AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (7.8 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Open Access

Oral administration of Bacillus coagulans TQ-35 alleviates allergic responses in OVA-sensitive BALB/c mice

Yifan Wanga,Shanjun ChenaChong WangaYi ZhangbHongliang ZengbLinglin FuaYanbo Wanga,c( )
Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
School of Food and Health, Beijing Technology and Business University, Beijing 100048, China

Peer review under responsibility of Tsinghua University Press.

Show Author Information

Highlights

Bacillus coagulans significantly relieved OVA-induced allergy symptoms.

• The daily dose of Bacillus coagulans can be referred to as 9 × 108 CFU.

Bacillus coagulans improved T cell differentiation and gene expression in the spleen.

Bacillus coagulans regulates intestinal flora in mice.

Abstract

Bacillus coagulans has been extensively studied so far, but there has been a lack of research on its usage in allergy. In this study, we designed to assess the effect of different concentrations of B. coagulans on food allergy in a BALB/c mouse model of ovalbumin (OVA)-induced food allergy and its effect on gut microbes. The assessment of symptoms, specific immunoglobulin E (IgE), T-cell differentiation, and related gene expression levels in sensitized mice by assay indicated that high doses of oral B. coagulans could alleviate allergic symptoms. Treatment with B. coagulans, in the high-dose group, signif icantly reduced IgE and IgG1 levels and modulated the balance of T helper type 1 cell (Th1) and Th2 and the expression of relevant genes in the spleen. 16S rRNA analysis showed that probiotics improved the structure of the microbiota, in particular by boosting the percentage of Clostridia, Bacteroides vulgatus and Enterococcus faecium, and by increasing the abundance of microbial species, thereby modulating the immune system. Therefore, this study can provide insights into the practical application of B. coagulans doses to alleviate OVA allergy.

References

[1]

M. de Martinis, M.M. Sirufo, M. Suppa, et al., New perspectives in food allergy, Int. J. Mol. Sci. 21 (2020) 1-21. https://doi.org/10.3390/ijms21041474.

[2]

L.L. Reber, J.D. Hernandez, S.J. Galli, Mechanisms of allergic diseases the pathophysiology of anaphylaxis, J. Allergy Clin. Immunol. 140 (2017) 335-348. https://doi.org/10.1016/j.jaci.2017.06.003.

[3]

H. Renz, K.J. Allen, S.H. Sicherer, et al., Food allergy, Nat. Rev. Dis. Prim. 4 (2018) 17098. https://doi.org/10.1038/nrdp.2017.98.

[4]

W. Loh, M.L.K. Tang, The epidemiology of food allergy in the global context, Int. J. Environ. Res. Public Health 15 (2018) 2043. https://doi.org/10.3390/ijerph15092043.

[5]

K. Majumder, Y. Jin, H. Shibata, et al., Oral intervention of Lactobacillus pentosus S-PT84 attenuates the allergenic responses in a BALB/c mouse model of egg allergy, Mol. Immunol. 120 (2020) 43-51. https://doi.org/10.1016/j.molimm.2020.01.025.

[6]

J. Ma, J. Zhang, Q. Li, et al., Oral administration of a mixture of probiotics protects against food allergy via induction of CD103+ dendritic cells and modulates the intestinal microbiota, J. Funct. Foods 55 (2019) 65-75. https://doi.org/10.1016/j.jff.2019.02.010.

[7]

J.C. Caubet, J. Wang, Current understanding of egg allergy, Pediatr. Clin. North Am. 58 (2011) 427-443. https://doi.org/10.1016/j.pcl.2011.02.014.

[8]

P.J. Turner, D.E. Campbell, R.J. Boyle, et al., Primary prevention of food allergy : translating evidence from clinical trials to population-based recommendations, J. Allergy Clin. Immunol. Pract. 6 (2020) 367-375. https://doi.org/10.1016/j.jaip.2017.12.015.

[9]

T. Eiwegger, L. Hung, K.E. San Diego, et al., Recent developments and highlights in food allergy, Allergy Eur. J. Allergy Clin. Immunol. 74 (2019) 2355-2367. https://doi.org/10.1111/all.14082.

[10]

H.S. Shin, J.E. Eom, D.U. Shin, et al., Preventive effects of a probiotic mixture in an ovalbumin-induced food allergy model, J. Microbiol. Biotechnol. 28 (2018) 65-76. https://doi.org/10.4014/jmb.1708.08051.

[11]

S. Gu, D. Yang, C. Liu, et al., The role of probiotics in prevention and treatment of food allergy, Food Sci. Hum. Wellness 12 (2023) 681-690. https://doi.org/10.1016/j.fshw.2022.09.001.

[12]

M.C. Collado, A. Endo, C. Hill, The International Scientific Association of Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics, Nat. Rev. Gastroenterol. Hepatol. 18 (2021) 649-677. https://doi.org/10.1038/s41575-021-00440-6.

