AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.8 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Open Access

Characterization of physicochemical and immunogenic properties of allergenic proteins altered by food processing: a review

Enning Zhoua,1,Qiangqiang Lia,1( )Dan ZhubGang ChencLiming Wua( )
Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
Department of Food Science, University of Otago, Dunedin 9016, New Zealand
School of Food and Health, Beijing Technology and Business University, Beijing 100048, China

1 These authors contributed equally to this work.

Peer review under responsibility of Tsinghua University Press.

Show Author Information

Highlights

• Food processing can induce allergenic protein aggregation or denaturation.

• Structural change of allergen may lead to masking or destruction of epitopes.

• Improper food processing increases allergenicity by exposing allergen epitopes.

• Other food components may prevent the processing effect on allergen modification.

Graphical Abstract

Abstract

Food allergens are mainly naturally-occurring proteins with immunoglobulin E (IgE)-binding epitopes. Understanding the structural and immunogenic characteristics of allergenic proteins is essential in assessing whether and how food processing techniques reduce allergenicity. We here discuss the impacts of food processing technologies on the modification of physicochemical, structural, and immunogenic properties of allergenic proteins. Detection techniques for characterizing changes in these properties of food allergens are summarized. Food processing helps to reduce allergenicity by aggregating or denaturing proteins, which masks, modif ies, or destroys antigenic epitopes, whereas, it cannot eliminate allergenicity completely, and sometimes even improves allergenicity by exposing new epitopes. Moreover, most food processing techniques have been tested on purif ied food allergens rather than food products due to potential interference of other food components. We provide guidance for further development of processing operations that can decrease the allergenicity of allergenic food proteins without negatively impacting the nutritional profile.

References

[1]

R. Valenta, H. Hochwallner, B. Linhart, et al., Food allergies: the basics, Gastroenterology 148(6) (2015) 1120-1131. https://doi.org/10.1053/j.gastro.2015.02.006.

[2]

A. Cianferoni, Non-IgE mediated food allergy, Curr. Pediatr. Rev. 16(2) (2020) 95-105. https://doi.org/10.2174/1573396315666191031103714.

[3]

T.W. Jimenez-Rodriguez, M. Garcia-Neuer, L.A. Alenazy, et al., Anaphylaxis in the 21st century: phenotypes, endotypes, and biomarkers, J. Asthma Allergy 11 (2018) 121-142. https://doi.org/10.2147/JAA.S159411.

[4]

C. Kanagaratham, Y.S. El Ansari, O.L. Lewis, et al., IgE and IgG antibodies as regulators of mast cell and basophil functions in food allergy, Front. Immunol. 11 (2020) 603050. https://doi.org/10.3389/fimmu.2020.603050.

[5]

J.P. Lopes, S. Sicherer, Food allergy: epidemiology, pathogenesis, diagnosis, prevention, and treatment, Curr. Opin. Immunol. 66 (2020) 57-64. https://doi.org/10.1016/j.coi.2020.03.014.

[6]

J. Costa, S.L. Bavaro, S. Benedé, et al., Are physicochemical properties shaping the allergenic potency of plant allergens? Clin. Rev. Allergy Immu. 62(1) (2022) 37-63. https://doi.org/10.1007/s12016-020-08810-9.

[7]

J. Costa, C. Villa, K. Verhoeckx, et al., Are physicochemical properties shaping the allergenic potency of animal allergens? Clin. Rev. Allergy Immu. 62(1) (2022) 1-36. https://doi.org/10.1007/s12016-020-08826-1.

[8]

A. Cavazza, M. Mattarozzi, A. Franzoni, et al., A spotlight on analytical prospects in food allergens: from emerging allergens and novel foods to bioplastics and plant-based sustainable food contact materials, Food Chem. 388 (2022) 132951. https://doi.org/10.1016/j.foodchem.2022.132951.

[9]

Y. Zhang, W. Wang, R. Zhou, et al., Effects of heating, autoclaving and ultra-high pressure on the solubility, immunoreactivity and structure of major allergens in egg, Food Agr. Immunol. (2017) 1-12. https://doi.org/10.1080/09540105.2017.1387520.

[10]

H. Breiteneder, E.N. Mills, Molecular properties of food allergens, J. Allergy Clin. Immunol. 115(1) (2005) 14-24. https://doi.org/10.1016/j.jaci.2004.10.022

[11]

S.J. Maleki, S.Y. Chung, E.T. Champagne, et al., The effects of roasting on the allergenic properties of peanut proteins, J. Allergy Clin. Immunol. 106(4) (2000) 763-768. https://doi.org/10.1067/mai.2000.109620.

[12]

F.J. Moreno, Gastrointestinal digestion of food allergens:effect on their allergenicity, Biomed. Pharmacother. 61(1) (2007) 50-60. https://doi.org/10.1016/j.biopha.2006.10.005.

[13]

K.C.M. Verhoeckx, Y.M. Vissers, J.L. Baumert, et al., Food processing and allergenicity, Food Chem. Toxicol. 80 (2015) 223-240. https://doi.org/10.1016/j.fct.2015.03.005.

