Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Ulcerative colitis (UC) is a recurrent inflammatory bowel disease that imposes a severe burden on families and society. In recent years, exploiting the potential of marine bioactive peptides for the treatment of diseases has become a topic of intense research interest. This study revealed the mechanism underlying the protective effect of the dominant polypeptide PKKVV (Pro-Lys-Lys-Val-Val) of Rhopilema esculentum cnidoblasts against DSS-induced UC through a combined analysis of the metagenome and serum metabolome. Specif ically, the polypeptide composition of R. esculentum cnidoblasts was determined by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF/TOF-MS). Molecular docking showed that the dominant peptide PKKVV could bind better with tumor necrosis factor-α (TNF-α) than the original ligand. Subsequent animal experiments suggested that PKKVV could modulate disorganized gut microorganisms in mice with UC; affect serum metabolites through the arachidonic acid, glycerophospholipid and linoleic acid metabolism pathways; and further alleviate UC symptoms. This study provides a reference for the comprehensive development of marine bioactive substances and nonpharmaceutical treatments for UC.
N.M. Khong, F.M. Yusoff, B. Jamilah, et al., Nutritional composition and total collagen content of three commercially important edible jellyfish, Food Chem. 196 (2016) 953-960. http://doi.org/10.1016/j.foodchem.2015.09.094.
Y.L. Zhuang, H. Hou, X. Zhao, et al., Effects of collagen and collagen hydrolysate from jellyfish (Rhopilema esculentum) on mice skin photoaging induced by UV irradiation, J. Food Sci. 74 (2009) H183-188. http://doi.org/10.1111/j.1750-3841.2009.01236.x.
J.F. Ding, Y.Y. Li, J.J. Xu, et al., Study on effect of jellyfish collagen hydrolysate on anti-fatigue and anti-oxidation, Food Hydrocoll. 25 (2011) 1350-1353. https://doi.org/10.1016/j.foodhyd.2010.12.013.
X. Liu, M.S. Zhang, Y.P. Shi, et al., Production of the angiotensin Ⅰ converting enzyme inhibitory peptides and isolation of four novel peptides from jellyfish (Rhopilema esculentum) protein hydrolysate, J. Sci. Food Agric. 96 (2016) 3240-3248. http://doi.org/10.1002/jsfa.7507.
Y. Cao, J.Z. Gao, L.H. Zhang, et al., Jellyfish skin polysaccharides enhance intestinal barrier function and modulate the gut microbiota in mice with DSSinduced colitis, Food Funct. 12 (2021) 10121-10135. http://doi.org/10.1039/d1fo02001c.
J.J. Han, S.S. Tang, Y.Y. Li, et al., In silico analysis and in vivo tests of the tuna dark muscle hydrolysate anti-oxidation effect, RSC Adv. 8 (2018) 14109-14119. http://doi.org/10.1039/C8RA00889B.
E. Santacruz-Juárez, R. Buendia-Corona, R. Ramírez, et al., Fungal enzymes for the degradation of polyethylene: molecular docking simulation and biodegradation pathway proposal, J. Hazard. Mater. 411 (2021) 125118.http://doi.org/10.1016/j.jhazmat.2021.125118.
J.J. Han, Z.B. Huang, S.S. Tang, et al., The novel peptides ICRD and LCGEC screened from tuna roe show antioxidative activity via Keap1/Nrf2-ARE pathway regulation and gut microbiota modulation, Food Chem. 327 (2020) 127094. http://doi.org/10.1016/j.foodchem.2020.127094.
Y.T. Shi, F.J. Yu, Y. Wu, et al., Identification of a novel peptide that activates alcohol dehydrogenase from crucian carp swim bladder and how it protects against acute alcohol-induced liver injury in mice, J. Pharm. Biomed. Anal. 207 (2022) 114426. http://doi.org/10.1016/j.jpba.2021.114426.
W.J. Sandborn, L. Peyrin-Biroulet, J.K. Zhang, et al., Efficacy and safety of etrasimod in a phase 2 randomized trial of patients with ulcerative colitis, Gastroenterol. 158 (2020) 550-561. https://doi.org/10.1053/j.gastro.2019.10.035.
W.W. Feng, J. Liu, Y.Z. Tan, et al., Polysaccharides from Atractylodes macrocephala Koidz. ameliorate ulcerative colitis via extensive modification of gut microbiota and host metabolism, Food Res. Int. 138 (2020) 109777.http://doi.org/10.1016/j.foodres.2020.109777.
G. Rogler, Chronic ulcerative colitis and colorectal cancer, Cancer Lett. 345 (2014) 235-241. http://doi.org/10.1016/j.canlet.2013.07.032.
W. Niu, X.Q. Chen, R.L. Xu, et al., Polysaccharides from natural resources exhibit great potential in the treatment of ulcerative colitis: a review, Carbohydr. Polym. 254 (2021) 117189. http://doi.org/10.1016/j.carbpol.2020.117189.
