbiosis of gut microbiota and tryptophan metabolism in Wistar rats, J. Agric. Food Chem. 68 (2020) 6333-6346. https://doi.org/10.1021/acs.jafc.0c00245.

[31]

Y.T. Xie, C. Wang, D. Zhao, Processing method altered mouse intestinal morphology and microbial composition by affecting digestion of meat proteins, Front. Microbiol. 11 (2020) 511. https://doi.org/10.3389/fmicb.2020.00511.

[32]

C. Hao, N. Tong, Z. Penglu, et al., Hesperidin attenuates hepatic lipid accumulation in mice fed high-fat diet and oleic acid induced HepG2 via AMPK activation, Life Sci. 296 (2022) 120428. https://doi.org/10.1016/j.lfs.2022.120428.

[33]

N. Montalbetti, A. Simonin, G. Kovacs, et al., Mammalian iron transporters: families SLC11 and SLC40, Mol. Aspects Med. 34 (2013) 270-287. https://doi.org/10.1016/j.mam.2013.01.002.

[34]

C.Y. Wang, J.L. Babitt, Liver iron sensing and body iron homeostasis, Blood 133 (2019) 18-29. https://doi.org/10.1182/blood-2018-06-815894.

[35]

E. Piskin, D. Cianciosi, S. Gulec, Iron absorption: factors, limitations, and improvement methods, ACS Omega 7 (2022) 20441-20456. https://doi.org/10.1021/acsomega.2c01833.

[36]

Salim-Ur-Rehman, N. Huma, O.M. Tarar, et al., Efficacy of non-heme iron fortified diets: a review, Crit. Rev. Food Sci. Nutr. 50 (2010) 403-413. https://doi.org/10.1080/10408390802304206.

[37]

N.A. Gomez-Grirmaldos, L.J. Gomez-Sampedro, J.E. Zapata-Montoya, et al., Bovine plasma hydrolysates’ iron chelating capacity and its potentiating effect on ferritin synthesis in Caco-2 cells, Food Funct. 11 (2021) 10907-10912. https://doi.org/10.1039/D0FO02502J.

[38]

E. Eckert, L. Lu, L.D. Unsworth, et al., Biophysical and in vitro absorption studies of iron chelating peptide from barley proteins, J. Funct. Foods 25 (2016) 291-301. https://doi.org/10.1016/j.jff.2016.06.011.

[39]

M.D. Knutson, Non-transferrin-bound iron transporters, Free Radic. Biol. Med. 133 (2019) 101-111. https://doi.org/10.1016/j.freeradbiomed.2018.10.413.

[40]

K. Strzelak, N. Rybkowska, A. Wisniewska, et al., Photometric flow analysis system for biomedical investigations of iron/transferrin speciation in human serum, Anal. Chim. Acta 995 (2017) 43-51. https://doi.org/10.1016/j.aca.2017.10.015.

[41]

S. Sinha, J. Pereira-Reis, A. Guerra, et al., The role of iron in benign and malignant hematopoiesis, Antioxid. Redox Signal. 35 (2021) 415-432. https://doi.org/10.1089/ars.2020.8155.

[42]

E. Corradini, E. Buzzetti, P. Dongiovanni, et al., Ceruloplasmin gene variants are associated with hyperferritinemia and increased liver iron in patients with NAFLD, J. Hepatol. 75 (2021) 506-513. https://doi.org/10.1016/j.jhep.2021.03.014.

[43]

O. Protchenko, E. Baratz, S. Jadhav, et al., Iron chaperone poly rc binding protein 1 protects mouse liver from lipid peroxidation and steatosis, Hepatology 73 (2020) 1176-1193. https://doi.org/10.1002/hep.31328.

[44]

K. Sarabandi, S.M. Jafari, Fractionation of flaxseed-derived bioactive peptides and their influence on nanoliposomal carriers, J. Agric. Food Chem. 68 (2021) 15097-15106. https://doi.org/10.1021/acs.jafc.0c02583.

[45]

N.H. Ishak, N.M. Sarbon, A review of protein hydrolysates and bioactive peptides deriving from wastes generated by fish processing, Food Bioproc. Tech. 11 (2018) 2-16. https://doi.org/10.1007/s11947-017-1940-1.

[46]

N. Zhou, Y. Zhao, Y. Yao, et al., Antioxidant stress and anti-inflammatory activities of egg white proteins and their derived peptides: a review, J. Agric. Food Chem. 70 (2022) 5-20. https://doi.org/10.1021/acs.jafc.1c04742.

[47]

Y.Q. He, P.Y. Yang, Y.Y. Ding, et al., The preparation, antioxidant activity evaluation, and iron-deficient anemic improvement of oat (Avena sativa L.) peptides-ferrous chelate, Front. Nutr. 8 (2021) 687133. https://doi.org/10.3389/fnut.2021.687133.

[48]

J.C. Arroyave-Ospina, Z.M. Wu, Y.N. Geng, et al., Role of oxidative stress in the pathogenesis of non-alcoholic fatty liver disease: implications for prevention and therapy, Antioxidants 10 (2021) 174. https://doi.org/10.3390/antiox10020174.

[49]

S. Jiang, H. Liu, C.B. Li, Dietary regulation of oxidative stress in chronic metabolic diseases, Foods 10 (2021) 1854. https://doi.org/10.3390/foods10081854.

[50]

J.P. Kennelly, S. Carlin, T.T. Ju, et al., Intestinal phospholipid disequilibrium initiates an er stress response that drives goblet cell necroptosis and spontaneous colitis in mice, Cell. Mol. Gastroenterol. Hepatol. 11 (2021) 999-1021. https://doi.org/10.1016/j.jcmgh.2020.11.006.

[51]

K. Soltysik, Y. Ohsaki, T. Tatematsu, et al., Nuclear lipid droplets derive from a lipoprotein precursor and regulate phosphatidylcholine synthesis, Nat. Commun. 10 (2019) 473. https://doi.org/10.1038/s41467-019-08411-x.

[52]

J.A. Olzmann, P. Carvalho, Dynamics and functions of lipid droplets, Nat. Rev. Mol. Cell Biol. 20 (2019) 137-155. https://doi.org/10.1038/s41580-018-0085-z.

[53]

C.B. Billesbolle, C.M. Azumaya, R.C. Kretsch, et al., Structure of hepcidinbound ferroportin reveals iron homeostatic mechanisms, Nature 586 (2020) 807-828. https://doi.org/10.1038/s41586-020-2668-z.

[54]

Y.P. Pan, Z.N. Ren, S. Gao, et al., Structural basis of ion transport and inhibition in ferroportin, Nat. Commun. 11 (2020) 5686. https://doi.org/10.1038/s41467-020-19458-6.

[55]

E. Nemeth, T. Ganz, Regulation of iron metabolism by hepcidin, Annu. Rev. Nutr. 26 (2006) 323-342. https://doi.org/10.1146/annurev.nutr.26.061505.111303.

Food Science and Human Wellness
Pages 999-1010
Cite this article:
Xue D, Jiang S, Zhang M, et al. The efficiency and safety evaluation of hemoglobin hydrolysate as a non-heme iron fortifier. Food Science and Human Wellness, 2024, 13(2): 999-1010. https://doi.org/10.26599/FSHW.2022.9250086

1218

Views

150

Downloads

3

Crossref

2

Web of Science

3

Scopus

0

CSCD

Altmetrics

Received: 15 August 2022
Revised: 20 September 2022
Accepted: 02 October 2022
Published: 25 September 2023
© 2024 Beijing Academy of Food Sciences. Publishing services by Tsinghua University Press.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return