[14]

S.K. Vanga, A. Singh, V. Raghavan, Review of conventional and novel food processing methods on food allergens, Crit. Rev. Food Sci. Nutr. 57(10) (2017) 2077-2094. https://doi.org/10.1080/10408398.2015.1045965.

[15]

T. Rahaman, T. Vasiljevic, L. Ramchandran, Effect of processing on conformational changes of food proteins related to allergenicity, Trends Food Sci. Tech. 49 (2016) 24-34. https://doi.org/10.1016/j.tifs.2016.01.001.

[16]

F.G. Chizoba Ekezie, J.H. Cheng, D.W. Sun, Effects of nonthermal food processing technologies on food allergens: a review of recent research advances, Trends Food Sci. Tech. 74 (2018) 12-25. https://doi.org/10.1016/j.tifs.2018.01.007.

[17]

B. Cabanillas, N. Novak, Effects of daily food processing on allergenicity, Crit. Rev. Food Sci. Nutr. 59(1) (2019) 31-42. https://doi.org/10.1080/10408398.2017.1356264.

[18]

X. Dong, J. Wang, V. Raghavan, Critical reviews and recent advances of novel non-thermal processing techniques on the modification of food allergens, Crit. Rev. Food Sci. Nutr. 61(2) (2021) 196-210. https://doi.org/10.1080/10408398.2020.1722942.

[19]

N. Stănciuc, I. Banu, C. Bolea, et al., Structural and antigenic properties of thermally treated gluten proteins, Food Chem. 267 (2018) 43-51. https://doi.org/10.1016/j.foodchem.2017.03.018.

[20]

B. Tao, K. Bernardo, P. Eldi, et al., Extended boiling of peanut progressively reduces IgE allergenicity while retaining T cell reactivity, Clin. Exp. Allergy 46(7) (2016) 1004-1014. https://doi.org/10.1111/cea.12740.

[21]

B.X. Deng, B. Li, X.D. Li, et al., Using short-wave infrared radiation to improve aqueous enzymatic extraction of peanut oil: evaluation of peanut cotyledon microstructure and oil quality, Eur. J. Lipid Sci. Tech. 120(2) (2018). https://doi.org/10.1002/ejlt.201700285.

[22]

S.J. Maleki, O. Viquez, T. Jacks, et al., The major peanut allergen, Ara h 2, functions as a trypsin inhibitor, and roasting enhances this function, J. Allergy Clin. Immun. 112(1) (2003) 190-195. https://doi.org/10.1067/mai.2003.1551.

[23]

S. Jiang, B. Zhao, S. Han, et al., Effect of different thermal processing treatments on allergenicity of walnut proteins, Food Sci. 39 (2018) 94-99. https://doi.org/10.7506/spkx1002-6630-201813015.

[24]

G.M. Liu, H. Cheng, J.B. Nesbit, et al., Effects of boiling on the IgE-binding properties of tropomyosin of shrimp (Litopenaeus vannamei), J. Food Sci. 75(1) (2010) T1-T5. https://doi.org/10.1111/j.1750-3841.2009.01391.x.

[25]

M. Besler, H. Steinhart, A. Paschke, Stability of food allergens and allergenicity of processed foods, J. Chromatogr. B. Biomed. Sci. Appl. 756(1) (2001) 207-228. https://doi.org/10.1016/s0378-4347(01)00110-4.

[26]

S. Dhakal, C. Liu, Y. Zhang, et al., Effect of high pressure processing on the immunoreactivity of almond milk, Food Res. Int. 62 (2014) 215-222. https://doi.org/10.1016/j.foodres.2014.02.021.

[27]

T. Jacob, L. Vogel, A. Reuter, et al., Food processing does not abolish the allergenicity of the carrot allergen Dau c 1: influence of pH, temperature, and the food matrix, Mol. Nutr. Food Res. 64(18) (2020) 2000334. https://doi.org/10.1002/mnfr.202000334.

[28]

J. Wang, L. Zhang, J. Shi, et al., Effect of microwave processing on the nutritional properties and allergenic potential of kiwifruit, Food Chem. 401 (2022) 134189. https://doi.org/10.1016/j.foodchem.2022.134189.

[29]

X. Dong, J. Wang, V. Raghavan, Impact of microwave processing on the secondary structure, in-vitro protein digestibility and allergenicity of shrimp(Litopenaeus vannamei) proteins, Food Chem. 337 (2021) 127811. https://doi.org/10.1016/j.foodchem.2020.127811.

[30]

J. Leszczynska, A. Lacka, J. Szemraj, et al., The effect of microwave treatment on the immunoreactivity of gliadin and wheat flour, Eur. Food Res. Technol. 217 (2003) 387-391. https://doi.org/10.1007/s00217-003-0765-5.

[31]

K.S. Varghese, M.C. Pandey, K. Radhakrishna, et al., Technology, applications and modelling of ohmic heating: a review, J. Food Sci. Technol. 51(10) (2014) 2304-2317. https://doi.org/10.1007/s13197-012-0710-3.

