AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (5.3 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Calcium-fortified fresh milk ameliorates postmenopausal osteoporosis via regulation of bone metabolism and gut microbiota in ovariectomized rats

Qishan Wanga,b,cBin Liub,cXianping Lib,cJunying Zhaob,cZongshen ZhangaWeicang Qiaob,cXinyue Weia,b,cLijun Chena,b,c( )
School of Bioengineering, Dalian Polytechnic University, Dalian 116034, China
National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
Beijing Engineering Research Center of Dairy, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China

Peer review under responsibility of Tsinghua University Press.

Show Author Information

Graphical Abstract

Abstract

The aging of the global population has made postmenopausal osteoporosis prevention essential; however, pharmacological treatments are limited. Herein, we evaluate the effect of calcium-fortified fresh milk (FM) in ameliorating postmenopausal osteoporosis in a rat model established using bilateral ovariectomy. After 3 months of FM (containing vitamin D, and casein phosphopeptides, 1000 mg Ca/100 g) or control milk (110 mg Ca/100 g milk) supplementation, bone changes were assessed using dual-energy X-ray absorptiometry, microcomputed tomography, and bone biomechanical testing. The results revealed that FM can regulate bone metabolism and gut microbiota composition, which act on bone metabolism through pathways associated with steroid hormone biosynthesis, relaxin signaling, serotonergic synapse, and unsaturated fatty acid biosynthesis. Furthermore, FM administration signif icantly increased bone mineral content and density in the lumbar spine and femur, as well as femoral compressive strength, while improving femoral trabecular bone parameters and microarchitecture. Mechanistically, we found that the effects may be due to increased levels of estrogen, bone formation marker osteocalcin, and procollagen type Ⅰ N-propeptide, and decreased expression of the bone resorption marker C-telopeptide and tartrate-resistant acid phosphatase 5b. Overall, the f indings suggest that FM is a potential alternative therapeutic option for ameliorating postmenopausal osteoporosis.

References

[1]

P. Lips, N.M. van Schoor, The effect of vitamin D on bone and osteoporosis, Best Pract. Res. Clin. Endocrinol. Metab. 25 (2011) 585-591. https://doi.org/10.1016/j.beem.2011.05.002.

[2]

N. Salari, N. Darvishi, Y. Bartina, et al., Global prevalence of osteoporosis among the world older adults: a comprehensive systematic review and metaanalysis, J. Orthop. Surg. Res. 16 (2021) 1-13. https://doi.org/10.1186/s13018-021-02821-8.

[3]

R. Eastell, T.W. O’Neill, L.C. Hofbauer, et al., Postmenopausal osteoporosis, Nat. Rev. Dis. Primers 2 (2016) 16069. https://doi.org/10.1038/nrdp.2016.69.

[4]

N.M. Kostyshyn, I. Świetlicka, E. Tomaszewska, et al., Impact of whole body vibration and zoledronic acid on femoral structure after ovariectomy: morphological evaluation, J. Clin. Med. 11 (2022) 2441. https://doi.org/10.3390/jcm11092441.

[5]

Q. Zhang, S. Hu, J. Wu, et al., Nystose attenuates bone loss and promotes BMSCs differentiation to osteoblasts through BMP and Wnt/β-catenin pathway in ovariectomized mice, Food Sci. Hum. Wellness 12 (2023) 634-646. http://doi.org/10.1016/j.fshw.2022.07.066.

[6]

P. Fan, C. Ning, X. Shenghui, Calcium intake, calcium homeostasis and health, Food Sci. Hum. Wellness 5 (2016) 8-16. https://doi.org/10.1016/j.fshw.2016.01.001.

[7]

R. Yuan, S. Ma, X. Zhu, et al., Core level regulatory network of osteoblast as molecular mechanism for osteoporosis and treatment, Oncotarget 7 (2016) 3692-3701. https://doi.org/10.18632/oncotarget.6923.

[8]

C. Gennari, Calcium and vitamin D nutrition and bone disease of the elderly, Public Health Nutr. 4 (2001) 547-559. https://doi.org/10.1079/PHN2001140.

[9]

D.M. Spiegel, K. Brady, Calcium balance in normal individuals and in patients with chronic kidney disease on low-and high-calcium diets, Kidney Int. 11 (2012) 1116-1122. https://doi.org/10.1038/ki.2011.490.

