AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (4.6 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Open Access

Eugenol targeting CrtM inhibits the biosynthesis of staphyloxanthin in Staphylococcus aureus

Jiang ChangaBo ChenaZeqian DubBowen ZhaobJiahui LiaZiyi LiaKannappan ArunachalamaTing ShibDongqing WeibChunlei Shia( )
MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, China
School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China

Peer review under responsibility of Tsinghua University Press.

Show Author Information

Highlights

• Virtual screening was an effective measure to screen staphyloxanthin inhibitor.

• Eugenol inhibited staphyloxanthin biosynthesis without affecting S. aureus growth.

• The resistance of S. aureus to ROS decreased significantly under eugenol treatment.

• Eugenol might mainly target CrtM to block staphyloxanthin production.

Abstract

Staphylococcus aureus is a serious foodborne pathogen threatening food safety and public health. Especially the emergence of methicillin-resistant Staphylococcus aureus (MRSA) increased the diff iculty of S. aureus treatment. Staphyloxanthin is a crucial virulence factor of S. aureus. Blocking staphyloxanthin production could help the host immune system counteract the invading S. aureus cells. In this study, we first screened for staphyloxanthin inhibitors using a virtual screening method. The outcome of the virtual screening method resulted in the identification of eugenol (300 μg/mL), which significantly inhibits the staphyloxanthin production in S. aureus ATCC 29213, S. aureus Newman, MRSA ATCC 43300 and MRSA ATCC BAA1717 by 84.2%, 63.5%, 68.1%, and 79.5%, respectively. The outcome of the growth curve assay, f ield-emission scanning electron, and confocal laser scanning microscopy analyses confirmed that eugenol at the test concentration did not affect the morphology and growth of S. aureus. Moreover, the survival rate of S. aureus ATCC 29213 and MRSA ATCC 43300 under H2O2 pressure decreased to 51.9% and 45.5% in the presence of eugenol, respectively. The quantitative RT-PCR and molecular simulation studies revealed that eugenol targets staphyloxanthin biosynthesis by downregulating the transcription of the crtM gene and inhibiting the activity of the CrtM enzyme. Taken together, we first determined that eugenol was a prominent compound for staphyloxanthin inhibitor to combat S. aureus especially MRSA infections.

Electronic Supplementary Material

Download File(s)
fshw-13-3-1368_ESM.docx (481.7 KB)

References

[1]

C.M. Liu, Y. Shen, M. Yang, et al., Hazard of staphylococcal enterotoxins in food and promising strategies for natural products against virulence, J. Agric. Food Chem. 70 (2022) 2450-2465. https://doi.org/10.1021/acs.jafc.1c06773.

[2]

E. Tacconelli, E. Carrara, A. Savoldi, et al., Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis, Lancet Infect. Dis. 18 (2018) 318-327. https://doi.org/10.1016/S1473-3099(17)30753-3.

[3]

Z.B. Xu, J.H. Xie, B.M. Peters, et al., Longitudinal surveillance on antibiogram of important Gram-positive pathogens in Southern China, 2001 to 2015, Microb. Pathog. 103 (2017) 80-86. https://doi.org/10.1016/j.micpath.2016.11.013.

[4]

Y.L. Guo, G.H. Song, M.L. Sun, et al., Prevalence and therapies of antibiotic-resistance in Staphylococcus aureus, Front. Cell Infect. 10 (2020) 107. https://doi.org/10.3389/fcimb.2020.00107.

[5]

C.J.L. Murray, K.S. Ikuta, F. Sharara, et al., Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis, Lancet 399 (2022) 629-655. https://doi.org/10.1016/S0140-6736(21)02724-0.

[6]

F.R. DeLeo, H.F. Chambers, Reemergence of antibiotic-resistant Staphylococcus aureus in the genomics era, J. Clin. Invest. 119 (2009) 2464-2474. https://doi.org/10.1172/JCI38226.

[7]

E. Klein, D.L. Smith, R. Laxminarayan, Hospitalizations and deaths caused by methicillin-resistant Staphylococcus aureus, United States, 1999-2005, Emerg. Infect. Dis. 13 (2007) 1840-1846. https://doi.org/10.3201/eid1312.070629.