[32]

H. Jaeger, A. Roth, S. Toepfl, et al., Opinion on the use of ohmic heating for the treatment of foods, Trends Food Sci. Tech. 55 (2016) 84-97. https://doi.org/10.1016/j.tifs.2016.07.007.

[33]

R.N. Pereira, R.M. Rodrigues, L. Machado, et al., Influence of ohmic heating on the structural and immunoreactive properties of soybean proteins, LWT-Food Sci. Technol. 148 (2021) 111710. https://doi.org/10.1016/j.lwt.2021.111710.

[34]

R.N. Pereira, J. Costa, R.M. Rodrigues, et al., Effects of ohmic heating on the immunoreactivity of β-lactoglobulin a relationship towards structural aspects, Food Funct. 11(5) (2020) 4002-4013. https://doi.org/10.1039/c9fo02834j.

[35]

S. Naik, D. Suryawanshi, M. Kumar, et al., Ultrasonic treatment: a cohort review on bioactive compounds, allergens and physico-chemical properties of food, Curr. Res. Food Sci. 4 (2021) 470-477. https://doi.org/10.1016/j.crfs.2021.07.003.

[36]

Z. Zhang, X. Zhang, W. Chen, et al., Conformation stability, in vitro digestibility and allergenicity of tropomyosin from shrimp (Exopalaemon modestus) as affected by high intensity ultrasound, Food Chem. 245 (2017)997-1009. https://doi.org/10.1016/j.foodchem.2017.11.072.

[37]

M. Yu, H. Liu, A. Shi, et al., Preparation of resveratrol-enriched and poor allergic protein peanut sprout from ultrasound treated peanut seeds, Ultrason. Sonochem. 28 (2016) 334-340. https://doi.org/10.1016/j.ultsonch.2015.08.008.

[38]

H. Li, J. Yu, M. Ahmedna, et al., Reduction of major peanut allergens Ara h 1 and Ara h 2, in roasted peanuts by ultrasound assisted enzymatic treatment, Food Chem. 141(2) (2013) 762-768. https://doi.org/10.1016/j.foodchem.2013.03.049.

[39]

X. Dong, J. Wang, V. Raghavan, Effects of high-intensity ultrasound processing on the physiochemical and allergenic properties of shrimp, Innov. Food Sci. Emerg. 65 (2020) 102441. https://doi.org/10.1016/j.ifset.2020.102441.

[40]

J. Wang, J. Wang, S. Kranthi Vanga, et al., Influence of high-intensity ultrasound on the IgE binding capacity of Act d 2 allergen, secondary structure, and in-vitro digestibility of kiwifruit proteins, Ultrason. Sonochem. 71 (2021) 105409. https://doi.org/10.1016/j.ultsonch.2020.105409.

[41]

R. Meyer-Pittroff, H. Behrendt, J. Ring, Specific immuno-modulation and therapy by means of high pressure treated allergens, High Pressure Res. 27(1) (2007) 63-67. https://doi.org/10.1080/08957950601082557.

[42]

A. Fernández, P. Butz, B. Tauscher, IgE binding capacity of apple allergens preserved after high pressure treatment, High Pressure Res. 29(4) (2009) 705-712. https://doi.org/10.1080/08957950903384990.

[43]

F.A. Husband, T. Aldick, I. Van der Plancken, et al., High-pressure treatment reduces the immunoreactivity of the major allergens in apple and celeriac, Mol. Nutr. Food Res. 55(7) (2011) 1087-1095. https://doi.org/10.1002/mnfr.201000566.

[44]

N. Kleber, S. Maier, J. Hinrichs, Antigenic response of bovine β-lactoglobulin influenced by ultra-high pressure treatment and temperature, Innov. Food Sci. Emerg. 8(1) (2007) 39-45. https://doi.org/10.1016/j.ifset.2006.05.001.

[45]

R. Sharma, P. Garg, P. Kumar, et al., Microbial fermentation and its role in quality improvement of fermented foods, Fermentation (2020). https://doi.org/10.3390/fermentation6040106.

[46]

K.J. Hong, C.H. L Ee, S.W. Kim, Aspergillus oryzae GB-107 fermentation improves nutritional quality of food soybeans and feed soybean meals, J. Med. Food 7(4) (2004) 430-435. https://doi.org/10.1089/jmf.2004.7.430.

[47]

Y.S. Song, J. Frias, C. Martinez-Villaluenga, et al., Immunoreactivity reduction of soybean meal by fermentation, effect on amino acid composition and antigenicity of commercial soy products, Food Chem. 108(2) (2008) 571-581. https://doi.org/10.1016/j.foodchem.2007.11.013.

[48]

A. Yang, L. Zuo, Y. Cheng, et al., Degradation of major allergens and allergenicity reduction of soybean meal through solid-state fermentation with microorganisms, Food Funct. 9(3) (2018) 1899-1909. https://doi.org/10.1039/c7fo01824j.

[49]

S. Yin, Y. Tao, Y. Jiang, et al., A combined proteomic and metabolomic strategy for allergens characterization in natural and fermented brassica napus bee pollen, Front. Nutr. 9 (2022). https://doi.org/10.3389/fnut.2022.822033.