[10]

L. Guo, S. Sun, B. Guo, et al., Bioactive peptide isolated from casein phosphopeptides promotes calcium uptake in vitro and in vivo, Food Funct. 9 (2018) 2251-2260. https://doi.org/10.1039/C7FO01709J.

[11]

T.L. Chuang, C.H. Lin, Y.F. Wang, Effects of vegetarian diet on bone mineral density, Tzu Chi Med. J. 33 (2020) 128-134. https://doi.org/10.4103/tcmj.tcmj_84_20.

[12]

R.M. Merril, S.G. Aldana, Consequences of a plant-based diet with low dairy consumption on intake of bone-relevant nutrients, J. Womens Health (Larchmt) 18 (2009) 691-698. https://doi.org/10.1089/jwh.2008.1020.

[13]

T.C. Wallace, R.L. Bailey, J. Lappe, et al., Dairy intake and bone health across the lifespan: a systematic review and expert narrative, Crit. Rev. Food Sci. Nutr. 61 (2021) 3661-3707. https://doi.org/10.1080/10408398.2020.1810624.

[14]

H. Yang, N. Zheng, J. Wang, Comparative study on nutritional value and health safety of pasteurized milk and ultra-high temperature sterilized milk, China Dairy Industry 7 (2016) 62-67. https://10.16172/j.cnki.114768.2016.07.020.

[15]

S. Adami, S. Giannini, G. Bianchi, et al., Vitamin D status and response to treatment in post-menopausal osteoporosis, Osteoporos. Int. 20 (2009) 239-244. https://doi.org/10.1007/s00198-008-0650-y.

[16]

Y. Tu, R. Yang, X. Xu, et al., The microbiota-gut-bone axis and bone health, J. Leukocyte Biol. 110 (2021) 525-537. https://10.1002/JLB.3MR0321-755R.

[17]

Y. He, Y. Chen, The potential mechanism of the microbiota-gut-bone axis in osteoporosis: a review, Osteoporos. Int. 33 (2022) 2495-2506. https://doi.org/10.1007/s00198-022-06557-x.

[18]

K.D. Seely, C.A. Kotelko, H. Douglas, et al., The human gut microbiota: a key mediator of osteoporosis and osteogenesis, Int. J. Mol. Sci. 22 (2021) 9452. https://doi.org/10.3390/ijms22179452.

[19]

M. Das, O. Cronin, D.M. Keohane, et al., Gut microbiota alterations associated with reduced bone mineral density in older adults, Rheumatology 58 (2019) 2295-2304. https://doi.org/10.1093/rheumatology/kez302.

[20]

C. Novince, C. Whittow, J. Aartun, et al., Commensal gut microbiota immunomodulatory actions in bone marrow and liver have catabolic effects on skeletal homeostasis in health, Sci. Rep. 7 (2017) 1-18. https://doi.org/10.1038/s41598-017-06126-x.

[21]

K. Sjögren, C. Engdahl, P. Henning, et al., The gut microbiota regulates bone mass in mice, J. Bone Mineral Res. 27 (2012) 1357-1367. https://doi.org/10.1002/jbmr.1588.

[22]

W. He, Z. Xie, R. Thøgersen, et al., Effects of calcium source, inulin and lactose on gut-bone associations in an ovarierectomized rat model, Mol. Nutr. Food Res. 66 (2022) 2100883. https://doi.org/10.1002/mnfr.202100883.

[23]

D. Guo, W. Liu, X. Zhang, et al., Duck egg white-derived peptide vsee (Val-Ser-Glu-Glu) regulates bone and lipid metabolisms by Wnt/β-Catenin signaling pathway and intestinal microbiota, Mol. Nutr. Food Res. 63 (2019) 1900525. https://doi.org/10.1002/mnfr.201900525.

[24]

J.C. Fleet, Vitamin D and gut health, Adv. Exp. Med. Biol. 1390 (2022) 155-167. https://doi.org/10.1007/978-3-031-11836-4_9.

[25]

G. Liu, W. Cao, G. Jia, et al., Calcium-sensing receptor in nutrient sensing: an insight into the modulation of intestinal homoeostasis. Br. J. Nutr. 120 (2018) 881-890. https://doi.org/10.1017/S0007114518002088.

[26]

Q. Xu, D. Li, J. Chen, et al., Crosstalk between the gut microbiota and postmenopausal osteoporosis: Mechanisms and applications, Int. Immunopharmacol. 110 (2022) 108998-108998.

