AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.7 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

Food-derived protein hydrolysates and peptides: anxiolytic and antidepressant activities, characteristics, and mechanisms

Wenhui Li,Yu XiJunru WangYinxiao ZhangHe Li( )Xinqi Liu( )
Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing 100048, China

Peer review under responsibility of Tsinghua University Press.

Show Author Information

Abstract

Globally, the prevalence of anxiety and depression has reached epidemic proportions. Food-derived protein hydrolysates and peptides delivered through dietary supplementation can avoid the negative risks associated with traditional pharmaceuticals while delivering superior anxiolytic and antidepressant effects. This review summarizes current research on food-derived anxiolytic and antidepressant protein hydrolysates and peptides, and subsequently analyses their physicochemical characteristics and elaborates on their mechanisms. The aim of this work is to contribute to the in-depth study and provide a theoretical foundation for the development of related products to better serve patients with anxiety and depression.

References

[1]

M.G. Craske, M.B. Stein, Anxiety, The Lancet 388 (2016) 3048-3059. http://doi.org/10.1016/s0140-6736(16)30381-6.

[2]

B.W.J.H. Penninx, D.S. Pine, E.A. Holmes, et al., Anxiety disorders, The Lancet 397 (2021) 914-927. http://doi.org/10.1016/s0140-6736(21)00359-7.

[3]

J.P. Mercante, M.F. Peres, M.A. Bernik, Primary headaches in patients with generalized anxiety disorder, J. Headache Pain 12 (2011) 331-338. http://doi.org/10.1007/s10194-010-0290-4.

[4]

M. Pluess, A. Conrad, F.H. Wilhelm, Muscle tension in generalized anxiety disorder: a critical review of the literature, J. Anxiety Disord. 23 (2009) 1-11. http://doi.org/10.1016/j.janxdis.2008.03.016.

[5]

L.M. Ahrens, P. Pauli, A. Reif, et al., Fear conditioning and stimulus generalization in patients with social anxiety disorder, J. Anxiety Disord. 44 (2016) 36-46. http://doi.org/10.1016/j.janxdis.2016.10.003.

[6]

D. Cornacchio, K.I. Crum, S. Coxe, et al., Irritability and severity of anxious symptomatology among youth with anxiety disorders, J. Am. Acad. Child Adolesc. Psychiatry 55 (2016) 54-61. http://doi.org/10.1016/j.jaac.2015.10.007.

[7]
K.W. Choi, Y.K. Kim, H.J. Jeon, et al., Comorbid anxiety and depression: clinical and conceptual consideration and transdiagnostic treatment. in: Y.K. Kim (Eds.), Advances in experimental medicine and biology, Springer, Singapore, 2020, pp. 219-235.
[8]

R.M. McCarron, B. Shapiro, J. Rawles, et al., Depression, Ann. Intern. Med.174 (2021) ITC65-ITC80. http://doi.org/10.7326/AITC202105180.

[9]

G.S. Malhi, J.J. Mann, Depression, The Lancet 392 (2018) 2299-2312. http://doi.org/10.1016/s0140-6736(18)31948-2.

[10]

S.M.A. Shah, D. Mohammad, M.F.H. Qureshi, et al., Prevalence, psychological responses and associated correlates of depression, anxiety and stress in a global population, during the coronavirus disease (COVID-19) pandemic, Community Ment. Health J. 57 (2021) 101-110. http://doi.org/10.1007/s10597-020-00728-y.

[11]

J. Zhu, L. Sun, L. Zhang, et al., Prevalence and influencing factors of anxiety and depression symptoms in the first-line medical staff fighting against COVID-19 in Gansu, Front. Psychiatry 11 (2020) 386. http://doi.org/10.3389/fpsyt.2020.00386.

[12]

M. Haque, J. Charan, S. Dutta, et al., Anxiety disorders: recent global approach to neuro-pathogenesis, drug treatment, cognitive behavioral therapy, and their implications, Bangladesh J. Med. Sci. 20 (2021) 487-503. http://doi.org/10.3329/bjms.v20i3.52790.