[50]

N.U. Sruthi, K. Josna, R. Pandiselvam, et al., Impacts of cold plasma treatment on physicochemical, functional, bioactive, textural, and sensory attributes of food: a comprehensive review, Food Chem. 368 (2022) 130809. https://doi.org/10.1016/j.foodchem.2021.130809.

[51]

S.W. Ng, P. Lu, A. Rulikowska, et al., The effect of atmospheric cold plasma treatment on the antigenic properties of bovine milk casein and whey proteins, Food Chem. 342 (2021) 128283. https://doi.org/10.1016/j.foodchem.2020.128283.

[52]

F. Sun, X. Xie, Y. Zhang, et al., Effects of cold jet atmospheric pressure plasma on the structural characteristics and immunoreactivity of celiac-toxic peptides and wheat storage proteins, Int. J. Mol. Sci. 21(3) (2020). https://doi.org/10.3390/ijms21031012.

[53]

H. Venkataratnam, O. Cahill, C. Sarangapani, et al., Impact of cold plasma processing on major peanut allergens, Sci. Rep. 10(1) (2020) 17038. https://doi.org/10.1038/s41598-020-72636-w.

[54]

N.M. Coutinho, M.R. Silveira, R.S. Rocha, et al., Cold plasma processing of milk and dairy products, Trends Food Sci. Tech. (2018) S0924224417306878. https://doi.org/10.1016/j.tifs.2018.02.008.

[55]

F.C. Ekezie, D.W. Sun, J.H. Cheng, Altering the IgE binding capacity of king prawn (Litopenaeus vannamei) tropomyosin through conformational changes induced by cold argon-plasma jet, Food Chem. 300 (2019) 125143. https://doi.org/10.1016/j.foodchem.2019.125143.

[56]

E.G. Alves Filho, L.M.A. Silva, F. Oiram Filho, et al., Cold plasma processing effect on cashew nuts composition and allergenicity, Food Res. Int. 125 (2019) 108621. https://doi.org/10.1016/j.foodres.2019.108621.

[57]

F. Cardona, C. Andrés-Lacueva, S. Tulipani, et al., Benefits of polyphenols on gut microbiota and implications in human health, J. Nutr. Biochem. 24(8) (2013) 1415-22.

[58]

M.S. Swallah, H. Sun, R. Affoh, et al., Antioxidant potential overviews of secondary metabolites (polyphenols) in fruits, Int. J. Food Sci. 2020 (2020) 9081686. https://doi.org/10.1155/2020/9081686.

[59]

H. Shakoor, J. Feehan, V. Apostolopoulos, et al., Immunomodulatory effects of dietary polyphenols, Nutrients 13(3) (2021). https://doi.org/10.3390/nu13030728.

[60]

W. He, H. Xu, Y. Lu, et al., Function, digestibility and allergenicity assessment of ovalbumin–EGCG conjugates, J. Funct. Foods 61 (2019) 103490. https://doi.org/10.1016/j.jff.2019.103490.

[61]

A.M. Mileo, P. Nisticò, S. Miccadei, Polyphenols: immunomodulatory and therapeutic implication in colorectal cancer, Front. Immunol. 10 (2019). https://doi.org/10.3389/fimmu.2019.00729.

[62]

T.G. Pan, Y.N. Wu, S. He, et al., Food allergenic protein conjugation with plant polyphenols for allergenicity reduction, Curr. Opin. Sci. 43 (2022) 36-42. https://doi.org/10.1016/j.cofs.2021.10.002.

[63]

T. Zhang, Z. Hu, Y. Cheng, et al., Changes in allergenicity of ovalbumin in vitro and in vivo on conjugation with quercetin, J. Agric. Food Chem. 68(13) (2020) 4027-4035. https://doi.org/10.1021/acs.jafc.0c00461.

[64]

X. Lin, L. Ye, K. He, et al., A new method to reduce allergenicity by improving the functional properties of soybean 7S protein through covalent modification with polyphenols, Food Chem. 373 (2022) 131589. https://doi.org/10.1016/j.foodchem.2021.131589.

[65]

X. Pi, Y. Sun, J. Cheng, et al., A review on polyphenols and their potential application to reduce food allergenicity, Crit. Rev. Food Sci. Nutr. (2022) 1-18. https://doi.org/10.1080/10408398.2022.2078273.

[66]

X. Wu, Y. Lu, H. Xu, et al., Reducing the allergenic capacity of β-lactoglobulin by covalent conjugation with dietary polyphenols, Food Chem. 256 (2018) 427-434. https://doi.org/10.1016/j.foodchem.2018.02.158.

[67]

W. He, T. Zhang, T.C. Velickovic, et al., Covalent conjugation with(–)-epigallo-catechin 3-gallate and chlorogenic acid changes allergenicity and functional properties of Ara h 1 from peanut, Food Chem. 331 (2020) 127355. https://doi.org/10.1016/j.foodchem.2020.127355.