[8]

N. Jackson, L. Czaplewski, L.J.V. Piddock, Discovery and development of new antibacterial drugs: learning from experience? J. Antimicrob. Chemother. 73 (2018) 1452-1459. https://doi.org/10.1093/jac/dky019.

[9]

D.J.A. Toth, M.H. Samore, R.E. Nelson, Economic evaluations of new antibiotics: the high potential value of reducing healthcare transmission through decolonization, Clin. Infect. Dis. 72 (2021) S34-S41. https://doi.org/10.1093/cid/ciaa1590.

[10]

F. Imperi, W.X. Chen, Y. Smani, Editorial: antivirulence drugs against bacterial infections, Front. Microbiol. 12 (2021) 690672. https://doi.org/10.3389/fmicb.2021.690672.

[11]

L.J. Xue, Y.Y. Chen, Z.Y. Yan, et al., Staphyloxanthin: a potential target for antivirulence therapy, Infect. Drug Resist. 12 (2019) 2151-2160. https://doi.org/10.2147/IDR.S193649.

[12]

F.F. Chen, H.X. Di, Y.X. Wang, et al., Small-molecule targeting of a diapophytoene desaturase inhibits S. aureus virulence, Nat. Chem. Biol. 12 (2016) 174-179. https://doi.org/10.1038/nchembio.2003.

[13]

G.Y. Liu, A. Essex, J.T. Buchanan, et al., Staphylococcus aureus golden pigment impairs neutrophil killing and promotes virulence through its antioxidant activity, J. Exp. Med. 202 (2005) 209-215. https://doi.org/10.1084/jem.20050846.

[14]

A. Pelz, K.P. Wieland, K. Putzbach, et al., Structure and biosynthesis of staphyloxanthin from Staphylococcus aureus, J. Biol. Chem. 280 (2005) 32493-32498. https://doi.org/10.1074/jbc.M505070200.

[15]

J.H. Lee, J.H. Park, M.H. Cho, et al., Flavone reduces the production of virulence factors, staphyloxanthin and α-hemolysin, in Staphylococcus aureus, Curr. Microbiol. 65 (2012) 726-732. https://doi.org/10.1007/s00284-012-0229-x.

[16]

C.I. Liu, G.Y. Liu, Y.C. Song, et al., A cholesterol biosynthesis inhibitor blocks Staphylococcus aureus virulence, Science 319 (2008) 1391-1394.https://doi.org/10.1126/science.1153018.

[17]

F.Y. Lin, C.I. Liu, Y.L. Liu, et al., Mechanism of action and inhibition of dehydrosqualene synthase, Proc. Natl. Acad. Sci. 107 (2010) 21337-21342.https://doi.org/10.1073/pnas.1010907107.

[18]

T. Sterling, J.J. Irwin, ZINC 15: ligand discovery for everyone, J. Chem. Inf. Model. 55 (2015) 2324-2337. https://doi.org/10.1021/acs.jcim.5b00559.

[19]

T. Khan, R. Ahmad, I. Azad, et al., Computer-aided drug design and virtual screening of targeted combinatorial libraries of mixed-ligand transition metal complexes of 2-butanone thiosemicarbazone, Comput. Biol. Chem. 75 (2018) 178-195. https://doi.org/10.1016/j.compbiolchem.2018.05.008.

[20]

J. Chang, B. Tang, Y.F. Chen, et al., Two IncHI2 plasmid-mediated colistinresistant Escherichia coli strains from the broiler chicken supply chain in Zhejiang Province, China, J. Food Prot. 83 (2020) 1402-1410. https://doi.org/10.4315/JFP-20-041.

[21]

P.T. Dong, H. Mohammad, J. Hui, et al., Photolysis of staphyloxanthin in methicillin-resistant Staphylococcus aureus potentiates killing by reactive oxygen species, Adv. Sci. 6 (2019) 1900030. https://doi.org/10.1002/advs.201900030.