[13]
L. Mora, M.C. Aristoy, F. Toldrá, Bioactive peptides. in: L. Melton, F. Shahidi, P. Varelis (Eds.), Encyclopedia of food chemistry, Oxford, Academic Press, 2019, pp. 381-389.
[14]

Z. Karami, B. Akbari-Adergani, Bioactive food derived peptides: a review on correlation between structure of bioactive peptides and their functional properties, J. Food Sci. Technol. 56 (2019) 535-547. http://doi.org/10.1007/s13197-018-3549-4.

[15]

J.M. Lorenzo, P.E.S. Munekata, B. Gómez, et al., Bioactive peptides as natural antioxidants in food products: a review, Trends Food Sci. Technol. 79 (2018) 136-147. http://doi.org/10.1016/j.tifs.2018.07.003.

[16]

S. Guha, K. Majumder, Structural-features of food-derived bioactive peptides with anti-inflammatory activity: a brief review, J. Food Biochem. 43 (2019) e12531. http://doi.org/10.1111/jfbc.12531.

[17]

D.Y. Pujiastuti, M.N. Ghoyatul Amin, M.A. Alamsjah, et al., Marine organisms as potential sources of bioactive peptides that inhibit the activity of angiotensin i-converting enzyme: a review, Molecules 24 (2019) 2541. http://doi.org/10.3390/molecules24142541.

[18]

B.A. Kehinde, P. Sharma, Recently isolated antidiabetic hydrolysates and peptides from multiple food sources: a review, Crit. Rev. Food Sci. Nutr. 60 (2020) 322-340. http://doi.org/10.1080/10408398.2018.1528206.

[19]

M. Chalamaiah, W. Yu, J. Wu, Immunomodulatory and anticancer protein hydrolysates (peptides) from food proteins: a review, Food Chem. 245 (2018) 205-222. http://doi.org/10.1016/j.foodchem.2017.10.087.

[20]

L. Kang, T. Han, H. Cong, et al., Recent research progress of biologically active peptides, BioFactors 48 (2022) 575-596. http://doi.org/10.1002/biof.1822.

[21]

T. Mizushige, Neuromodulatory peptides: orally active anxiolytic-like and antidepressant-like peptides derived from dietary plant proteins, Peptides 142 (2021) 170569. http://doi.org/10.1016/j.peptides.2021.170569.

[22]

S. Wu, A.E.D.A. Bekhit, Q. Wu, et al., Bioactive peptides and gut microbiota: candidates for a novel strategy for reduction and control of neurodegenerative diseases, Trends Food Sci. Technol. 108 (2021) 164-176. http://doi.org/10.1016/j.tifs.2020.12.019.

[23]

I.J. de la Pena, E. Hong, J.B. de la Pena, et al., Milk Collected at night induces sedative and anxiolytic-like effects and augments pentobarbital-induced sleeping behavior in mice, J. Med. Food 18 (2015) 1255-1261. http://doi.org/10.1089/jmf.2015.3448.

[24]

N. Violle, M. Messaoudi, C. Lefranc-Millot, et al., Ethological comparison of the effects of a bovine αs1-casein tryptic hydrolysate and diazepam on the behaviour of rats in two models of anxiety, Pharmacol. Biochem. Behav. 84 (2006) 517-523. http://doi.org/10.1016/j.pbb.2006.06.017.

[25]

M. Messaoudi, R. Lalonde, H. Schroeder, et al., Anxiolytic-like effects and safety profile of a tryptic hydrolysate from bovine alpha s1-casein in rats, Fundam. Clin. Pharmacol. 23 (2009) 323-330. http://doi.org/10.1111/j.1472-8206.2009.00672.x.

[26]

T. Freret, S. Largilliere, G. Nee, et al., Fast anxiolytic-like effect observed in the rat conditioned defensive burying test, after a single oral dose of natural protein extract products, Nutrients 13 (2021) 2445. http://doi.org/10.3390/nu13072445.