[68]

A.O. Lasekan, B. Nayak, Effects of buffer additives and thermal processing methods on the solubility of shrimp (Penaeus monodon) proteins and the immunoreactivity of its major allergen, Food Chem. 200 (2016) 146-153. https://doi.org/10.1016/j.foodchem.2016.01.015.

[69]

H. Yang, J. Lee, J.H. Seo, et al., Induction of oral tolerance by gamma-irradiated ovalbumin administration, Korean J. Food Sci. Anim. Resour. 36(1) (2016) 14-18. https://doi.org/10.5851/kosfa.2016.36.1.14.

[70]

X. Meng, X. Li, J. Gao, et al., Characterization of the potential allergenicity of irradiated bovine α-lactalbumin in a BALB/c mouse model, Food Chem. Toxicol. 97 (2016) 402-410. https://doi.org/10.1016/j.fct.2016.10.010.

[71]

A. Guan, K. Mei, M. Lv, et al., The effect of electron beam irradiation on IgG binding capacity and conformation of tropomyosin in shrimp, Food Chem. 264 (2018) 250-254. https://doi.org/10.1016/j.foodchem.2018.05.051.

[72]

Z. Zhang, H. Xiao, X. Zhang, et al., Conformation, allergenicity and human cell allergy sensitization of tropomyosin from exopalaemon modestus: effects of deglycosylation and Maillard reaction, Food Chem. 276 (2019)520-527. https://doi.org/10.1016/j.foodchem.2018.10.032.

[73]

L. Xu, Y. Gong, J.E. Gern, et al., Glycation of whey protein with dextrans of different molar mass: effect on immunoglobulin E-binding capacity with blood sera obtained from patients with cow milk protein allergy, J. Dairy Sci. 101(8) (2018) 6823-6834. https://doi.org/10.3168/jds.2017-14338.

[74]

R.K. Gupta, A. Raghav, A. Sharma, et al., Glycation of clinically relevant chickpea allergen attenuates its allergic immune response in Balb/c mice, Food Chem. 235 (2017) 244-256. https://doi.org/10.1016/j.foodchem.2017.05.056.

[75]

A. Bugajska-Schretter, M. Grote, L. Vangelista, et al., Purification, biochemical, and immunological characterisation of a major food allergen: different immunoglobulin E recognition of the apo- and calcium-bound forms of carp parvalbumin, Gut 46(5) (2000) 661-669. https://doi.org/10.1136/gut.46.5.661.

[76]

L.K. Creamer, Effect of sodium dodecyl sulfate and palmitic acid on the equilibrium unfolding of bovine beta-lactoglobulin, Biochemistry 34(21) (1995) 7170-7176. https://doi.org/10.1021/bi00021a031.

[77]

K.J. Gong, A.M. Shi, H.Z. Liu, et al., Emulsifying properties and structure changes of spray and freeze-dried peanut protein isolate, J. Food Eng. 170 (2016) 33-40. https://doi.org/10.1016/j.jfoodeng.2015.09.011.

[78]

G. Bulaj, Formation of disulfide bonds in proteins and peptides, Biotechnol. Adv. 23(1) (2005) 87-92. https://doi.org/10.1016/j.biotechadv.2004.09.002.

[79]

M.A.B. Siddique, P. Maresca, G. Pataro, et al., Effect of pulsed light treatment on structural and functional properties of whey protein isolate, Food Res. Int. 87 (2016) 189-196. https://doi.org/10.1016/j.foodres.2016.07.017.

[80]

H. Liu, Y. Xu, S. Zu, et al., Effects of high hydrostatic pressure on the conformational structure and gel properties of myofibrillar protein and meat quality: a review, Foods 10(8) (2021) 1872. https://doi.org/10.3390/foods10081872.

[81]

H. Xu, T. Zhang, Y. Lu, et al., Effect of chlorogenic acid covalent conjugation on the allergenicity, digestibility and functional properties of whey protein, Food Chem. 298 (2019) 125024. https://doi.org/10.1016/j.foodchem.2019.125024.

[82]

T. Li, G. Bu, G. Xi, Effects of heat treatment on the antigenicity, antigen epitopes, and structural properties of β-conglycinin, Food Chem. 346 (2021)128962. https://doi.org/10.1016/j.foodchem.2020.128962.

[83]

D. Croote, S.R. Quake, Food allergen detection by mass spectrometry: the role of systems biology, NPJ. Syst. Biol. Appl. 2(1) (2016) 16022. https://doi.org/10.1038/npjsba.2016.22.

[84]

L.N. Willison, Q. Zhang, M. Su, et al., Conformational epitope mapping of Pru du 6, a major allergen from almond nut, Mol. Immunol. 55(3) (2013) 253-263. https://doi.org/10.1016/j.molimm.2013.02.004.

[85]

Q. Zhang, L.N. Willison, P. Tripathi, et al., Epitope mapping of a 95 kDa antigen in complex with antibody by solution-phase amide backbone hydrogen/deuterium exchange monitored by fourier transform ion cyclotron resonance mass spectrometry, Anal. Chem. 83(18) (2011) 7129-7136. https://doi.org/10.1021/ac201501z.