[27]

A. Chaplin, P. Parra, S. Laraichi, et al., Calcium supplementation modulates gut microbiota in a prebiotic manner in dietary obese mice, Mol. Nutr. Food Res. 60 (2016) 468-480. https://10.1002/mnfr.201500480.

[28]
R Core Team, R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2019). https://www.R-project.org/.
[29]

C. Liu, Y. Cui, X. Li, et al., microeco: an R package for data mining in microbial community ecology, FEMS Microbiol. Ecol. 97 (2021) fiaa255. https://doi.org/10.1093/femsec/fiaa255.

[30]

J.E. Blau, M.T. Collins, The PTH-Vitamin D-FGF23 axis, Rev. Endocr. Metab. Disord. 16 (2015) 165-174. https://doi.org/10.1007/s11154-015-9318-z.

[31]

D. Caccamo, S. Ricca, M. Currò, et al., Health risks of hypovitaminosis D: a review of new molecular insights, Int. J. Mol. Sci. 19 (2018) 892. https://doi.org/10.3390/ijms19030892.

[32]

J.E. Gunton, C.M. Girgis, P.A. Baldock, et al., Bone muscle interactions and vitamin D, Bone 80 (2015) 89-94. https://doi.org/10.1016/j.bone.2015.02.029.

[33]

N. Charoenngam, M.F. Holick, Immunologic effects of vitamin D on human health and disease, Nutrients 12 (2020) 2097. https://doi.org/10.3390/nu12072097.

[34]

J.P. Bilezikian, D. Bikle, M. Hewison, et al., Mechanisms in endocrinology: vitamin D and COVID-19, Eur. J. Endocrinol. 183 (2020) R133-R147. https://doi.org/10.1530/EJE-20-0665.

[35]

M.A. Teixeira, M. De Feudis, S. Reano, et al., Cholecalciferol (vitamin D3) has a direct protective activity against interleukin 6-induced atrophy in C2C12 myotubes, Aging 13 (2021) 4895-4910. https://doi.org/10.18632/aging.202669.

[36]

Y.S. Lee, T. Nogouchi, H. Naito, Phosphopeptides and soluble calcium in the small intestine of rats given a casein diet, Br. J. Nutr. 43 (1980) 457-467. https://doi.org/10.1079/BJN19800113.

[37]

R.A. Mustafa, N.A.A. Alfky, H.H. Hijazi, et al., Biological effect of calcium and vitamin D dietary supplements against osteoporosis in ovariectomized rats, Prog. Nutr. 20 (2018) 86-93. https://doi.org/10.23751/pn.v20i1.5223.

[38]

E.K. Kydonaki, L. Freitas, H. Reguengo, et al., Pharmacological and nonpharmacological agents versus bovine colostrum supplementation for the management of bone health using an osteoporosis-induced rat model, Nutrients 14 (2022) 2837. https://doi.org/10.3390/nu14142837.

[39]

R.S. Mason, M.S. Rybchyn, T.C. Brennan-Speranza, et al., Is it reasonable to ignore vitamin D status for musculoskeletal health? Fac. Rev. 9 (2020) 19. https://doi.org/10.12703/r/9-19.

[40]

J.T. Swarthout, R.C. D’Alonzo, N. Selvamurugan, et al., Parathyroid hormone-dependent signaling pathways regulating genes in bone cells, Gene 282 (2002) 1-17. https://doi.org/10.1016/S0378-1119(01)00798-3.

[41]

Z.Y. Cheng, T. Ye, Q.Y. Ling, et al., Parathyroid hormone promotes osteoblastic differentiation of endothelial cells via the extracellular signalregulated protein kinase ½ and nuclear factor-κB signaling pathways, Exp. Ther. Med. 15 (2018) 1754-1760. https://doi.org/10.3892/etm.2017.5545.

[42]

T. Inubushi, A. Kawazoe, M. Miyauchi, et al., Molecular mechanisms of the inhibitory effects of bovine lactoferrin on lipopolysaccharide-mediated osteoclastogenesis, J. Biol. Chem. 287 (2012) P23527-23536. https://doi.org/10.1074/jbc.M111.324673.

[43]

J. Cornish, Lactoferrin promotes bone growth, Biometals 17 (2004) 331-335. https://doi.org/10.1023/b:biom.0000027713.18694.91.

[44]

H.Y. Guo, L. Jiang, S.A. Ibrahim, et al., Orally administered lactoferrin preserves bone mass and microarchitecture in ovariectomized rats, J. Nutr. 139 (2009) 958-964. https://doi.org/10.3945/jn.108.100586.