[27]

L. Miclo, E. Perrin, A. Driou, et al., Characterization of α-casozepine, a tryptic peptide from bovine αs1-casein with benzodiazepine-like activity, FASEB J. 15 (2001) 1780-1782. http://doi.org/10.1096/fj.00-0685fje.

[28]

C. Cakir-Kiefer, Y. Le Roux, F. Balandras, et al., In vitro digestibility of α-casozepine, a benzodiazepine-like peptide from bovine casein, and biological activity of its main proteolytic fragment, J. Agric. Food Chem. 59 (2011) 4464-4472. http://doi.org/10.1021/jf104089c.

[29]

S. Benoit, C. Chaumontet, J. Schwarz, et al., Mapping in mice the brain regions involved in the anxiolytic-like properties of α-casozepine, a tryptic peptide derived from bovine αs1 -casein, J. Funct. Foods. 38 (2017) 464-473. http://doi.org/10.1016/j.jff.2017.09.014.

[30]

S. Benoit, C. Chaumontet, J. Schwarz, et al., Anxiolytic activity and brain modulation pattern of the α-casozepine-derived pentapeptide ylgyl in mice, Nutrients 12 (2020) 1497-1509. http://doi.org/10.3390/nu12051497.

[31]

T. Mizushige, Y. Sawashi, A. Yamada, et al., Characterization of Tyr-Leu-Gly, a novel anxiolytic-like peptide released from bovine αS-casein, FASEB J. 27 (2013) 2911-2917. http://doi.org/10.1096/fj.12-225474.

[32]

X. Zhu, Q. Tao, D. Sun-Waterhouse, et al., γ-[Glu]n-Trp ameliorates anxiety/depression-like behaviors and its anti-inflammatory effect in an animal model of anxiety/depression, Food Funct. 10 (2019) 5544-5554. http://doi.org/10.1039/c9fo01467e.

[33]

X. Zhu, D. Sun-Waterhouse, Q. Tao, et al., The enhanced serotonin (5-HT) synthesis and anti-oxidative roles of Trp oligopeptide in combating anxious depression C57BL/6 mice, J. Funct. Foods 67 (2020) 103859. http://doi.org/10.1016/j.jff.2020.103859.

[34]

I.C. Hou, C. Suzuki, N. Kanegawa, et al., β-Lactotensin derived from bovine β-lactoglobulin exhibits anxiolytic-like activity as an agonist for neurotensin NTS2 receptor via activation of dopamine D1 receptor in mice, J. Neurochem. 119 (2011) 785-790. http://doi.org/10.1111/j.1471-4159.2011.07472.x.

[35]

A. Yamada, T. Mizushige, R. Kanamoto, et al., Identification of novel β-lactoglobulin-derived peptides, wheylin-1 and -2, having anxiolytic-like activity in mice, Mol. Nutr. Food Res. 58 (2014) 353-358. http://doi.org/10.1002/mnfr.201300237.

[36]

M. Orosco, C. Rouch, F. Beslot, et al., Alpha-lactalbumin-enriched diets enhance serotonin release and induce anxiolytic and rewarding effects in the rat, Behav. Brain Res. 148 (2004) 1-10. http://doi.org/10.1016/s0166-4328(03)00153-0.

[37]

Y. Vekovischeva, K. Peuhkuri, P. Backstrom, et al., The effects of native whey and α-lactalbumin on the social and individual behaviour of C57BL/6J mice, Br. J. Nutr. 110 (2013) 1336-1346. http://doi.org/10.1017/S0007114513000238.

[38]

F. Bernet, V. Montel, B. Noël, et al., Diazepam-like effects of a fish protein hydrolysate (Gabolysat PC60) on stress responsiveness of the rat pituitary-adrenal system and sympathoadrenal activity, Psychopharmacology 149 (2000) 34-40. http://doi.org/10.1007/s002139900338.

[39]

A.L. Dinel, C. Lucas, J. Le Faouder, et al., Supplementation with low molecular weight peptides from fish protein hydrolysate reduces acute mild stress-induced corticosterone secretion and modulates stress responsive gene expression in mice, J. Funct. Foods 76 (2021) 104292. http://doi.org/10.1016/j.jff.2020.104292.