[13]

S.U. Islam, Clinical uses of probiotics, Medicine (Baltimore) 95 (2016) e2658. https://doi.org/10.1097/MD.0000000000002658.

[14]

D. Keller, R. van Dinter, H. Cash, et al., Bacillus coagulans GBI-30, 6086 increases plant protein digestion in a dynamic, computer-controlled in vitro model of the small intestine (TIM-1), Benef. Microbes. 8 (2017) 491-496. https://doi.org/10.3920/BM2016.0196.

[15]

L. Sui, X. Zhu, D. Wu, et al., In vitro assessment of probiotic and functional properties of B. coagulans T242, Food Biosci. (2020) 100675. https://doi.org/10.1016/j.fbio.2020.100675.

[16]

L. Fu, J. Peng, S. Zhao, Y. et al., Lactic acid bacteria-specific induction of CD4+Foxp3+ T cells ameliorates shrimp tropomyosin-induced allergic response in mice via suppression of mTOR signaling, Sci. Rep. 7 (2017) 1-14. https://doi.org/10.1038/s41598-017-02260-8.

[17]

L. Fu, S. Fu, C. Wang, et al., Yogurt-sourced probiotic bacteria alleviate shrimp tropomyosin-induced allergic mucosal disorders, potentially through microbiota and metabolism modifications, Allergol. Int. 68 (2019) 506-514. https://doi.org/10.1016/j.alit.2019.05.013.

[18]

D. Fujiwara, S. Inoue, H. Wakabayashi, et al., The anti-allergic effects of lactic acid bacteria are strain dependent and mediated by effects on both Th1/Th2 cytokine expression and balance, Int. Arch. Allergy Immunol. 135 (2004) 205-215. https://doi.org/10.1159/000081305.

[19]

M. Hussain, G. Bonilla-Rosso, C.K.C. Kwong Chung, et al., High dietary fat intake induces a microbiota signature that promotes food allergy, J. Allergy Clin. Immunol. 144 (2019) 157-170. https://doi.org/10.1016/j.jaci.2019.01.043.

[20]

C. Wang, Q. Xie, Y. Wang, et al., Effect of ultrasound treatment on allergenicity reduction of milk casein via colloid formation, J. Agric. Food Chem. 68 (2020) 4678-4686. https://doi.org/10.1021/acs.jafc.9b08245.

[21]

L. Fu, M. Xie, C. Wang, et al., Lactobacillus casei Zhang alleviates shrimp tropomyosin-induced food allergy by switching antibody isotypes through the NF-κB-dependent immune tolerance, Mol. Nutr. Food Res. 64 (2020) 496. https://doi.org/10.1002/mnfr.201900496.

[22]

N.A. Bokulich, S. Subramanian, J.J. Faith, et al., Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing, Nat. Methods 10 (2013) 57-59. https://doi.org/10.1038/nmeth.2276.

[23]

E. Avershina, T. Frisli, K. Rudi, De novo semi-alignment of 16S rRNA gene sequences for deep phylogenetic characterization of next generation sequencing data, Microbes Environ. 28 (2013) 211-216. https://doi.org/10.1264/jsme2.ME12157.

[24]

M.H. Chiu, T.Y. Hou, C.K. Fan, et al., Catalpol exerts antiallergic effects in IgE/ovalbumin-activated mast cells and a murine model of ovalbumininduced allergic asthma, Int. Immunopharmacol. 96 (2021) 107782. https://doi.org/10.1016/j.intimp.2021.107782.

[25]

H. Lan, Z. Gui, Z. Zeng, et al., Oral administration of Lactobacillus plantarum CQPC11 attenuated the airway inflammation in an ovalbumin (OVA)-induced BALB/c mouse model of asthma, J. Food Biochem. 46 (2022) 1-15. https://doi.org/10.1111/jfbc.14036.

[26]

L. Fu, C. Wang, Y. Wang, Seafood allergen-induced hypersensitivity at the microbiota-mucosal site: implications for prospective probiotic use in allergic response regulation, Crit. Rev. Food Sci. Nutr. 58 (2018) 1512-1525. https://doi.org/10.1080/10408398.2016.1269719.

[27]

Z. Li, X. Shi, J. Liu, et al., Artesunate prevents type 1 diabetes in NOD mice mainly by inducing protective IL-4—producing T cells and regulatory T cells, FASEB J. 33 (2019) 8241-8248. https://doi.org/10.1096/fj.201900146R.

[28]

R. Keyhanmanesh, R. Rahbarghazi, M.R. Aslani, et al., Systemic delivery of mesenchymal stem cells condition media in repeated doses acts as magic bullets in restoring IFN-γ/IL-4 balance in asthmatic rats, Life Sci. 212 (2018) 30-36. https://doi.org/10.1016/j.lfs.2018.09.049.