[86]

J.A. Sealey-Voyksner, C. Khosla, R.D. Voyksner, et al., Novel aspects of quantitation of immunogenic wheat gluten peptides by liquid chromatography–mass spectrometry/mass spectrometry, J. Chromatogr. A. 1217(25) (2010) 4167-4183. https://doi.org/10.1016/j.chroma.2010.01.067.

[87]

Y. Zhu, S. Kranthi Vanga, J. Wang, et al., Effects of ultrasonic and microwave processing on avidin assay and secondary structures of egg white protein, Food Bioprocess. Tech. (2018). https://doi.org/10.1007/s11947-018-2158-6.

[88]

L. Fu, C. Wang, J. Wang, et al., Maillard reaction with ribose, galacto-oligosaccharide or chitosan-oligosaccharide reduced the allergenicity of shrimp tropomyosin by inducing conformational changes, Food Chem. 274(2019) 789-795. https://doi.org/10.1016/j.foodchem.2018.09.068.

[89]

H.M. Farrell, E.D. Wickham, J.J. Unruh, et al., Secondary structural studies of bovine caseins: temperature dependence of β-casein structure as analyzed by circular dichroism and FTIR spectroscopy and correlation with micellization, Food Hydrocoll. 15(4) (2001) 341-354. https://doi.org/10.1016/S0268-005X(01)00080-7.

[90]

M. Carbonaro, A. Nucara, Secondary structure of food proteins by Fourier transform spectroscopy in the mid-infrared region, Amino Acids 38(3) (2010) 679-690. https://doi.org/10.1007/s00726-009-0274-3.

[91]

S.K. Vanga, A. Singh, F. Kalkan, et al., Effect of thermal and high electric fields on secondary structure of peanut protein, Int. J. Food Prope. 19(5-8) (2016) 1259-1271. https://doi.org/10.1080/10942912.2015.1071841.

[92]

J. Yao, Y. Zhou, X. Chen, et al., Effect of sodium alginate with three molecular weight forms on the water holding capacity of chicken breast myosin gel, Food Chem. 239 (2018) 1134-1142. https://doi.org/10.1016/j.foodchem.2017.07.027.

[93]

J. Kong, Y.U. Shaoning, Fourier transform infrared spectroscopic analysis of protein secondary structures, Acta Biochim. Biophys. Sin. 39(008) (2010) 549-559. https://doi.org/10.1111/j.1745-7270.2007.00320.x.

[94]

T.F. Kumosinski, J.J. Unruh, Quantitation of the global secondary structure of globular proteins by FTIR spectroscopy: comparison with X-ray crystallographic structure, Talanta 43(2) (1996) 199-219. https://doi.org/10.1016/0039-9140(95)01726-7.

[95]

Y. Lu, S. Li, H. Xu, et al., Effect of covalent Interaction with chlorogenic acid on the allergenic capacity of ovalbumin, J. Agric. Food Chem. 66(37) (2018) 9794-9800. https://doi.org/10.1021/acs.jafc.8b03410.

[96]

Z. Jia, M. Zheng, F. Tao, et al., Effect of covalent modification by(–)-epigallocatechin-3-gallate on physicochemical and functional properties of whey protein isolate, LWT-Food Sci. Technol. 66 (2016) 305-310. https://doi.org/10.1016/j.lwt.2015.10.054.

[97]

J. Xi, M. He, High hydrostatic pressure (HHP) effects on antigenicity and structural properties of soybean β-conglycinin, J. Food Sci. Technol. 55(2) (2018) 630-637. https://doi.org/10.1007/s13197-017-2972-2.

[98]

L. Jiang, Y. Liu, L. Li, et al., Covalent conjugates of anthocyanins to soy protein: unravelling their structure features and in vitro gastrointestinal digestion fate, Food Res. Int. 120 (2019) 603-609. https://doi.org/10.1016/j.foodres.2018.11.011.

[99]

M. Liang, R. Liu, W. Qi, et al., Interaction between lysozyme and procyanidin: multilevel structural nature and effect of carbohydrates, Food Chem. 138(2) (2013) 1596-1603. https://doi.org/10.1016/j.foodchem.2012.11.027.

[100]

F. Xue, C. Li, B. Adhikari, Physicochemical properties of soy protein isolates-cyanidin-3-galactoside conjugates produced using free radicals induced by ultrasound, Ultrason. Sonochem. 64 (2020) 104990. https://doi.org/10.1016/j.ultsonch.2020.104990.

[101]

P.O. Tsvetkov, F. Devred, Plasmatic signature of disease by differential scanning calorimetry (DSC), Methods Mol. Biol. 1964 (2019) 45-57. https://doi.org/10.1007/978-1-4939-9179-2_4.

[102]

L. Tuppo, I. Giangrieco, M. Tamburrini, et al., Detection of allergenic proteins in foodstuffs: advantages of the innovative multiplex allergen microarray-based immunoassay compared to conventional methods, Foods 11(6) (2022) 878. https://doi.org/10.3390/foods11060878.