[40]

A. Oda, K. Kaneko, T. Mizushige, et al., Characterization of ovolin, an orally active tryptic peptide released from ovalbumin with anxiolytic-like activity, J. Neurochem. 122 (2012) 356-362. http://doi.org/10.1111/j.1471-4159.2012.07777.x.

[41]

Z. Yu, W. Zhao, L. Ding, et al., Anxiolytic effects of ACE inhibitory peptides on the behavior of rats in an elevated plus-maze, Food Funct. 7 (2016) 491-497. http://doi.org/10.1039/c5fo00697j.

[42]

C. Kakoi, H. Udo, T. Matsukawa, et al., Collagen peptides enhance hippocampal neurogenesis and reduce anxietyrelated behavior in mice, Biomed. Res. 33 (2012) 273-279. http://doi.org/10.1258/ebm.2012.011380.

[43]

H. Hirata, S. Sonoda, S. Agui, et al., Rubiscolin-6, a delta opioid peptide derived from spinach Rubisco, has anxiolytic effect via activating σ1 and dopamine D1 receptors, Peptides 28 (2007) 1998-2003. http://doi.org/10.1016/j.peptides.2007.07.024.

[44]

H. Zhao, K. Ohinata, M. Yoshikawa, Rubimetide (Met-Arg-Trp) derived from Rubisco exhibits anxiolytic-like activity via the DP1 receptor in male ddY mice, Peptides 29 (2008) 629-632. http://doi.org/10.1016/j.peptides.2007.12.007.

[45]

H. Zhao, S. Sonada, A. Yoshikawa, et al., Rubimetide, humanin, and MMK1 exert anxiolytic-like activities via the formyl peptide receptor 2 in mice followed by the successive activation of DP1, A2A, and GABAA receptors, Peptides 83 (2016) 16-20. http://doi.org/10.1016/j.peptides.2016.07.001.

[46]

S. Kimura, T. Uchida, Y. Tokuyama, et al., Identification of Rubisco anxiolytic-like peptides (rALPs) by comprehensive analysis of spinach green leaf protein digest, Biochem. Biophy. Res. Commun. 505 (2018) 1050-1056. http://doi.org/10.1016/j.bbrc.2018.09.195.

[47]

K. Ohinata, S. Agui, M. Yoshikawa, Soymorphins, novel μ opioid peptides derived from soy β-conglycinin β-subunit, have anxiolytic activities, Biosci. Biotechnol. Biochem. 71 (2007) 2618-2621. http://doi.org/10.1271/bbb.70516.

[48]

A. Ota, A. Yamamoto, S. Kimura, et al., Rational identification of a novel soy-derived anxiolytic-like undecapeptide acting via gut-brain axis after oral administration, Neurochem. Int.105 (2017) 51-57. http://doi.org/10.1016/j.neuint.2016.12.020.

[49]

T. Mizushige, N. Kanegawa, A. Yamada, et al., Aromatic amino acid-leucine dipeptides exhibit anxiolytic-like activity in young mice, Neurosci. Lett. 543 (2013) 126-129. http://doi.org/10.1016/j.neulet.2013.03.043.

[50]

N. Kanegawa, C. Suzuki, K. Ohinata, Dipeptide Tyr-Leu (YL) exhibits anxiolytic-like activity after oral administration via activating serotonin 5-HT1A, dopamine D1 and GABAAreceptors in mice, FEBS Letters 584 (2010) 599-604. http://doi.org/10.1016/j.febslet.2009.12.008.

[51]

P.C. Pereira, Milk nutritional composition and its role in human health, Nutrition 30 (2014) 619-627. http://doi.org/10.1016/j.nut.2013.10.011.

[52]

M.P. Milagres, V.P. Minim, L.A. Minim, et al., Night milking adds value to cow’s milk, J. Sci. Food Agric. 94 (2014) 1688-1692. http://doi.org/10.1002/jsfa.6480.