[22]

Y.P. Yang, S. Ma, K.L. Guo, et al., Efficacy of 405-nm LED illumination and citral used alone and in combination for the inactivation of Cronobacter sakazakii in reconstituted powdered infant formula, Food Res Int. 154 (2022) 111027. https://doi.org/10.1016/j.foodres.2022.111027.

[23]

S.M. Kang, X.J. Li, Z.Y. Xing, et al., Antibacterial effect of citral on Yersinia enterocolitica and its mechanism, Food Control 135 (2022) 108775.https://doi.org/10.1016/j.foodcont.2021.108775.

[24]

A. Valliammai, A. Selvaraj, P. Muthuramalingam, et al., Staphyloxanthin inhibitory potential of thymol impairs antioxidant fitness, enhances neutrophil mediated killing and alters membrane fluidity of methicillin resistant Staphylococcus aureus, Biomed. Pharmacother. 141 (2021) 111933.https://doi.org/10.1016/j.biopha.2021.111933.

[25]

D. Guo, Y.C. Bai, S.Y. Fei, et al., Effects of 405 ± 5-nm LED illumination on environmental stress tolerance of Salmonella Typhimurium in sliced beef, Foods 11 (2022) 136. https://doi.org/10.3390/foods11020136.

[26]

A. Banerjee, D. Santra, S. Maiti, Energetics and IC50 based epitope screening in SARS CoV-2 (COVID 19) spike protein by immunoinformatic analysis implicating for a suitable vaccine development, J. Transl. Med. 18 (2020) 281. https://doi.org/10.1186/s12967-020-02435-4.

[27]

S. Kumar, D. Seth, P.A. Deshpande, Molecular dynamics simulations identify the regions of compromised thermostability in SazCA, Proteins 89 (2021) 375-388. https://doi.org/10.1002/prot.26022.

[28]

D. Kashyap, S. Jakhmola, D. Tiwari, et al., Plant derived active compounds as potential anti SARS-CoV-2 agents: an in-silico study, J. Biomol. Struct. Dyn. (2021) 1-22. https://doi.org/10.1080/07391102.2021.1947384.

[29]

S.S. Ni, B.L. Li, Y.X. Xu, et al., Targeting virulence factors as an antimicrobial approach: pigment inhibitors, Med. Res. Rev. 40 (2020) 293-338. https://doi.org/10.1002/med.21621.

[30]

P. Kwiatkowski, B. Wojciuk, I.W. Koszko, et al., Innate Immune response against Staphylococcus aureus preincubated with subinhibitory concentration of trans-anethole, Int. J. Mol. Sci. 21 (2020) 4178. https://doi.org/10.3390/ijms21114178.

[31]

K. Vijayakumar, V. Bharathidasan, V. Manigandan, et al., Quebrachitol inhibits biofilm formation and virulence production against methicillin-resistant Staphylococcus aureus, Microb. Pathog. 149 (2020) 104286. https://doi.org/10.1016/j.micpath.2020.104286.

[32]

J.A.D.S. Luis, R.P.C. Barros, D.F.D. Sousa, et al., Virtual screening of natural products database, Mini. Rev. Med. Chem. 21 (2021) 2657-2730.https://doi.org/10.2174/1389557520666200730161549.

[33]

M.T. Scotti, M.F. Alves, C.A.H. Acevedo, et al., Virtual screening studies for discovery of novel inhibitors of inflammatory process targets, Curr. Pharm. Des. 24 (2018) 1617-1638. https://doi.org/10.2174/1381612824666180403122410.

[34]

M. Kandeel, M.A. Nazawi, Virtual screening and repurposing of FDA approved drugs against COVID-19 main protease, Life Sci. 251 (2020) 117627. https://doi.org/10.1016/j.lfs.2020.117627.

[35]

Y.Q. Song, C. Wu, K.J. Wu, et al., Ubiquitination regulators discovered by virtual screening for the treatment of cancer, Front. Cell Dev. Biol. 9 (2021) 665646. https://doi.org/10.3389/fcell.2021.665646.