[103]

J. Courtois, C. Bertholet, S. Tollenaere, et al., Detection of wheat allergens using 2D western blot and mass spectrometry, J. Pharm. Biomed. Anal. 178 (2020) 112907. https://doi.org/10.1016/j.jpba.2019.112907.

[104]

M. Citartan, Aptamers as the powerhouse of dot blot assays, Talanta 232 (2021) 122436. https://doi.org/10.1016/j.talanta.2021.122436.

[105]

M. Zhang, P. Wu, J. Wu, et al., Advanced DNA-based methods for the detection of peanut allergens in processed food, TrAC-Trend Anal. Chem. 114 (2019) 278-292. https://doi.org/10.1016/j.trac.2019.01.021.

[106]

S. Cau, M.G. Tilocca, C. Spanu, et al., Detection of celery (Apium graveolens) allergen in foods of animal and plant origin by droplet digital PCR assay, Food Control 130 (2021) 108407. https://doi.org/10.1016/j.foodcont.2021.108334.

[107]

E. Iniesto, A. Jiménez, N. Prieto, et al., Real time PCR to detect hazelnut allergen coding sequences in processed foods, Food Chem. 138(2) (2013) 1976-1981. https://doi.org/10.1016/j.foodchem.2012.11.036.

[108]

Y. Shen, L. Xu, Y. Li, Biosensors for rapid detection of Salmonella in food: a review, Compr. Rev. Food Sci. Food Saf. 20(1) (2021) 149-197. https://doi.org/10.1111/1541-4337.12662.

[109]

J. Zhou, Q. Qi, C. Wang, et al., Surface plasmon resonance (SPR) biosensors for food allergen detection in food matrices, Biosens. Bioelectron. 142 (2019) 111449. https://doi.org/10.1016/j.bios.2019.111449.

[110]

A. Angulo-Ibáñez, U. Eletxigerra, X. Lasheras, et al., Electrochemical tropomyosin allergen immunosensor for complex food matrix analysis, Anal. Chim. Acta 1079 (2019) 94-102. https://doi.org/10.1016/j.aca.2019.06.030.

[111]

I. Manea, E. Ailenei, D. Deleanu, Overview of food allergy diagnosis, Clujul. Med. 89(1) (2016) 5-10. https://doi.org/10.15386/cjmed-513.

[112]

G.S. Ladics, L.M.J. Knippels, A.H. Penninks, et al., Review of animal models designed to predict the potential allergenicity of novel proteins in genetically modified crops, Regul. Toxicol. Pharmacol. 56(2) (2010) 212-224. https://doi.org/10.1016/j.yrtph.2009.09.018.

[113]

A. Yang, Y. Liao, J. Zhu, et al., Screening of anti-allergy Lactobacillus and its effect on allergic reactions in BALB/c mice sensitized by soybean protein, J. Funct. Foods 87 (2021) 104858. https://doi.org/10.1016/j.jff.2021.104858.

[114]

M. Milovanovic, G. Drozdenko, C. Weise, et al., Interleukin-17A promotes IgE production in human B cells, J. Invest. Dermatol. 130(11) (2010) 2621-2628. https://doi.org/10.1038/jid.2010.175.

[115]

H. Zhang, H. Kong, X. Zeng, et al., Subsets of regulatory T cells and their roles in allergy, J. Transl. Med. 12 (2014) 125. https://doi.org/10.1186/1479-5876-12-125.

[116]

S. Benedé, M.C. Berin, Applications of mouse models to the study of food allergy, Methods Mol. Biol. 2223 (2021) 1-17. https://doi.org/10.1007/978-1-0716-1001-5_1.

[117]

B. Gonipeta, E. Kim, V. Gangur, Mouse models of food allergy: How well do they simulate the human disorder? Crit. Rev. Food Sci. Nutr. 55(3) (2015) 437-452. https://doi.org/10.1080/10408398.2012.657807.

[118]

X. Liu, J. Feng, Z.R. Xu, et al., Oral allergy syndrome and anaphylactic reactions in BALB/c mice caused by soybean glycinin and β-conglycinin, Clin. Exp. Allergy 38(2) (2008) 350-356. https://doi.org/10.1111/j.1365-2222.2007.02893.x.

[119]

B. Gonipeta, S. Parvataneni, R.J. Tempelman, et al., An adjuvant-free mouse model to evaluate the allergenicity of milk whey protein, J. Dairy Sci. 92(10) (2009) 4738-4744. https://doi.org/10.3168/jds.2008-1927.

[120]

B. Gonipeta, S. Parvataneni, P. Paruchuri, et al., Long-term characteristics of hazelnut allergy in an adjuvant-free mouse model, Int. Arch. Allergy Immunol. 152(3) (2010) 219-225. https://doi.org/10.1159/000283028.

[121]

D. Dunkin, M.C. Berin, L. Mayer, Allergic sensitization can be induced via multiple physiologic routes in an adjuvant-dependent manner, J. Allergy Clin. Immun. 128(6) (2011) 1251-1258.e2. https://doi.org/10.1016/j.jaci.2011.06.007.