[53]

D.P. Mohanty, S. Mohapatra, S. Misra, et al., Milk derived bioactive peptides and their impact on human health-a review, Saudi J. Biol. Sci. 23 (2016) 577-583. http://doi.org/10.1016/j.sjbs.2015.06.005.

[54]

M. Bielecka, G. Cichosz, H. Czeczot, Antioxidant, antimicrobial and anticarcinogenic activities of bovine milk proteins and their hydrolysates-a review, Int. Dairy J. 127 (2022) 105208. http://doi.org/10.1016/j.idairyj.2021.105208.

[55]

S. Li, Q. Hu, C. Chen, et al., Formation of bioactive peptides during simulated gastrointestinal digestion is affected by αS1-casein polymorphism in buffalo milk, Food Chem. 313 (2020) 126159. http://doi.org/10.1016/j.foodchem.2020.126159.

[56]

N.R.A. Halim, H.M. Yusof, N.M. Sarbon, Functional and bioactive properties of fish protein hydolysates and peptides: a comprehensive review, Trends Food Sci. Technol. 51 (2016) 24-33. http://doi.org/10.1016/j.tifs.2016.02.007.

[57]

R. Gao, Q. Yu, Y. Shen, et al., Production, bioactive properties, and potential applications of fish protein hydrolysates: developments and challenges, Trends Food Sci. Technol. 110 (2021) 687-699. http://doi.org/10.1016/j.tifs.2021.02.031.

[58]

J.H. Lee, H.D. Paik, Anticancer and immunomodulatory activity of egg proteins and peptides: a review, Poult. Sci. 98 (2019) 6505-6516. http://doi.org/10.3382/ps/pez381.

[59]

K. Ohinata, A. Oda, Novel orally active peptide Val-Tyr-Leu-Pro-Arg derived from egg white albumin with anxiolytic-like activity, Neurosci. Res. 71 (2011) e72. http://doi.org/10.1016/j.neures.2011.07.306.

[60]

J. Alipal, N.A.S. Mohd Pu’ad, T.C. Lee, et al., A review of gelatin: properties, sources, process, applications, and commercialisation, Materials Today: Proceedings 42 (2021) 240-250. http://doi.org/10.1016/j.matpr.2020.12.922.

[61]

C. Cabanos, Y. Matsuoka, N. Maruyama, Soybean proteins/peptides: a review on their importance, biosynthesis, vacuolar sorting, and accumulation in seeds, Peptides 143 (2021) 170598. http://doi.org/10.1016/j.peptides.2021.170598.

[62]

T. Mizushige, T. Uchida, K. Ohinata, Dipeptide tyrosyl-leucine exhibits antidepressant-like activity in mice, Sci. Rep. 10 (2020) 2257. http://doi.org/10.1038/s41598-020-59039-7.

[63]

Y. Qi, H. Zhang, S. Liang, et al., Evaluation of the antidepressant effect of the functional beverage containing active peptides, menthol and eleutheroside and investigation of its mechanism of action in mice, Food Technol. Biotechnol. 58 (2020) 295-302. http://doi.org/10.17113/ftb.58.03.20.6568.

[64]

Y. Ano, R. Ohya, K. Kondo, Antidepressant-like effect of β-lactolin, a glycine-threonine-tryptophan-tyrosine peptide, J. Nutr. Sci. Vitaminol. 65 (2019) 430-434. http://doi.org/10.3177/jnsv.65.430.

[65]

M. Messaoudi, A. Nejdi, H. Javelot, et al., Anxiolytic and antidepressant-like effects of Garum armoricum® (Ga), a blue ling fish protein autolysate in male wistar rats, Curr. Top. Nutraceutical Res. 6 (2008) 115-123.

[66]

X. Yang, K. Wang, Q. Liu, et al., Discovery of monoamine oxidase a inhibitory peptides from hairtail (Trichiurus japonicus) using in vitro simulated gastrointestinal digestion and in silico studies, Bioorg. Chem. 101 (2020) 104032. http://doi.org/10.1016/j.bioorg.2020.104032.