K.K. Sahu, S. Minz, M. Kaurav, et al., Proteins and peptides: the need to improve them as promising therapeutics for ulcerative colitis, Artif. Cells Nanomed. Biotechnol. 44 (2016) 642-653. http://doi.org/10.3109/21691401.2014.975239.
B.C. Spoorthi, S.S. More, S.A. Gautham, et al., Role of free radical scavenging activity of vasoactive intestinal peptide in the attenuation of mitochondrial dysfunction to ameliorate dextran sulphate sodium-induced colitis in mice: implications in ulcerative colitis, J. Dig. Dis. 21 (2020) 711-723. http://doi.org/10.1111/1751-2980.12932.
A.J. Kozik, C.H. Nakatsu, H. Chun, et al., Comparison of the fecal, cecal, and mucus microbiome in male and female mice after TNBS-induced colitis, PLoS One 14 (2019) e0225079. http://doi.org/10.1371/journal.pone.0225079.
N.C. Knox, J.D. Forbes, C.L. Peterson, et al., The gut microbiome in inflammatory bowel disease: lessons learned from other immune-mediated inflammatory diseases, Am. J. Gastroenterol. 114 (2019) 1051-1070. http://doi.org/10.14309/ajg.0000000000000305.
X.W. Xiang, X.L. Zhou, R. Wang, et al., Protective effect of tuna bioactive peptide on dextran sulfate sodium-induced colitis in mice, Mar. Drugs 19 (2021) 127. http://doi.org/10.3390/md19030127.
Q.B. Xu, M.Y. Hu, M. Li, et al., Dietary bioactive peptide alanyl-glutamine attenuates dextran sodium sulfate-induced colitis by modulating gut microbiota, Oxid. Med. Cell. Longev. 2021 (2021) 5543003. http://doi.org/10.1155/2021/5543003.
J.J. Han, X.F. Wang, S.S. Tang, et al., Protective effects of tuna meat oligopeptides (TMOP) supplementation on hyperuricemia and associated renal inflammation mediated by gut microbiota, FASEB J. 34 (2020) 5061-5076. http://doi.org/10.1096/fj.201902597RR.
S. Reagan-Shaw, M. Nihal, N. Ahmad, Dose translation from animal to human studies revisited, FASEB J. 22 (2008) 659-661. http://doi.org/10.1096/fj.07-9574LSF.
B. Pang, H. Jin, N. Liao, et al., Vitamin A supplementation ameliorates ulcerative colitis in gut microbiota-dependent manner, Food Res. Int. 148 (2021) 110568. http://doi.org/10.1016/j.foodres.2021.110568.
F. Zhu, J.J. Zheng, F. Xu, et al., Resveratrol alleviates dextran sulfate sodium-induced acute ulcerative colitis in mice by mediating PI3K/Akt/VEGFA pathway, Front. Pharmacol. 12 (2021) 693982. http://doi.org/10.3389/fphar.2021.693982.
S.U. Morton, M. Joshi, T. Savic, et al., Skeletal muscle microRNA and messenger RNA profiling in cofilin-2 deficient mice reveals cell cycle dysregulation hindering muscle regeneration, PLoS One 10 (2015) e0123829. http://doi.org/10.1371/journal.pone.0123829.
S.S. Xiang, K. Ye, M. Li, et al., Xylitol enhances synthesis of propionate in the colon via cross-feeding of gut microbiota, Microbiome 9 (2021) 62.http://doi.org/10.1186/s40168-021-01029-6.
Y.T. Zhang, L. Cheng, Y.N. Liu, et al., Omics analyses of intestinal microbiota and hypothalamus clock genes in circadian disturbance model mice fed with green tea polyphenols, J. Agric. Food Chem. 70 (2022) 1890-1901. http://doi.org/10.1021/acs.jafc.1c07594.
A. Rauf, A.A. Khalil, M. Khan, et al., Can be marine bioactive peptides (MBAs) lead the future of foodomics for human health?, Crit. Rev. Food Sci. Nutr. 62 (2022) 7072-7116. http://doi.org/10.1080/10408398.2021.1910482.
C. Giromini, F. Cheli, R. Rebucci, et al., Invited review: dairy proteins and bioactive peptides: modeling digestion and the intestinal barrier, J. Dairy Sci.102 (2019) 929-942. http://doi.org/10.3168/jds.2018-15163.
V.S. Andrade, D.B. Rojas, R.B. de Andrade, et al., A possible antiinflammatory effect of proline in the brain cortex and cerebellum of rats, Mol. Neurobiol. 55 (2018) 4068-4077. http://doi.org/10.1007/s12035-017-0626-z.