[45]

H.H. Xiao, X. Yu, C. Yang, et al., Prenylated isoflavonoids-rich extract of Erythrinae cortex exerted bone protective effects by modulating gut microbial compositions and metabolites in ovariectomized rats, Nutrients 13 (2021) 2943. https://doi.org/10.3390/nu13092943.

[46]

E. Boudin, K. Jennes, F. de Freitas, et al., No mutations in the serotonin related TPH1 and HTR1B genes in patients with monogenic sclerosing bone disorders, Bone 55 (2013) 52-56. https://doi.org/10.1016/j.bone.2013.03.015.

[47]

I.R. Reid, E.O. Billington, Drug therapy for osteoporosis in older adults, Lancet 399 (2022) 1080-1092. https://doi.org/10.1016/S0140-6736(21)02646-5.

[48]

E.K. Kydonaki, L. Freitas, B.M. Fonseca, et al., Bovine colostrum supplementation improves bone metabolism in an osteoporosis-induced animal model, Nutrients 13 (2021) 2981. https://doi.org/10.3390/nu13092981.

[49]

Y.Y. Kong, H. Yoshida, I. Sarosi, et al., OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis, Nature 397 (1999) 315-323. https://doi.org/10.1038/16852.

[50]

D.L. Lacey, E. Timms, H.L. Tan, et al., Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation, Cell 93 (1998) 165-176. https://doi.org/10.1016/S0092-8674(00)81569-X.

[51]

W.J. Boyle, W.S. Simonet, D.L. Lacey, Osteoclast differentiation and activation, Nature 423 (2003) 337-342. https://doi.org/10.1038/nature01658.

[52]

M. Honma, Y. Ikebuchi, H. Suzuki, RANKL as a key figure in bridging between the bone and immune system: Its physiological functions and potential as a pharmacological target, Pharmacol. Ther. 218 (2021) 107682. https://doi.org/10.1016/j.pharmthera.2020.107682.

[53]

F. Dehghan, B.S. Haerian, S. Muniandy, et al., The effect of relaxin on the musculoskeletal system, Scand. J. Med. Sci. Sports 24 (2014) e220-e229. https://doi.org/10.1111/sms.12149.

[54]

M. Abshirini, B.L. Ilesanmi-Oyelere, M.C. Kruger, Potential modulatory mechanisms of action by long-chain polyunsaturated fatty acids on bone cell and chondrocyte metabolism, Prog. Lipid Res. 83 (2021) 101113. https://doi.org/10.1016/j.plipres.2021.101113.

[55]

L. Mattia, S. Davis, C. Mark-Wagstaff, et al., Utility of PINP to monitor osteoporosis treatment in primary care, the POSE study (PINP and Osteoporosis in Sheffield Evaluation), Bone 158 (2022) 116347. https://doi.org/10.1016/j.bone.2022.116347.

[56]

F. Gossiel, A. Ugur, N.F.A. Peel, et al., The clinical utility of TRACP-5b to monitor anti-resorptive treatments of osteoporosis, Osteoporos. Int. 33 (2022) 1357-1363. https://doi.org/10.1007/s00198-022-06311-3.

[57]

D. Chiaramonte, M. Ring, A.B. Locke, Integrative women’s health, Med. Clin. North Am. 101 (2017) P955-975. https://doi.org/10.1016/j.mcna.2017.04.010.

[58]

K. Thanutchaporn, P. Zhang, N.Yanaka, et al., Emerging cardioprotective mechanisms of vitamin B6: a narrative review, Eur. J. Nutr. 61 (2021) 605-613. https://doi.org/10.1007/s00394-021-02665-2.

Food Science and Human Wellness
Pages 1258-1270
Cite this article:
Wang Q, Liu B, Li X, et al. Calcium-fortified fresh milk ameliorates postmenopausal osteoporosis via regulation of bone metabolism and gut microbiota in ovariectomized rats. Food Science and Human Wellness, 2024, 13(3): 1258-1270. https://doi.org/10.26599/FSHW.2022.9250105

1161

Views

284

Downloads

0

Crossref

1

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 28 January 2023
Revised: 17 March 2023
Accepted: 21 April 2023
Published: 08 February 2024
© 2024 Beijing Academy of Food Sciences. Publishing services by Tsinghua University Press.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return