[67]

T. Mizushige, D. Nogimura, A. Nagai, et al., Ginger-degraded collagen hydrolysate exhibits antidepressant activity in mice, J. Nutr. Sci. Vitaminol. 65 (2019) 251-257. http://doi.org/10.3177/jnsv.65.251.

[68]

D. Nogimura, T. Mizushige, Y. Taga, et al., Prolyl-hydroxyproline, a collagen-derived dipeptide, enhances hippocampal cell proliferation, which leads to antidepressant-like effects in mice, FASEB J. 34 (2020) 5715-5723. http://doi.org/10.1096/fj.201902871R.

[69]

Y. Yamamoto, T. Mizushige, Y. Mori, et al., Antidepressant-like effect of food-derived pyroglutamyl peptides in mice, Neuropeptides 51 (2015) 25-29. http://doi.org/10.1016/j.npep.2015.04.002.

[70]

Y. Mori, S. Asakura, A. Yamamoto, et al., Characterization of soy-deprestatin, a novel orally active decapeptide that exerts antidepressant-like effects via gut-brain communication, FASEB J. 32 (2018) 568-575. http://doi.org/10.1096/fj.201700333RR.

[71]

Y. Mitsumoto, R. Sato, N. Tagawa, et al., Rubiscolin-6, a D-opioid peptide from spinach rubisco, exerts antidepressant-like effect in restraint-stressed mice, J. Nutr. Sci. Vitaminol. 65 (2019) 202-204. http://doi.org/10.3177/jnsv.65.202.

[72]

S. Zhao, C. Rong, Y. Gao, et al., Antidepressant-like effect of Ganoderma lucidum spore polysaccharide-peptide mediated by upregulation of prefrontal cortex brain-derived neurotrophic factor, Appl. Microbiol. Biotechnol. 105 (2021) 8675-8688. http://doi.org/10.1007/s00253-021-11634-y.

[73]

N. Tsuruoka, Y. Beppu, H. Koda, et al., A DKP cyclo(L-Phe-L-Phe) found in chicken essence is a dual inhibitor of the serotonin transporter and acetylcholinesterase, PLoS ONE 7 (2012) e50824. http://doi.org/10.1371/journal.pone.0050824.

[74]

H.L. Chen, Y.W. Lan, M.Y. Tu, et al., Kefir peptides exhibit antidepressant-like activity in mice through the BDNF/TrkB pathway, J. Dairy Sci. 104 (2021) 6415-6430. http://doi.org/10.3168/jds.2020-19222.

[75]

B. Kumar, V.P. Gupta, V. Kumar, A perspective on monoamine oxidase enzyme as drug target: challenges and opportunities, Curr. Drug Targets 18 (2017) 87-97. http://doi.org/10.2174/1389450117666151209123402.

[76]

Y. Zhou, S. Dhital, C. Zhao, et al., Dietary fiber-gluten protein interaction in wheat flour dough: analysis, consequences and proposed mechanisms, Food Hydrocoll. 111 (2021) 106203. http://doi.org/10.1016/j.foodhyd.2020.106203.

[77]

H. Wieser, Chemistry of gluten proteins, Food Microbiol. 24 (2007) 115-119. http://doi.org/10.1016/j.fm.2006.07.004.

[78]

M. Cai, H. Mu, H. Xing, et al., In vitro gastrointestinal digestion and fermentation properties of Ganoderma lucidum spore powders and their extracts, LWT-Food Sci. Technol. 135 (2021) 110235. http://doi.org/10.1016/j.lwt.2020.110235.

[79]

L. Wen, Z. Sheng, J. Wang, et al., Structure of water-soluble polysaccharides in spore of Ganoderma lucidum and their anti-inflammatory activity, Food Chem. 373 (2022) 131374. http://doi.org/10.1016/j.foodchem.2021.131374.

[80]

Y. Fu, L. Shi, K. Ding, Structure elucidation and anti-tumor activity in vivo of a polysaccharide from spores of Ganoderma lucidum (Fr.) Karst, Int. J. Biol. Macromol. 141 (2019) 693-699. http://doi.org/10.1016/j.ijbiomac.2019.09.046.