N.K. Khanna, B.R. Madan, Anti-inflammatory activity of DL-valine, J. Exp. Biol. 16 (1978) 834-836.
M. Friedrich, M. Pohin, F. Powrie, Cytokine networks in the pathophysiology of inflammatory bowel disease, Immunity 50 (2019) 992-1006. http://doi.org/10.1016/j.immuni.2019.03.017.
Z.H. Dai, X.T. Xu, Z.H. Ran, Associations between obesity and the effectiveness of anti-tumor necrosis factor-α agents in inflammatory bowel disease patients: a literature review and meta-analysis, Ann. Pharmacother.54 (2020) 729-741. http://doi.org/10.1177/1060028019900660.
L.M. Mao, A. Kitani, W. Strober, et al., The role of NLRP3 and IL-1β in the pathogenesis of inflammatory bowel disease, Front. Immunol. 9 (2018) 2566. http://doi.org/10.3389/fimmu.2018.02566.
S. Chen, X. Wu, Z.L. Yu, Juglone suppresses inflammation and oxidative stress in colitis mice, Front. Immunol. 12 (2021) 674341. http://doi.org/10.3389/fimmu.2021.674341.
D.F. Fang, J.F. Zhu, Molecular switches for regulating the differentiation of inflammatory and IL-10-producing anti-inflammatory T-helper cells, Cell Mol. Life Sci. 77 (2020) 289-303. http://doi.org/10.1007/s00018-019-03277-0.
L.A. Bolte, A.V. Vich, F. Imhann, et al., Long-term dietary patterns are associated with pro-inflammatory and anti-inflammatory features of the gut microbiome, Gut 70 (2021) 1287-1298. http://doi.org/10.1136/gutjnl-2020-322670.
M. Eisenstein, Ulcerative colitis: towards remission, Nature 563 (2018) S33. http://doi.org/10.1038/d41586-018-07276-2.
L.M. Costa, M.M. Mendes, A.C. Oliveira, et al., Dietary inflammatory index and its relationship with gut microbiota in individuals with intestinal constipation: a cross-sectional study, Eur. J. Nutr. Food Saf. 61 (2022) 341-355. http://doi.org/10.1007/s00394-021-02649-2.
N.M. Breyner, P.B. Vilas Boas, G. Fernandes, et al., Oral delivery of pancreatitis-associated protein by Lactococcus lactis displays protective effects in dinitro-benzenesulfonic-acid-induced colitis model and is able to modulate the composition of the microbiota, Environ. Microbiol. 21 (2019) 4020-4031. http://doi.org/10.1111/1462-2920.14748.
L. Zhao, Q. Zhang, W.N. Ma, et al., A combination of quercetin and resveratrol reduces obesity in high-fat diet-fed rats by modulation of gut microbiota, Food Funct. 8 (2017) 4644-4656. http://doi.org/10.1039/c7fo01383c.
P.S. Salvi, R.A. Cowles, Butyrate and the intestinal epithelium: modulation of proliferation and inflammation in homeostasis and disease, Cells 10 (2021) 1775. http://doi.org/10.3390/cells10071775.
J.Y. Wu, K. Wang, X.M. Wang, et al., The role of the gut microbiome and its metabolites in metabolic diseases, Protein Cell 12 (2021) 360-373. http://doi.org/10.1007/s13238-020-00814-7.
H.A. Tallima, R.E Ridi, Arachidonic acid: physiological roles and potential health benefits-a review, J. Adv. Res. 11 (2018) 33-41. http://doi.org/10.1016/j.jare.2017.11.004.
T.Q. Wang, X.J. Fu, Q.F. Chen, et al., Arachidonic acid metabolism and kidney inflammation, Int. J. Mol. Sci. 20 (2019) 3683. http://doi.org/10.3390/ijms20153683.
Z.W. Yuan, L.H. Yang, X.S. Zhang, et al., Mechanism of Huang-lian-Jiedu decoction and its effective fraction in alleviating acute ulcerative colitis in mice: regulating arachidonic acid metabolism and glycerophospholipid metabolism, J. Ethnopharmacol. 259 (2020) 112872. http://doi.org/10.1016/j.jep.2020.112872.
L. Zong, J.P. Xing, S. Liu, et al., Cell metabolomics reveals the neurotoxicity mechanism of cadmium in PC12 cells, Ecotoxicol. Environ. Saf. 147 (2018) 26-33. http://doi.org/10.1016/j.ecoenv.2017.08.028.
L.M. Chao, J. Lin, J. Zhou, et al., Forsythia suspensa polyphenol rich extract alleviates dss-induced ulcerative colitis in mice through the Nrf2-NLRP3 pathway, Antioxidants (Basel) 11 (2022) 475. http://doi.org/10.3390/antiox11030475.
1176
Views
291
Downloads
4
Crossref
3
Web of Science
5
Scopus
0
CSCD
Altmetrics
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).