[36]

A.S.P. Pereira, A.J.B. Luna, J.P. García, et al., Evaluation of the anti-diabetic activity of some common herbs and spices: providing new insights with inverse virtual screening, Molecules 24 (2019) 4030. https://doi.org/10.3390/molecules24224030.

[37]

K. Moschovou, G. Melagraki, T. Mavromoustakos, et al., Cheminformatics and virtual screening studies of COMT inhibitors as potential Parkinson’s disease therapeutics, Expert. Opin. Drug. Discov. 15 (2020) 53-62. https://doi.org/10.1080/17460441.2020.1691165.

[38]

L.A. Earl, V. Falconieri, J.L. Milne, et al., Cryo-EM: beyond the microscope, Curr. Opin. Struct. Biol. 46 (2017) 71-78. https://doi.org/10.1016/j.sbi.2017.06.002.

[39]

K. Tunyasuvunakool, J. Adler, Z. Wu, et al., Highly accurate protein structure prediction for the human proteome, Nature 596 (2021) 590-596.https://doi.org/10.1038/s41586-021-03828-1.

[40]

A. Selvaraj, A. Valliammai, P. Muthuramalingam, et al., Carvacrol targets SarA and CrtM of methicillin-resistant Staphylococcus aureus to mitigate biofilm formation and staphyloxanthin synthesis: an in vitro and in vivo approach, ACS Omega 5 (2020) 31100-31114. https://doi:10.1021/acsomega.0c04252.

[41]

A. Valliammai, S. Sethupathy, S. Ananthi, et al., Proteomic profiling unveils citral modulating expression of IsaA, CodY and SaeS to inhibit biofilm and virulence in methicillin-resistant Staphylococcus aureus, Int. J. Biol. Macromol. 20 (2020) 33095-33096. https://doi:10.1016/j.ijbiomac.2020.04.231.

[42]

J.Y. Yu, L.L. Rao, L.L. Zhan, et al., The small molecule ZY-214-4 may reduce the virulence of Staphylococcus aureus by inhibiting pigment production, BMC Microbiol. 21 (2021) 67. https://doi:10.1186/s12866-021-02113-5.

[43]

K.B. Tiwari, C. Gatto, B.J. Wilkinson, Interrelationships between fatty acid composition, staphyloxanthin content, fluidity, and carbon flow in the Staphylococcus aureus membrane, Molecules 23 (2018) 1201. https://doi.org/10.3390/molecules23051201.

[44]

A. Selvaraj, T. Jayasree, A. Valliammai, et al., Myrtenol attenuates MRSA biofilm and virulence by suppressing sarA expression dynamism, Front. Microbiol. 10 (2019) 2027. https://doi.org/10.3389/fmicb.2019.02027.

[45]

L.N. Silva, G.D. Hora, T.A. Soares, et al., Myricetin protects Galleria mellonella against Staphylococcus aureus infection and inhibits multiple virulence factors, Sci Rep. 7 (2017) 2823. https://doi.org/10.1038/s41598-017-02712-1.

[46]

T. Vila, E.F. Kong, A. Ibrahim, et al., Candida albicans quorum-sensing molecule farnesol modulates staphyloxanthin production and activates the thiol-based oxidative-stress response in Staphylococcus aureus, Virulence 10 (2019) 625-642. https://doi.org/10.1080/21505594.2019.1635418.

Food Science and Human Wellness
Pages 1368-1377
Cite this article:
Chang J, Chen B, Du Z, et al. Eugenol targeting CrtM inhibits the biosynthesis of staphyloxanthin in Staphylococcus aureus. Food Science and Human Wellness, 2024, 13(3): 1368-1377. https://doi.org/10.26599/FSHW.2022.9250115

1272

Views

331

Downloads

2

Crossref

3

Web of Science

4

Scopus

0

CSCD

Altmetrics

Received: 23 August 2022
Revised: 09 November 2022
Accepted: 15 December 2022
Published: 08 February 2024
© 2024 Beijing Academy of Food Sciences. Publishing services by Tsinghua University Press.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return