[81]

T. Liu, J. Zhou, W. Li, et al., Effects of sporoderm-broken spores of Ganoderma lucidum on growth performance, antioxidant function and immune response of broilers, Anim. Nutr. 6 (2020) 39-46. http://doi.org/10.1016/j.aninu.2019.11.005.

[82]

B.D. Gonzalez-Orozco, I. Garcia-Cano, R. Jimenez-Flores, et al., Invited review: milk kefir microbiota-direct and indirect antimicrobial effects, J. Dairy Sci. 105 (2022) 3703-3715. http://doi.org/10.3168/jds.2021-21382.

[83]

H. Ye, J. Wang, T. Greer, et al., Visualizing neurotransmitters and metabolites in the central nervous system by high resolution and high accuracy mass spectrometric imaging, ACS Chem. Neurosci. 4 (2013) 1049-1056. http://doi.org/10.1021/cn400065k.

[84]
J. Moini, P. Piran, Neurotransmitters, in: J. Moini, P. Piran (Eds.), Functional and clinical neuroanatomy, Academic Press, 2020, pp. 549-583.
[85]

Y. Sun, S. Hunt, P. Sah, Norepinephrine and corticotropin-releasing hormone: partners in the neural circuits that underpin stress and anxiety, Neuron 87 (2015) 468-470. http://doi.org/10.1016/j.neuron.2015.07.022.

[86]

J.M. Kent, S.J. Mathew, J.M. Gorman, Molecular targets in the treatment of anxiety, Biol. Psychiatry 52 (2002) 1008-1030. http://doi.org/10.1016/S0006-3223(02)01672-4.

[87]

T. Pattij, A.N. Schoffelmeer, Serotonin and inhibitory response control: focusing on the role of 5-HT(1A) receptors, Eur. J. Pharmacol. 753 (2015) 140-145. http://doi.org/10.1016/j.ejphar.2014.05.064.

[88]

M.P. de la Mora, A. Gallegos-Cari, Y. Arizmendi-Garcia, et al., Role of dopamine receptor mechanisms in the amygdaloid modulation of fear and anxiety: structural and functional analysis, Prog. Neurobiol. 90 (2010) 198-216. http://doi.org/10.1016/j.pneurobio.2009.10.010.

[89]

E. Siucinska, γ-Aminobutyric acid in adult brain: an update, Behav. Brain Res. 376 (2019) 112224. http://doi.org/10.1016/j.bbr.2019.112224.

[90]

E. Lacivita, M. Leopoldo, F. Berardi, et al., 5-HT1A Receptor, an old target for new therapeutic agents, Curr. Top. Med. Chem. 8 (2008) 1024-1034. http://doi.org/10.2174/156802608785161385.

[91]

A.M. Polter, X. Li, 5-HT1A receptor-regulated signal transduction pathways in brain, Cell. Signal. 22 (2010) 1406-1412. http://doi.org/10.1016/j.cellsig.2010.03.019.

[92]

M.O. Klein, D.S. Battagello, A.R. Cardoso, et al., Dopamine: functions, signaling, and association with neurological diseases, Cell. Mol. Neurobiol. 39 (2019) 31-59. http://doi.org/10.1007/s10571-018-0632-3.

[93]

E. Sigel, M.E. Steinmann, Structure, function, and modulation of GABA(A) receptors, J. Biol. Chem. 287 (2012) 40224-40231. http://doi.org/10.1074/jbc.R112.386664.

[94]

S. Zhu, C.M. Noviello, J. Teng, et al., Structure of a human synaptic GABAA receptor, Nature 559 (2018) 67-72. http://doi.org/10.1038/s41586-018-0255-3.

[95]

H.J. Little, The Benzodiazepines: anxiolytic and withdrawal effects, Neuropeptides 19 (1991) 11-14. http://doi.org/10.1016/0143-4179(91)90077-V.