[29]

Y.Y. Shao, Y.M. Zhou, M. Hu, et al., The anti-allergic rhinitis effect of traditional Chinese medicine of Shenqi by regulating mast cell degranulation and Th1/Th2 cytokine balance, Molecules 22 (2017) 1-11. https://doi.org/10.3390/molecules22030504.

[30]

K. Liang, A.D. Kandhare, A.A. Mukherjee-Kandhare, et al., Morin ameliorates ovalbumin-induced allergic rhinitis via inhibition of STAT6/SOCS1 and GATA3/T-bet signaling pathway in BALB/c mice, J. Funct. Foods 55 (2019) 391-401. https://doi.org/10.1016/j.jff.2019.01.052.

[31]

P. Georgiev, L.M. Charbonnier, T.A. Chatila, Regulatory T cells: the many faces of Foxp3, J. Clin. Immunol. 39 (2019) 623-640. https://doi.org/10.1007/s10875-019-00684-7.

[32]

S. Meng, R. Gao, B. Yan, et al., Maternal allergic disease history affects childhood allergy development through impairment of neonatal regulatory T-cells, Respir. Res. 17 (2016) 1-11. https://doi.org/10.1186/s12931-016-0430-8.

[33]

W. Jiao, L. Sun, S. Xu, et al., Notch2 suppresses the development of allergic rhinitis by promoting FOXP3 expression and Treg cell differentiation, Life Sci. 284 (2021) 119922. https://doi.org/10.1016/j.lfs.2021.119922.

[34]

R.Y. Cheng, J.R. Yao, Q. Wan, et al., Oral administration of Bifidobacterium bifidum TMC3115 to neonatal mice may alleviate IgE-mediated allergic risk in adulthood, Benef. Microbes. 9 (2018) 815-828. https://doi.org/10.3920/BM2018.0005.

[35]

E. Stephen-Victor, T.A. Chatila, Regulation of oral immune tolerance by the microbiome in food allergy, Curr. Opin. Immunol. 60 (2019) 141-147. https://doi.org/10.1016/j.coi.2019.06.001.

[36]

I. Hanski, L. von Hertzen, N. Fyhrquist, et al., Environmental biodiversity, human microbiota, and allergy are interrelated, Proc. Natl. Acad. Sci. U.S.A. 109 (2012) 8334-8339. https://doi.org/10.1073/pnas.1205624109.

[37]

F. de Filippis, L. Paparo, R. Nocerino, et al., Specific gut microbiome signatures and the associated pro-inflamatory functions are linked to pediatric allergy and acquisition of immune tolerance, Nat. Commun. 12 (2021) 5958. https://doi.org/10.1038/s41467-021-26266-z.

[38]

M. Brusilovsky, R. Bao, M. Rochman, et al., Host-microbiota interactions in the esophagus during homeostasis and allergic inflammation, Gastroenterology 162 (2022) 521-534. https://doi.org/10.1053/j.gastro.2021.10.002.

[39]

L. Yao, P. Yang, Y. Lin, et al., The regulatory effect of alginate on ovalbumin-induced gut microbiota disorders, J. Funct. Foods 86 (2021) 104727. https://doi.org/10.1016/j.jff.2021.104727.

[40]

K.G. Stark, N.R. Falkowski, C.A. Brown, et al., Contribution of the microbiome, environment, and genetics to mucosal type 2 immunity and anaphylaxis in a murine food allergy model, Front. Allergy 3 (2022) 1-16. https://doi.org/10.3389/falgy.2022.851993.

[41]

C. Anania, V.P. Di Marino, F. Olivero, et al., Treatment with a probiotic mixture containing Bifidobacterium animalis subsp. Lactis BB12 and Enterococcus faecium L3 for the prevention of allergic rhinitis symptoms in children: a randomized controlled trial, Nutrients 13 (2021) 1315. https://doi.org/10.3390/nu13041315.

[42]

L. Ruokolainen, A. Parkkola, A. Karkman, et al., Contrasting microbiotas between Finnish and Estonian infants: exposure to Acinetobacter may contribute to the allergy gap, Allergy Eur. J. Allergy Clin. Immunol. 75 (2020) 2342-2351. https://doi.org/10.1111/all.14250.

[43]

A. Homayouni Rad, L. Aghebati Maleki, H. Samadi Kafil, et al., Postbiotics: a novel strategy in food allergy treatment, Crit. Rev. Food Sci. Nutr. 61 (2021) 492-499. https://doi.org/10.1080/10408398.2020.1738333.

[44]

A. Lopez-Santamarina, E.G. Gonzalez, A. Lamas, et al., Probiotics as a possible strategy for the prevention and T reatment of allergies. a narrative review, Foods 10 (2021) 1-19.