[122]

F. Erdő, L.A. Bors, D. Farkas, et al., Evaluation of intranasal delivery route of drug administration for brain targeting, Brain Res Bull. 143 (2018) 155-170. https://doi.org/10.1016/j.brainresbull.2018.10.009.

[123]

W. Al Bakri, M.D. Donovan, M. Cueto, et al., Overview of intranasally delivered peptides: key considerations for pharmaceutical development, Expert. Opin. Drug Deliv. 15(10) (2018) 991-1005. https://doi.org/10.1080/17425247.2018.1517742.

[124]

D.I. Kim, M.K. Song, K. Lee, Comparison of asthma phenotypes in OVA-induced mice challenged via inhaled and intranasal routes, BMC Pulm. Med. 19(1) (2019) 241. https://doi.org/10.1186/s12890-019-1001-9.

[125]

Y. Wang, Y. Zhou, Y. Zhu, et al., The comparation of intraperitoneal injection and nasal-only delivery allergic rhinitis model challenged with different allergen concentration, Am. J. Rhinol. Allergy 33(2) (2019) 145-152. https://doi.org/10.1177/1945892418817221.

[126]

S. Wavrin, H. Bernard, J.M. Wal, et al., Influence of the route of exposure and the matrix on the sensitisation potency of a major cows’ milk allergen, Clin. Transl. Allergy 5(1) (2015) 3. https://doi.org/10.1186/s13601-015-0047-x.

[127]

B. Keshavarz, X. Jiang, Y.H.P. Hsieh, et al., Matrix effect on food allergen detection – a case study of fish parvalbumin, Food Chem. 274 (2019) 526-534. https://doi.org/10.1016/j.foodchem.2018.08.138.

[128]

A. Achouri, J.I. Boye, Thermal processing, salt and high pressure treatment effects on molecular structure and antigenicity of sesame protein isolate, Food Res. Int. 53(1) (2013) 240-251. https://doi.org/10.1016/j.foodres.2013.04.016.

[129]

C. Yamada, H. Izumo, J. Hirano, et al., Degradation of soluble proteins including some allergens in brown rice grains by endogenous proteolytic activity during germination and heat-processing, Biosci. Biotechnol.Biochem. 69(10) (2014) 1877-1883. https://doi.org/10.1271/bbb.69.1877.

[130]

M. Zeece, T. Huppertz, A. Kelly, Effect of high-pressure treatment on in-vitro digestibility of β-lactoglobulin, Innov. Food Sci. Emerg. 9(1) (2008) 62-69. https://doi.org/10.1016/j.ifset.2007.05.004.

[131]

S.L. Bavaro, L. Di Stasio, G. Mamone, et al., Effect of thermal/pressure processing and simulated human digestion on the immunoreactivity of extractable peanut allergens, Food Res. Int. 109 (2018) 126-137. https://doi.org/10.1016/j.foodres.2018.04.021.

[132]

X. Pi, G. Fu, B. Dong, et al., Effects of fermentation with Bacillus natto on the allergenicity of peanut, LWT-Food Sci. Technol. 141 (2021) 110862. https://doi.org/10.1016/j.lwt.2021.110862.

[133]

Y. Tao, D.W. Sun, Enhancement of food processes by ultrasound: a review, Crit. Rev. Food Sci. Nutr. 55(4) (2015) 570-594. https://doi.org/10.1080/10408398.2012.667849.

[134]

X. Pi, Y. Yang, Y. Sun, et al., Recent advances in alleviating food allergenicity through fermentation, Crit. Rev. Food Sci. Nutr. 62(26) (2022) 7255-7268. https://doi.org/10.1080/10408398.2021.1913093.

[135]

M. Pan, J. Yang, K. Liu, et al., Irradiation technology: an effective and promising strategy for eliminating food allergens, Food Res. Int. 148 (2021) 110578. https://doi.org/10.1016/j.foodres.2021.110578.

[136]

Y. Yao, Y. Jia, X. Lu, et al., Release and conformational changes in allergenic proteins from wheat gluten induced by high hydrostatic pressure, Food Chem. 368 (2022) 130805. https://doi.org/10.1016/j.foodchem.2021.130805.

[137]

F. Liu, C. Ma, D.J. McClements, et al., A comparative study of covalent and non-covalent interactions between zein and polyphenols in ethanol-water solution, Food Hydrocoll. 63 (2017) 625-634. https://doi.org/10.1016/j.foodhyd.2016.09.041.

Food Science and Human Wellness
Pages 1135-1151
Cite this article:
Zhou E, Li Q, Zhu D, et al. Characterization of physicochemical and immunogenic properties of allergenic proteins altered by food processing: a review. Food Science and Human Wellness, 2024, 13(3): 1135-1151. https://doi.org/10.26599/FSHW.2022.9250095

1208

Views

323

Downloads

4

Crossref

1

Web of Science

2

Scopus

0

CSCD

Altmetrics

Received: 05 September 2022
Revised: 10 October 2022
Accepted: 07 November 2022
Published: 08 February 2024
© 2024 Beijing Academy of Food Sciences. Publishing services by Tsinghua University Press.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return