[96]

C. Stein, Opioid receptors, Annu. Rev. Med. 67 (2016) 433-451. http://doi.org/10.1146/annurev-med-062613-093100.

[97]

P.E. Lutz, B.L. Kieffer, Opioid receptors: distinct roles in mood disorders, Trends Neurosci. 36 (2013) 195-206. http://doi.org/10.1016/j.tins.2012.11.002.

[98]

D.F. Woodward, R.L. Jones, S. Narumiya, International union of basic and clinical pharmacology. lxxxiii: classification of prostanoid receptors, updating 15 years of progress, Pharmacol. Rev. 63 (2011) 471-538. http://doi.org/10.1124/pr.110.003517.

[99]

J.F. Chen, H.K. Eltzschig, B.B. Fredholm, Adenosine receptors as drug targets - what are the challenges? Nat. Rev. Drug Discov. 12 (2013) 265-286. http://doi.org/10.1038/nrd3955.

[100]

H.R. Schmidt, A.C. Kruse, The molecular function of sigma receptors: past, present, and future, Trends Pharmacol. Sci. 40 (2019) 636-654. http://doi.org/10.1016/j.tips.2019.07.006.

[101]

A. Piechal, A. Jakimiuk, D. Mirowska-Guzel, Sigma receptors and neurological disorders, Pharmacol. Rep. 73 (2021) 1582-1594. http://doi.org/10.1007/s43440-021-00310-7.

[102]
S. Kakizawa, Peptides and proteins in vertebrates, in: A. Hironori, U. Kazuyoshi, N. Shinji (Eds.), Handbook of hormones comparative endocrinology for basic and clinical research, Academic Press, 2021, pp. 471-488.
[103]
R.S. Duman, D.H. Adams, B.B. Simen, Transcription factors as modulators of stress responsivity. in: T. Steckler, N.H. Kalin, J.M.H.M. Reul (Eds.), Handbook of stress and the brain-part 1: the neurobiology of stress, Amsterdam, Elsevier, 2005, pp. 679-698.
[104]

S. Breit, A. Kupferberg, G. Rogler, et al., Vagus nerve as modulator of the brain-gut axis in psychiatric and inflammatory disorders, Front. Psychiatry 9 (2018) 44. http://doi.org/10.3389/fpsyt.2018.00044.

[105]

T. Frodl, V. O’Keane, How does the brain deal with cumulative stress? A review with focus on developmental stress, HPA axis function and hippocampal structure in humans, Neurobiol. Dis. 52 (2013) 24-37. http://doi.org/10.1016/j.nbd.2012.03.012.

[106]

M. Wolkowitz, H. Burke, E.S. Epel, et al., Glucocorticoids. Mood, memory, and mechanisms, Ann. N. Y. Acad. Sci. 1179 (2009) 19-40. http://doi.org/10.1111/j.1749-6632.2009.04980.x.

[107]

L.M. Frankiensztajn, E. Elliott, O. Koren, The microbiota and the hypothalamus-pituitary-adrenocortical (HPA) axis, implications for anxiety and stress disorders, Curr. Opin. Neurobiol. 62 (2020) 76-82. http://doi.org/10.1016/j.conb.2019.12.003.

[108]

S. Fischer, A.J. Cleare, Cortisol as a predictor of psychological therapy response in anxiety disorders-systematic review and meta-analysis, J. Anxiety Disord. 47 (2017) 60-68. http://doi.org/10.1016/j.janxdis.2017.02.007.

Food Science and Human Wellness
Pages 1168-1185
Cite this article:
Li W, Xi Y, Wang J, et al. Food-derived protein hydrolysates and peptides: anxiolytic and antidepressant activities, characteristics, and mechanisms. Food Science and Human Wellness, 2024, 13(3): 1168-1185. https://doi.org/10.26599/FSHW.2022.9250097

1074

Views

276

Downloads

4

Crossref

3

Web of Science

3

Scopus

0

CSCD

Altmetrics

Received: 13 September 2022
Revised: 12 October 2022
Accepted: 09 November 2022
Published: 08 February 2024
© 2024 Beijing Academy of Food Sciences. Publishing services by Tsinghua University Press.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return