[45]

G. Sharma, S.H. Im, Probiotics as a potential immunomodulating pharmabiotics in allergic diseases: current status and future prospects, Allergy, Asthma Immunol. Res. 10 (2018) 575-590. https://doi.org/10.4168/aair.2018.10.6.575.

[46]

R.X. Foong, A.F. Santos, Biomarkers of diagnosis and resolution of food allergy, Pediatr. Allergy Immunol. 32 (2021) 223-233. https://doi.org/10.1111/pai.13389.

[47]

S. Zhao, X. Peng, Q.Y Zhou, et al., Bacillus coagulans 13002 and fructooligosaccharides improve the immunity of mice with immunosuppression induced by cyclophosphamide through modulating intestinal-derived and fecal microbiota, Food Res. Int. 140 (2021) 109793. https://doi.org/10.1016/j.foodres.2020.109793.

[48]

R.G. Jenner, M.J. Townsend, I. Jackson, et al., The transcription factors T-bet and GATA-3 control alternative pathways of T-cell differentiation through a shared set of target genes, Proc. Natl. Acad. Sci. 106 (2009) 17876-17881. https://doi.org/10.1073/pnas.0909357106.

[49]

P.Y. Mantel, H. Kuipers, O. Boyman, et al., GATA3-driven Th2 responses inhibit TGF-β1-induced FOXP3 expression and the formation of regulatory T cells, PLoS Biol. 5 (2007) 2847-2861. https://doi.org/10.1371/journal.pbio.0050329.

[50]

K.S. Kim, S.W. Hong, D. Han, et al., Dietary antigens limit mucosal immunity by inducing regulatory T cells in the small intestine, Science 351 (2016) 858-863. https://doi.org/10.1126/science.aac5560.

[51]

U. Hadis, B. Wahl, O. Schulz, et al., Intestinal tolerance requires gut homing and expansion of FoxP3+ regulatory T cells in the lamina propria, Immunity 34 (2011) 237-246. https://doi.org/10.1016/j.immuni.2011.01.016.

[52]

C. Chen, C. Liu, K. Zhang, et al., The role of gut microbiota and its metabolites short-chain fatty acids in food allergy, Food Sci. Hum. Wellness 12 (2023) 702-710. http://doi.org/10.1016/j.fshw.2022.09.003.

[53]

K. Atarashi, T. Tanoue, T. Shima, et al., Induction of colonic regulatory T cells by indigenous Clostridium species, Science 331 (2011) 337-341. https://doi.org/10.1126/science.1198469.

[54]

M. Mahdavinia, H.E. Rasmussen, M. Botha, et al., Effects of diet on the childhood gut microbiome and its implications for atopic dermatitis, J. Allergy Clin. Immunol. 143 (2019) 1636-1637. https://doi.org/10.1016/j.jaci.2018.11.034.

[55]

N. Sudo, X.N. Yu, Y. Aiba, et al., An oral introduction of intestinal bacteria prevents the development of a long-term Th2-skewed immunological memory induced by neonatal antibiotic treatment in mice, Clin. Exp. Allergy. 32 (2002) 1112-1116. https://doi.org/10.1046/j.1365-2222.2002.01430.x.

[56]

M.K. Rho, Y.E. Kim, H.I. Rho, et al., Enterococcus faecium FC-K derived from kimchi is a probiotic strain that shows anti-allergic activity, J. Microbiol. Biotechnol. 27 (2017) 1071-1077. https://doi.org/10.4014/jmb.1611.11020.

[57]

S.C. Xing, C.B. Huang, J.D. Mi, et al., Bacillus coagulans R11 maintained intestinal villus health and decreased intestinal injury in lead-exposed mice by regulating the intestinal microbiota and influenced the function of faecal microRNAs, Environ. Pollut. 255 (2019) 113139. https://doi.org/10.1016/j.envpol.2019.113139.

[58]

J. Cao, Z. Yu, W. Liu, et al., Probiotic characteristics of Bacillus coagulans and associated implications for human health and diseases, J. Funct. Foods 64 (2020) 103643. https://doi.org/10.1016/j.jff.2019.103643.

Food Science and Human Wellness
Pages 1246-1257
Cite this article:
Wang Y, Chen S, Wang C, et al. Oral administration of Bacillus coagulans TQ-35 alleviates allergic responses in OVA-sensitive BALB/c mice. Food Science and Human Wellness, 2024, 13(3): 1246-1257. https://doi.org/10.26599/FSHW.2022.9250104

971

Views

253

Downloads

2

Crossref

1

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 15 November 2022
Revised: 19 December 2022
Accepted: 27 December 2022
Published: 08 February 2024
© 2024 Beijing Academy of Food Sciences. Publishing services by Tsinghua University Press.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return